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A general procedure for constructing instant form, one particle exchange models for two particle systems is

developed. The procedure entails the construction of a mass operator which when used in conjunction with a
free spin operator and a free Newton-Wigner position operator leads to an exactly Poincare invariant model.
The method is applied to a simple model for s-wave pion-nucleon scattering. This model is derived from a

quantum field theory which describes the interaction between pions, nucleons, and sigma mesons through the

virtual processes N~N+ ~, ~~m+ a., and N~N+ o.. The instant form version of this exchange model is

compared with a front form version that was constructed previously. With the procedures used to ensure

Poincare invariance, the instant form two-particle potentials are of the same form as the front form potentials;
however, the pion-nucleon propagators that appear in the two-particle Lippmann-Schwinger equations are not
the same. The instant form and front form models are fit to the same s-wave pion-nucleon phase shifts, and the

resulting parameters are compared.

PACS number(s): 24.10.Jv, 11.80.—m, 13.75.Gx, 21.45.+v

I. INTRODUCTION

Particle exchange models have played an important role
in strong interaction physics since Yukawa proposed that the
nucleon-nucleon interaction is due to the exchange of a mas-
sive particle [1].Almost immediately, Yukawa's scalar me-
son field theory was extended to vector fields [2]; to pseudo-
scalar, pseudovector, and tensor fields [3], and to
combinations of vector and pseudoscalar fields [4]. In recent
years sophisticated exchange models have been constructed
for the nucleon-nucleon system and the pion-nucleon system.

One boson exchange models of the nucleon-nucleon in-
teraction usually include the exchange of m, rg, p, ~, 8, and
o. mesons [5].In such models the use of the cr meson is often
viewed as a phenomenological way of accounting for multi-
meson exchanges that are not included explicitly. More so-
phisticated models take into account processes such as 2m
exchange and up exchange [5].

Particle exchange models for the pion-nucleon system of-
ten include contributions from direct and crossed nucleon
(N), delta (b, ), Roper (N*), etc. , diagrams, as well as o and

p exchange [6—9]. The s-wave model considered here only
includes the direct and crossed nucleon diagrams and o. ex-
change. Our purpose here is to develop a general procedure
for constructing instant form models based on particle ex-
change mechanisms and to compare the results with those
obtained previously [10] in a front form model based on the
exchange mechanisms considered here.

The basic ingredients of a particle exchange model are its
vertices. The nature of the coupling at a vertex is specified by
a Lorentz invariant, Lagrangian density, as we11 as a form
factor or vertex function. The purpose of the vertex function
is to take into account the extension of a strong interaction
vertex, which in general involves composite particles. In
most cases these vertex functions are phenomenological.

These vertices can be related to the observables of a had-
ronic system in a manifestly covariant way by using the
Bethe-Salpeter equation [11]or one of its three-dimensional
reductions. The three-dimensional reductions that are most

widely used are due to Blankenbecler and Sugar [12],and to
Gross [13].Tjon and co-workers [14] have employed both
the Bethe-Salpeter equation and the Blankenbecler-Sugar
equation. The most recent application of the Gross equation
to the two-nucleon system is given in Ref. [15] and to the
pion-nucleon system in Ref. [8].

Holinde and co-workers [5] have made extensive use of
time-ordered perturbation theory in developing the Bonn me-
son exchange model for the nucleon-nucleon interaction,
starting from a set of meson-nucleon vertices. Johnson's
method of folded diagrams [16] has been used to eliminate
the energy dependence of the amplitudes obtained from time-
ordered perturbation theory. This leads to instantaneous in-
teractions which can be conveniently used in calculating the
properties of system with more than two nucleons. This ap-
proach is not manifestly covariant; nor does it fall within the
framework of one of Dirac's forms of relativistic quantum
mechanics [17].It should be noted, however, that the poten-
tials and Lippmann-Schwinger equation obtained in a recent
front form, one boson exchange model of the two-nucleon
system [18]turn out to be almost identical to those employed
in the Bonn one boson exchange models [5].

