
PHYSICAL REVIEW C VOLUME 52, NUMBER 2 AUGUST 1995

Stability of bound states of negative pions and neutrons
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The problem of stable bound states of a system composed of N neutrons and Z negative pions
is discussed. Calculations performed within a theoretical model indicate that one needs at least 5

pions and around 8 neutrons in order to get binding. The stability of the system against either pion
or neutron emission is investigated, as well as the stability against its possible weak decay modes.
Results for several values of N and Z are presented.

PACS number(s): 21.10.Dr, 13.75.Gx, 25.80.Hp, 36.10.Gv

The possibility that a system consisting of negative
pions and neutrons may under certain conditions form a
stable bound state was first discussed in Refs. [1,2]. The
word "pineuts" to name these objects was invented by
Van Dantzig and de Boer [3—5).

Since negative pions cannot be absorbed by neutrons,
that implies that pineuts will decay only through weak
interactions. The dominant decay mode is the one that
proceeds through the process

which has a lifetime of 7 10 s. If this decay mode
were closed, the next process would be

Me +v, (2)

which has a lifetime 7. 10 s. Thus, if we assume
that the Z pions bound in a pineut have all the &ee pion
lifetime, then the lifetime of pineuts will be of the order of
10 s/Z s if the decay mode (1) is open. If the decay mode
(1) is closed then the decay goes through the process of
Eq. (2) and the lifetime of pineuts will be of the order of
10 /Z s. It has been argued recently [6,7] that the z.

e +v decay branch might be considerably enhanced in a
dense medium if angular momentum is transfered to the
surrounding nucleons in the decay process, since for the
free pion this decay branch is helicity suppressed. We are
presently investigating this point [8].

In an earlier experiment, de Boer et al. [9] used a 600
MeV proton beam scattered on Be to search for the
pineuts (vr ) n with Z = 1, %=2—6 and Z = 2, N = 3
with negative results. The simplest possible pineut, i.e. ,
(z. ) ~nz has been searched extensively [10—14] using the
reactions m d —+ ++X and vr d —+ pX also with negative
results. Theoretically, it is also now accepted that this
pineut does not exist [15,16]. More recent experiments
[17,6] used a heavy ion beam with energies of several
GeV/nucleon that was scattered on a heavy ion target.
For example, Hemmick et al. [17] used a Si beam of 14.6
GeV/nucleon scattered on Al, Sn, Cu, and Pb, while de
Boer et al. [6] used a 2ssU target on which they scattered
oAr at 1.8 GeV/nucleon and La at 1.3 GeV/nucleon.

Prom these searches it has now been established that the
pineuts (~ ) n~ with Z=l, 2 and %=2—4 do'not exist.

E = EN ZB + EcouI ) (3)

where E~ is the self-energy of the N neutrons, B is the
binding energy of each pion, and Eg „~ is the repulsive
Coulomb energy of the Z pions.

The shifts and widths of the energy levels of pio-
nic atoms due to the pion-nucleus strong interaction
have traditionally been Gtted using the truncated Klein-
Gordon equation [19,20]

[V + ko —2u)V(r")]4(r) = 0, (4)

where V(r ) is the pion-nucleus optical potential [19,20].
The optical potential of a pion with a piece of neutron
matter is obtained. by taking the limit of the optical po-
tential of pionic atoms [19—22] when the proton density
is equal to zero. This gives [2]

with

Po ——0.147(1 + p/M) p

Pg ———0.38(1+ ts/M) 'p (7)

and p is the mass of the pion, M is the mass of the
nucleon, while p (r) is the neutron density. The optical
potential (5) has a pathological behavior so that it has
to be regularized. Thus, we use instead of Eq. (5) the

The original model and. the basic idea of pineuts with
an arbitrary number of neutrons and pions was proposed
in Ref. [2]. We will use here that model to calculate the
binding energies of pineuts as a function of N (the num-
ber of neutrons) and Z (the number of pions). The theo-
retical model of Ref. [2] provides a prescription to calcu-
late (a) the interaction of the pion with the neutrons, (b)
the interaction between the neutrons themeselves, and
(c) the Coulomb interaction between the pions. The
strong interaction between the pions is neglected since
two negative pions must necessarily be in an isospin 2
state. Therefore, since the m~ phase shifts for isospin
2 are very small [18] one expects this interaction to be
negligible. Thus, the energy of a pineut consisting of N
neutrons and Z pions is
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regularized form in momentum space

V(k, k') = —(Pp + Pik k') p„(k —k')
2p

M2 M2
X M~ + k~ M2 + k'2 ' (8)

-2 50

0)
-500

where we have introduced a cutoK with a cutoÃ parame-
ter M equal to the mass of the nucleon as it is appropriate
for the vrN amplitude with isospin 3/2 (see, for example,
Refs. [23,24]).

For the density of the neutrons we assume a Fermi
distribution

Pp

1 + e(r R)/—d

with

-750

—IOOO

l. O

B=rpN ~

The parameter pp in Eq. (9) is determined by the condi-
tion

0.8
E

0.6

where Q(r ) is the wave function of the pion obtained
&om the solution of the Klein-Gordon equation (4). The
Coulomb energy is calculated in the standard way by
considering a spherical shell of radius r with a dift'erential
of charge dq = p(r)4vrr2dr. If we call Q(r) to the charge
contained inside a sphere of radius r,

Q(r) = p(r')47rr' dr',
p

then the Coulomb energy is

p(r) 4~T2 dr Q(r)ECeul—
p r (14)

while the other two parameters rp and d will be deter-
mined by a variational condition as will be discussed
later.