The purpose of the present work is to introduce a frame-
work for developing particle exchange models within the
context of the instant form of relativistic quantum mechanics
[17,19]. Relativistic quantum mechanics arises when it is
required that the state vectors of a quantum mechanical sys-
tem transform according to a unitary representation of the
Poincare group. The subgroup of continuous transformations,
the so-called proper subgroup, involves ten generators, the
four components P (p, =0, 1,2, 3) of the four-momentum
operator and the six independent components J,= —J „of
the angular momentum tensor. These ten operators must sat-
isfy a set of communication relations, which is usually re-
ferred to as the Poincare algebra. Several subsets of these
generators have the property that they satisfy a closed subset
of these commutation relations and are therefore associated
with a subgroup of the proper Poincare. transformations.
Some of these subgroups are associated with three-
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dimensional hypersurfaces in Minkowski space that do not
contain timelike directions. Each form of relativistic quan-
tum mechanics is associated with such a hypersurface and its
corresponding subgroup [17,19].These subgroups are called
kinematic subgroups [20] or stability groups [21].The most
obvious form, i.e., the instant form, is based on the hyper-
surface t=const, while the light front form is based on the
null plane ct+z=0. In each form of relativistic quantum
mechanics, the subset of generators associated with the
form's hypersurface is chosen to be noninteracting, while the
remaining generators contain interactions.

In the instant form the three-momentum P and the angular
momentum J are noninteracting, while the Hamiltonian H
and K, the generator of rotationless boosts, contain interac-
tions. A rotationless boost is a Lorentz transformation which
relates two inertial frames moving relative to each other with
the corresponding spatial axes parallel. The instant form is
like nonrelativistic quantum mechanics in that the state vec-
tors are specified on the t = const hypersurfaces; however, the
nonrelativistic boost operators, which generate Galilean
transformations, do not contain interactions.

In constructing instant form models, it is convenient to
work with the set of operators (M, P,g, X};where M, +~,
and X are the mass operator, the spin operator, and the
Newton-Wigner position operator [19], respectively. These
operators satisfy simpler commutation rules than the genera-
tors. In fact, the only nonzero commutators are given by
(2.10) and (2.11). The ten generators of the Poincare group
can be expressed in terms of the set tM, P,g;X}, and it can
be shown that if the members of the set (M, P,g,X} satisfy
the correct commutation relations, then the generators ex-
pressed in terms of them satisfy the Poincare algebra.

Here we will obtain an instant form mass operator for the
pion-nucleon system based on the virtual processes
N~N+ ~, m~m+ o., and N~N+ cr. When this mass op-
erator M is combined with the P, g, and X of the noninter-
acting pion-nucleon system, it leads to a set (M, P,g, X}
which satisfies the correct commutation relations. This in
turn guarantees that the model is exactly Poincare invariant.
The procedures used to develop this model are of a general
nature and can be used to derive instant form models for the
pion-nucleon system, which include other exchange pro-
cesses, and to derive models for other systems such as the
nucleon-nucleon system.

The outline of the paper is as follows. Those aspects of
relativistic quantum mechanics that are necessary for an un-

derstanding of the instant form are reviewed and surrunarized
in Sec. II. In Sec. III a two-particle basis is constructed in
which the P, g, and X of a noninteracting system have a
particularly simple representation. The method for obtaining
an instant form, one particle exchange model for the pion-
nucleon system is presented in Sec. IV. Relative three-
momentum variables are introduced, and a method for ensur-
ing the Poincare invariance of such a model is given.
Phenomenological form factors for the mNN, o.mm, and
o.NN vertices are constructed in Sec. V. The numerical cal-
culations are presented in Sec. VI, and a comparison of the
instant form model and the corresponding front form model
is made. A discussion of the results and suggestions for fu-
ture work are given in Sec. VII.

Throughout units in which A, = c = 1 are used.

II. GENERAL BACKGROUND

p„—gp„+ sp„(epv ——e„p), bp= pp, (2.1)

where g, is the metric tensor and the epsilons are the in-
finitesimals, the corresponding unitary operator can be writ-
ten in the form

l
U(a, b) = 1+icpPP —p„+P"—(JP'= —J'P) .

(2.2)

In order for the operators U(a, b) to form a unitary represen-
tation of the Poincare group, the ten Hermitian generators
jP,J „}must satisfy the commutation rules

[Pp, p„]=0,

[Jpv ~pp] = i(g vpPp gppPv)

(2.3a)

(2.3b)

[Jp Jpk] i(gpkJ p+g pJpk gppJ k g 1LJ/lp)
(2.3c)

These commutation rules, which define the so-called Poin-
care algebra, are valid for any choice of the components
rtP, J„„}and the corresponding metric (g„„). In instant
form dynamics, it is convenient to work with the metric

0 0 0

0 —1 0 0
(gp.) = 0

0 0 0

0 (2.4)

A convenient notation for the components of the four-
momentum and the angular momentum tensor is given by

p (pp) (H p) g (J23 J31 J12) K (J01 J02 J03)
(2.5)

The elements (a, b) of the Poincare a group consist of the
Lorentz transformations a and spacetime translations b that
appear in the inhomogeneous Lorentz tran sformations
x'=ax+b. In the passive interpretation, x and x' refer to
the spacetime coordinates of the same event in two different
inertial frames, i.e., the x and x' frames, respectively.

The proper subgroup of the Poincare group involves only
continuous transformations. This subgroup is a ten-parameter
group; four parameters are associated with translations in
four-dimensional spacetime, while the other six are associ-
ated with "rotations" in spacetime. Three of these six can be
associated with true rotations in three-dimensional space,
while the other three can be associated with rotationless
boosts. In what follows the expression Poincare group refers
only to the subgroup of continuous transformations.

In a relativistic quantum-mechanical model formulated on
a Hilbert space, there exists a set of operators U(a, b) which
form a unitary representation of the Poincare group. If ~'I1')

and ~%") are states associated with the x and x' frames,
respectively, they are related by ~'I1')= U(a, b)~'P). If ~4)
and ~'I1') are two different states, clearly

~
(4 '

~

'I1')
~

= ~(4~%)~; i.e., the probabilities are invariant.
For the infinitesimal transformation
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[IC/, P ]=—i 8/kH; (2 6)

therefore, the components of K must be interacting.
The most important operators associated with the internal

structure of a system are the mass operator M and spin op-
erator g. The mass operator is defined by

The Hermitian operators H, P, J, and K are the Hamil-
tonian, the three-momentum, the angular momentum, and the
generator of rotationless boosts, respectively.

It follows from (2.1) and (2.2) that the generators P and

J induce transformations on the hypersurface t= const. Ac-
cordingly, these generators are taken to be noninteracting in
instant form dynamics. As H is the Hamiltonian, it contains
an interaction. It follows from (2.5), (2.3b), and (2.4) that

I/ i./ i;/2 /2)=l/ i /i)l/2 /2) ~ (3.1)

IV assumes that g and X are the same as the operators for a
noninteracting two-particle system. This suggests that our
basis states should be chosen to be direct product states of
single-particle basis states; however, it turns out to not be
quite that simple. In order to get simple representations for

g and X, it is necessary to take for the basis states special
linear combinations of the direct product states. The proce-
dure for constructing the appropriate basis states is given in
the review article of Keister and Polyzou [19].Here we will
simply quote the relevant results.

Our two-particle space is spanned by the direct product
states

M = (P . P)" = (H P)"—
while the instant form spin operator is defined by [19]

(2.7)
where p& and pz are the on-mass-shell momenta of the par-
ticles and h& and hz are the three-components of their spins.
We define a two-particle rest frame, the x~ frame, by the
relations

1 P(P J)
M M(M+H) (2.8)

x=l, (A)xp, A=p/W, (3.2)

The operators M and + Q are Casimir operators and, as
such, commute with all of the generators of the group. Their
eigenvalues are invariants and are used to label the irreduc-
ible representations of the Poincare group. In instant form
dynamics, it also convenient to introduce the Newton-
Wigner position operator defined by [19]

P=P~+Pz. W=(/ /)'". (3.3)

Here l, (A) is a so-called canonical or rotationless boost and
is generated by K [19].It maps the unit four-vector (1,0) to
A. Using this rest frame, we introduce a relative three-
momentum variable q through the relations

1 l 1 li Pxg
2 iH Hi H(M+H) (2.9)

(~i(q).q)=(/ ig) =/ i~= I, '(A)/ i.

(~~(q). —q)=(/2A) P2A i (A)P2.
(3 4)

Rather than work with the generators, it is often simpler
to work with the set (M, P,g,X), since the only nonzero
commutators of the members of this set are

Clearly, q is the three-momentum of particle 1 in the rest
frame defined by (3.2) and (3.3), and moreover the invariant
mass of the two-particle state is given by

[X',P"]=i 8,„, '

[g,g ]= l8jklg

Relations (2.7)—(2.9) can be inverted to give

(P2+ M2) 1/2

J=XxP+g,

(2.10)

(2.11)

(2.12)

. (2.13)

W= W(q) = cu, (q)+ a)~(q) . (3.5)

lq, /1/2 p) X IP1/1 J2/2)

Unfortunately, the spin operator g and Newton-Wigner
position X do not have a simple representation in the basis
provided by the states (3.1). In order to obtain a simple rep-
resentation for these operators, we take as our basis states the
following linear combination of the direct product states
[»]:

1 PxgK= — (HX+ XH) ——
2 M+H (2.14)

If the members of the set (M, P,+,X] satisfy the correct
commutation relations, then the members of the set
(H, P,J,Kj defined by (2.12)—(2.14) satisfy the fundamental
commutation relations (2.3) and thereby qualify as Poincare
generators.

/

hih2

x D„,'„(r,[l,(A),p ig /m i]J

x D,'„(r,[l,( A),p~g/m~]) .
"2"2

(3.6)

Here Di'~(r) is the standard SU(2) matrix representation of a
three-rotation r and r, is a so-called Wigner rotation defined
by

III. BASIS STATES
r, (a, k)—= i, '(ak)al, (k) . (3.7)

In constructing Poincare invariant models, it is desirable
to work with a basis in which P, g, and X have simple
representations. The model we are going to construct in Sec.

So as to be consistent with Ref. [10], we choose for our
states the covariant normalization
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(q hi. h2'plq', hl. h2. p')=(» i hilpl hl)(»2 h2lp2 h2)= ~h h'~h h, (2~)'2p'(p. q)~'(p —p')~(q)~'(q-q') ~ (3.8)

where

» '(p. q) =
l.p'+ ~'(q))'" ~(q) =(2~)'2~i(q)~2(q)»M'(q) . (3.9)

In the basis provided by the states (3.6), the Newton-Wigner
position operator and the spin operator have the representa-
tions [19)

LP
q "i "2'plx= &V o "2 (q "i "2'pl (3 10)

q.p))

&q, hi. h2'pl/= X Ph h, h'h'(q)(q. hi. h2.,pl,
h, hz

(3.11)

where

g(q) =—», e»2(t V,X q)+ S, tm»2+», eS2, (3.12)

with I; and S; the unit matrix and spin matrix vector for
particle i, respectively. The spin operators S& and Sz are
related to the individual spins by the Wigner rotations speci-
fied in (3.6) [19].

In Sec. IV we will construct an effective pion-nucleon
interaction in the basis (lq, h, ,h2, p)), and verify that it
commutes with the spin operator defined by (3.11) and
(3.12), as well as with the Newton-Wigner position operator
defined by (3.10). This will guarantee that we have a Poin-
care invariant model.

r

Vtih, t'i 'h'(P&r &PiV &P &r &Pi&ii

~ t;h t't'h«(P&r &PN &P7r «PN)
x=D,W, a

(4.1)

one assumed in Ref. [10). This quantum field theory de-
scribes the interaction between pions, nucleons, and sigma
mesons through the virtual processes N~N+ m,
7rmvr+ o, and N~N+ o.. In Ref. [10) we constructed an
effective pion-nucleon interaction for use in the front form of
relativistic quantum mechanics by extending to light front
dynamics procedures developed by Okubo [22) and Glockle
and Muller [23). Here we can revert to Glockle and Muller's
instant form version of the Okubo method. It turns out that
just as in the front form, to second order in the coupling
constants the pion-nucleon instant form potentials can be de-
termined by using a slight variation of the standard Feynman
diagram rules. The potentials can be obtained by first draw-

ing the relevant second-order Feynman diagrams and then
determining the four-momentum of the virtual particle in
each diagram by assuming that the total four-momentum is
conserved either at the vertex on the "right" or at the vertex
on the "left,"but not necessarily at both vertices. The poten-
tials are obtained by adding together the two resulting Feyn-
man amplitudes and dividing by 2. The detailed justification
for this rule is given in Sec. V of Ref. [10).The result for the
pion-nucleon potential is

IV. MODEL OF THE PION-NUCLEON SYSTEM

The model of the pion-nucleon system we will construct
here is derived from the same quantum field theory as the

where D, N, and o. indicate the direct nucleon contribution,
the crossed nucleon contribution, and the cr exchange contri-
bution, respectively, given by

1 P™iv P ™iv
li„h t.; h (P .P~'P' P~)=g'jV/v'(x, 'rt'~t x; )~(P~ h)tr52 2 2+,2 2 t'rs~(P~ h'),

2 p f/~ p m~
(4.28)

»t —P —P'+m~ P' P P'+m„——
V"„.., . .(P.,Piv;P.',P~) =g'.~tv(Xl-, ~lX, )it(Piv. h)i r~ 2 )2 ~

(
. )2 ~ i r5~(Ptv

(4.2b)

1 1 1
+tth t«;«h«(P&r &PN &P«r &Pi&t) (gotrrrmogaiVN)(Xi ~tt'Xt')+(PN & ) 2 r &2 2 ««&2 2 +(PN & (4.2c)
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Here the g's are the coupling constants, the 7, are the spheri-
cal components [24] of the nucleon's isospin vector ~, and

the X; are the isospinors

with

u(p/v/i, h) =[a(q)+m/v]"
Xa

o 'xX
(4.10)

Xl/2 0 X—1/2 (4.3)

The Dirac spinors are normalized according to

a(p//, h)a(pÃ, h ) = 2 m//Bgg i (4.4)

We now express these potentials in terms of the relative
three-momentum variable q defined as in (3.4), where we
identify particles 1 and 2 with the pion and nucleon, respec-
tively, and to simplify the notation we write

qX=
e(q)+ m/v

(4.11)

and where the two-component spinors are the same as the
isospinors (4.3).

In expressing (4.2a) —(4.2c) in terms of the relative mo-
mentum variables, it is necessary to know the relation be-
tween the final and initial two-particle rest frame states. Ac-
cording to (3.2), they are related by

cu i (q) = co(q) = (q ™)",

~2(q) = ~(q) =(q'+m~)'" .
(4.5)

xp=L, '(A)L, (A')xp (4.12)

Keeping in mind that the three-momentum is conserved, i.e.,
p=p', we can show that

The potentials (4.2) are given in a basis like (3.1).In order
to work with the simple representations of the spin and
Newton-Wigner position operator, given by (3.10)—(3.12),
we must transform to the basis defined by (3.6). The poten-
tials in this basis are given by

where

xA= L,(Q)xp (4.13)

&=(p p' —p' (p' —p')p)/[IV(q) IV(q')], (4.14)

U, i/, , .../, , (q, q'; p) with

D„/,'„(r, '[l,(A) pN~/mN])
PO [p2+ IV2(q)]1/2 i0 [p2+ IV2( i )]1/2

It is important to note that, on shell or when p= 0,

(4.15)

X Dz„,&,(r, [L,(A '),pz&, /m//]) . (4.6)
&=(1,0) (q=q' or p=0) . (4.16)

We see from here and (4.2) that we are led to consider a
linear combination of Dirac spinors. It can be shown that

When the replacements (4.9) are made in (4.2a) —(4.2c),
we encounter various matrices such as the unit matrix or the
Fey nman slash quantity P sandwiched between
S '[l,(A)] and S[l,(A')]. These products can be worked
out by using [25]

y tt(p//, h')D„,„'(r,[L,(A),p///, /m//])

= S[l,(A)]a(pN/, .h) (4.7)

S '[l,(A)]S[l,(A')] =S[L,(Q)]= exp(-,'uag),

u= A/IflI, tanh(s) = I~I/~
(4.17)

where for an arbitrary Lorentz transformation a the 4X4
matrix S(a) satisfies as well as, for example,

S '(a) 7~S(a) =a~„y" . S '[L,(A)]iL.S[L.(A)]=/.A= ~(q) r' —q r (4.18)

u(p//, h) ~S[L,(A)]u(p///, , h),

u(p//, h') ~S[L,(A')]u(p~~, ,h'),
(4.9)

We see that carrying out the transformation (4,6) is equiva-
lent to making the replacements

The invariant denominators that appear in the potentials
can be worked out, for example, in the xA frame by using
(3.4) and (4.12).

If we let It, i,h) denote a basis state in the isospin-spin
space of the mN system, then using the above results we find
that the potentials defined by (4.6) and (4.2) can be written in
the form

in (4.2a) —(4.2c). The spinors associated with the two-particle
rest frame are given by Eq. (3.7) of Bjorken and Drell [25],
multiplied by /2m/v, so as to give the normalization (4.4).
With the help of (3.4) and (4.5), we have, e.g. ,

v .„.. .„,(q, q';p) =(t, i, hIv'(q, q', p)It', i', h'),

where

(4.19)
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1 N(q, q', p) Nt(q', q;p)
V (qq'p)=g'. NN(3 1/2)2 W 2 2 W2 2TV' —mN W —

mN
(4.20)

N(q, q', p) =(e+ mN)" (e'+mN)" (cosh((/2)[(W' —mN)+ (cr x)(W'+ mN)(cr x')]+ sinh(j/2)[(cr. x)(o"u)(W' —mN)

+(W'+mN)(cr. u)(o. x')]), (4.21)

1 N(q, q', p Nt(q', q;p'" »(q. q', p) D(q', q;p)
(4.22)

D(q q"p) ™N—(pN p')'—
=mN —e —co' +2eco'cosh(g)+(q+q') +2sinh(g)(co'q u+eq'. u)+2[cosh(f) —1]q uq' u, (4.23)

V (q, q';p) = —g m g NN(e+mN)" (e'+mN)" (cosh(f/2)[1 —(cr x)(cr. x')]+sinh(j/2)[(cr x)(o u) —(cr u)

1 1 1

»i(q. q"p) D2(q. q'p) ' (4.24)

D, (q, u, q') = m' —(p —p')'
=m —co —co' +2coco' cosh(g)+(q —q') —2sinh(()(cu'q u —coq' u) —2[cosh(g) —1]q uq' u,

(4.2S)

D2(q, u, q') = m' —(pN —pN)

=m —e —e' +2ee'cosh(()+(q —q') —2sinh(f)(eq'. u —e'q u) —2[cosh(g) —1]q uq' u . (4.26)

Here P&&2 and P3(2 are projection operators onto the subspaces with total isospins of l/2 and 3/2, respectively. In the above
equations, we have set e = e(q), e ' = e(q'), cu = co(q), cu' = cu(q'), W= co+ e, and W' = co '+ e '. The complete effective
pion-nucleon interaction is given in the basis (~q, t, i,h;p)) by

(q, t, i, h;
p~

VN~q', t', i', h', p')=(2m) 8 (p —p') g (t, i, h~V (q, q';p)~t', i', h') .
x=D, N, o

(4.27)

In constructing a Poincare invariant model for the interacting pion-nucleon system, we will assume the noninteracting spin
and Newton-Wigner position operator defined by (3.10)—(3.12). According to the results outlined in Sec. II, a necessary and
sufficient condition for our model to be Poincare invariant is that P, + and X commute with the mass operator M. The other
commutation relations of the set (M, P,g, X) are automatically satisfied by our choice of g and X. We can now easily show
that our model will be Poincare invariant if and only if the matrix elements of the mass operator are of the form

(q, t, i, h;p~ M~q', t', i', h';p')=(2m) 2[p (p, q)p (p, q')]" 8 (p —p')(t, i,h~M(q, q')~t', i', h'), (4.28)

where M(q, q ) is a rotationally invariant function of q,
q', and o; and is independent of p. An M(q, q') with these
properties can be defined by

V N(q. q')
M(q, q') = W(q) b, (q) 6's(q —q')+, „2,

(4.29)

with

V. FORM FACTORS

In order to take account of the extension of the mNN,
o.NN, and o.m m vertices and to improve the behavior of the
potentials at large momenta, it is necessary to introduce form
factors or vertex functions. We will adopt a phenomenologi-
cal form introduced by Gross, van Orden, and Holinde [15]
in the context of a one boson exchange model of the two-
nucleon system, i.e.,

V N(q. q')= X
x=D, N, cr

V'(q, q', 0) . (4.30)
(A —m) +A

f(t', m, &)=
(A2 t2)2+A4 (5.1)

According to (4.14) and (4.17), /= 0 when p= 0. Looking at
(4.20)—(4.26), we see that this greatly simplifies the expres-
sions for the potentials.

where here t is a four-momentum, m is the mass of a m or
o. meson, and A is a cutoff mass. This form is normalized
according to
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f(m;m, A)=1 . (5 2)

In the direct nucleon contribution to the potential [Eq.
(4.2a)], we make the replacements

1 '2 1

2 ~fl (p p—)™.A. ], ««p 2
&p& p& & &pi PE&

+fl (Px PIv) 'm~ &~jvw]

i=m, N . (5.5)
(p pv)~f

X mN 2 '~m '~7TNN 2 2
X mN

xf;m, A ~~,

x =p, p
' . (5.3)

(x p p) m

(x pm 2p~)f «mm «AmNN2

(x p~ p~)™w
(x —p~ —2p~) ™xf m, A NN,

Here, as is common in models of the pion-nucleon system
[26], we are assuming that the form factors depend on the

square of the relative pion-nucleon four-momentum. In the
crossed nucleon contribution [Eq. (4.2b)], we assume that the

form factors are functions of (p —p~) and (p' —p~),
where pN is the momentum of the virtual nucleon in the
intermediate state. In the first and second terms on the right-
hand side of (4.2b), we have pz= p —p —p

' and

pN=p' —p —p', respectively. Thus the replacements in

(4.2b) are given by

It is straightforward to check that on shell, i.e., when

p +p~ =p
' +p~, the form factors in (5.3)—(5.5) all be-

come 1 when the denominators vanish. Thus the modified
propagators have the correct residues.

We must now express the arguments of the form factors in

terms of the relative three-momentum variables q and q'.
We can easily show that

[(p —p~) —m~]/2 = m + [m~ —W (q) ]/2 . (5.6)

In our prescription for the mass operator, i.e., (4.29) and

(4.30), we set p=0. We can easily show that, when p= 0,

p' z= (co(q'), q'), p~&= (e(q'), —q') (assumes p=0),
(5.7)

which when combined with (3.4) and (4.5) makes it trivial to
express the arguments of the form factors in (5.4) and (5.5)
in terms of q and q'. It is important to note that the prescrip-
tion (5.7) preserves the correct residues of the modified
propagators. It should be noted that the treatment of the form
factors here is not the same as in Ref. [10],as there separable
functions of q and q' were simply introduced into each of
the three potentials in (4.30).

VI. NUMERICAL RESULTS

Our model of the pion-nucleon system is formulated in
terms of a mass operator defined by (4.28)—(4.30). Scattering
theory is usually formulated in terms of a Hamiltonian op-
erator; however, it can be formulated in terms of the mass
operator, as shown for example in Appendix A of Ref. [19].
According to (4.28) and (4.29), we can separate our mass
operator into a noninteracting mass operator and an interac-
tion, i.e.,

X =P,P (5.4) M=MO+ U, (6 1)

For the o. exchange contribution, we make the replacements where

(t, i, hlv ~(q, q')lt', i', h)
(q, t, i, h;plUlq', t', i', h', p')=(2~)'2[p (p, q)p (p, q')]" 8'(p —p') 2~~, , ~, „]it~ (6 2)

The transition operator for our model is obtained by solving the Lippmann-Schwinger equation

1
T(z) = U+ U T(z),

z —Mo
(6.3)

where z is a parameter with the dimension of mass. If we write

(t, i,hl T„~(q,q';z)
l
t', i ', h')

(q t i "'plT(z)lq' t'. i' "'p')=(2~)'2l p'(p. q)p'(p. q')]'"~'(p —p')
~

~ ~ ]1/2 (6.4)
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and use the completeness relation implied by (3.8), we can show that the operator equation (6.3) gives rise to the integral
equation

v..(q, q")
'-N(q q"z)= -N(q q')

J d, (q") 2W(q")[.-W(q )] ™N(q".q"z) (6.5)

g~P=ln[W(q)/W(q')], u~e3=(0, 0, 1) . (6.6)

In Ref. [10]we argued that in the front form formulation it is
a reasonable approximation to let P~O, which has the effect
of eliminating all of the e3-dependent terms. This leads to
exactly the same pion-nucleon potential as (4.30), where we
set p= 0 in (4.19)—(4.26). Thus, with the approximations that
have been made, the front form and instant form pion-
nucleon potentials are identical. This does not imply, how-
ever, that the T matrices are identical, since the front form
T-matrix equation is given by (6.5) with the replacement

1 1

2 W(q") [z —W(q")] z —W (q") (6.7)

We can readily solve this singular integral equations numeri-
cally by using Kowalski's method [27].

As pointed out above, the exchange model we are using
for the pion-nucleon system was used previously [10]as the
basis for a front form model of this system. It is an interest-
ing fact that the potentials obtained in the front form formu-
lation are given by equations that are identical in appearance
to (4.19)—(4.26); however, ( and u are not given by (4.14)
and (4.17), but rather by

and so the two-particle, front form mass-square operator
naturally decomposes into noninteracting and interacting
parts according to

M =Mp+ Vf.2 (6.10)

It should be noted that as far as Poincare invariance is
concerned, there is nothing wrong with reinterpreting the in-
stant form mass operator (4.29) as a front form mass operator
[19].The only technical difference is that in the front form
the relative three-momentum variable q is defined by (3.4),
but with the canonical boost replaced with a so-called front
form boost If this .is done, the instant form and front form
lead to identical 5 matrices. We have not adopted this pro-
cedure since we feel that it weakens the connection between
the effective two-particle models and the underlying quan-
tum field theory.

In order to assess the difference between the front form
model developed in Ref. [10] and the instant form model
developed here, we have fit the s-wave pion-nucleon scatter-
ing amplitudes using both (6.5) and (6.5) with the replace-
ment (6.7). The experimental phase shifts were taken from
the sAID wt94 analysis [29].The pion-nucleon coupling con-
stant, pion mass, and nucleon mass were taken to be

We note that both forms have the same residue at the singu-
lar point z= W(q").

The difference between the two forms is due to the dif-
ference in the way interactions are added into the noninter-
acting operators. In the instant form, the three-momentum
P is noninteracting and the interaction appears in
P =H= Hp+ HI . In the front form, we work with the com-
ponents

g»/4~= 13.50, m = 139.57 MeV,

m~= 938.92 MeV . (6.11)

The parameters that were varied are the sigma exchange po-
tential strength g m g», the sigma mass m, and the
cutoff masses A» and A =A». As indicated, we

P = (P+,PJ,P )

=((P +es P)/+2, P—e3.P, (Po —es P)/+2), (6.8)

where e3 is given by (6.6) and P+ and PJ are taken to be
noninteracting, while P contains an interaction, i.e.,
P = Pp +P

~
~ In the instant form, the perturbation series

for the effective two-particle interaction is developed in pow-
ers of H&, while in the front form it is developed in powers
of Pi [10,28]. Since our two-particle, instant form mass op-
erator is essentially the Hamiltonian in the c.m. frame, it
naturally decomposes into noninteracting and interacting
parts according to (6.1). In the front form, the mass-square
operator is given by

10-

e 8.I

6.
CO

tl 4 ~

CO

Oi-
0 50

I

100

Pion Lab Kinetic Energy (MeV)

150 200

M =2P+P —Pi =2P+Pp —Pi+2P+P,

=Mp+2P+P(, (6.9)

FIG. 1. S11 pion-nucleon phase shifts as a function of the pion
laboratory kinetic energy. The solid and dashed lines are the instant
and front form results, respectively. The dots are from the SAID wI 94

analysis.
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0-' TABLE I. Comparison of instant form and front form parameters.

-2.5 .
8
v 5-Ia

-75-
(D

th
-10-cd

CL

~ -12.5-

Parameter

g~wN/4~
m (MeV)
A ~~ (MeV)
A =A tt~ (MeV)

Instant form

4.81326
505.865
1431.07
6725.64

Front form

4.81033
482.753
1421.94
3577.70

-15-

50
I

100

Pion Lab Kinetic Energy (MeV)

150 200

FIG. 2. S31 pion-nucleon phase shifts as a function of the pion
laboratory kinetic energy. The solid and dashed lines are the instant

and front form results, respectively. The dots are from the sAID wI94

analysis.

have chosen the two sigma exchange cutoff masses to be the
same. The fits are shown in Figs. 1 and 2, and the resulting
parameters are given in Table I. The coupling constant com-
bination g g &z/4m differs by only 0.06% between the
two forms, the m 's differ by 4.6%, the A~&&'s differ by
0.64%, while the cutoff masses for the o. vertices differ dra-

matically. It is encouraging that g „g z&/4m and I are
not sensitive to the form of relativistic quantum mechanics
assumed; after all, these are supposed to be fundamental pa-
rameters of the underlying field theory. At low energies the
difference (6.7) between the instant form and front form
pion-nucleon propagators is negligible, but at high energies
we expect the difference to be of some significance. This
difference is clearly reflected in the o. exchange cutoff mass.

nucleon and cr exchange, also includes the contributions of
the 5 and N* direct and crossed diagrams, as well as p
exchange. Such a model is presently being constructed in
both the instant form and front form so as to test the sensi-
tivity of the model parameters to the form assumed. It will be
interesting to see if the differences between the two forms
are rejected only in the cutoff masses, as was found here, or
if the masses of the exchanged particles and the coupling
constants are also affected.

The model considered here does not take into account
inelasticity. An attempt is under way to take this into account
by including coupling to ark and gN channels, as has been
done in the past by other authors [8,30]. A more ambitious
treatment of inelasticity would also include the vrvrN chan-
nel. The development of an exactly Poincare invariant instant
form or front form three-particle model of pion-nucleon scat-
tering is nontrivial, but is certainly worth pursuing.

An exactly Poincare invariant front form, one boson ex-
change model of nucleon-nucleon scattering has already
been constructed and fit to the experimental amplitudes [18].
At present the corresponding instant form model is under
construction, and here also it will be interesting to see how
the differences in the forms are reflected in the model param-
eters.
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