The self-energy of a piece of neutron matter is calcu-
lated &om the results of infinite neutron matter [25] by
applying the local density approximation [2]. Jackson et
al. [25] calculated the self-energy of infinite neutron mat-
ter for the cases of the Reid soft-core potential [26] and
the Bethe-Johnson potential [27]. Since the Reid soft-
core potential is less repulsive at short distances, one can
get more easily pineut solutions with it. Therefore, in
all the pineut calculations of this paper (unless other-
wise explicitly stated), we have used the more repulsive
Bethe- Johnson potential.

Our calculation of the Coulomb energy divers &om
Ref. [2] (there we assumed a uniform charge density) and
therefore we will describe it next. Since the Z pions are
all in the state of lowest energy which is an 8 state, this
gives rise to a spherically symmetric charge density given
by
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FIG. 1. Energy of the pineut and the parameters ro and d
of the density of the neutrons, as functions of Z for N = 40.

E(Tp, d) = Eiv(rp, d) —ZB(rp, d) + Ec )(Tp, d), (15)

therefore, one has to 6nd the values of the parameters rp
and d that minimize the energy. Thus, the energy of the
physical pineut is obtained by applying the variational
conditions

BE(rp, d)
Brp

BE(rp d)
i9d

(16)

which determine simultaneously the parameters rp and
d as well as the energy of the pineut. Figure 1 shows as
an example the results of the case N = 40. There it is
shown, as a function of Z, the energy of the pineut and
the two parameters of the density rp and d.

Before showing our Anal results, we like to discuss three
important points of our model.

The first point refers to the parameters Pp and Pi that
were derived in Eqs. (5)—(7) using the results of pionic
atoms. The parameters Pp and Pi used in the regular-
ized form of the optical potential (8) do not have to be
changed in order to reproduce the pionic atom data. This

The energy of the pineut is given by Eq. (3) and is a
function of the two parameters rp and d of the density of
the piece of neutron matter, i.e.,



1128 BRIEF REPORTS 52

—250

—500
-200

—750)
X —

I 000

-400

—I2 50
-600

—1500
—800

—
l 750

20 40 80
IO 20 40

FIG. 2. Energies of pineuts as functions of Z for N = 10,
N =20, and N =40.

FIG. 3. Energies of pineuts as functions of N for Z = 5,
Z=10, Z=15, and Z=20.

is due to the fact that the hydrogenic wave functions of
the pion in momentum space are confined to the region
of very low momenta (about 0.1 fm ) and therefore in
the calculation of the shifts and widths there is very lit-
tle effect from the cutoff. We have calculated the shift
and width of the 18 level of the pionic atom with 20 pro-
tons and 20 neutrons using the parameters of Ref. [1gj,
and found that the results with and without cutoff differ
among themeselves by less than 1%.

The second point concerns the sensitivity of the bind-
ing energy of a pineut with respect to the cutoff parame-
ter of the optical potential (8). We found that larger cut-
offs give larger binding energies for the pineut and vice
versa. In particular, if we lower the cutoff parameter to
one-half of the nucleon mass, then our standard model
with the neutron-neutron interaction of Bethe-Johnson
predicts no pineuts. However, if we use this lower cut-
ofF together with the neutron-neutron interaction of the
Reid soft-core potential, pineuts will still be predicted.
For example, for N = 10, 20, 30, 40, they will appear if
Z & 18, 16, 19, 22, respectively.

The third point has to do with the Coulomb inter-
action. The Klein-Gordon equation solved to And the
pion wave function does not include the Coulomb in-
teraction with the Z —1 other pions. This wiH tend
to push the pions apart and weaken the strong binding
of the pions to the neutrons; as a tradeoff, the larger
pion wave function could lead to a decrease in E~ „I,
the Coulomb energy. As an estimate of this effect, we
considered the pineut with N = Z = 20 and added
to the optical potential the screened Coulomb potential
V(r) = (Z —l)e2 exp ( r/p)/r with a scre—ening radius
p = 5 fm (since we solve the Klein-Gordon equation in
momentum space we cannot use the unscreened Coulomb
potential). The addition of this term changed the binding
energy of the pineut from 672 MeV to 648 MeV, i.e., it
lowered it by 24 MeV. The contribution from pion bind-

ing was lowered by 26 MeV while the Coulomb energy
was lowered by only 2 MeV. Thus, there is not much of a
tradeoff. Notice, however, that the total energy changed
by less than 5%.

We show in Fig. 2 the binding energies of pineuts as a
function of Z (number of pions) for a constant value of K
(number of neutrons) where we have considered the three
cases N = 10, N = 20, and N = 40. In all three cases as
Z is increased, the binding energy increases until about
50 or 60 pions and afterwards it decreases with increasing
Z. This behavior is originated by the repulsive Coulomb
interaction between the pions. As one can see from Eqs.
(12)—(14), the Coulomb energy is proportional to Z2 and
therefore for large Z the Coulomb repulsion dominates
over the attractive interaction of the pions with the piece
of neutron matter. Therefore, in the region of large Z
the pineuts are unstable against pion emission since by
emitting one or more pions they can move into a state
with lower energy. Thus, only pineuts with Z less than
about 50 are stable against pion emission. Similarly, as
one can see in Fig. 2, for a constant value of Z E(K =
40) ) E(K = 20) ) E(% = 10) so that the pineuts with
large N are unstable against neutron emission, since by
emitting one or more neutrons they can move into a state
with lower energy. In order to And the pineuts that are
stable against both pion and neutron emission, one has
to consider a constant Z smaller than about 50 and keep
lowering N until a minimum in the energy is found.

We show in Fig. 3 the energies as functions of N for
the pineuts with Z = 5, Z = 10, Z = 15, and Z = 20.
As one can see, the minimum of the energy lies at about
8 neutrons so that below this value of N the pineuts are
stable against both pion and neutron emission. Thus,
they will decay only through the weak processes indicated
by Eqs. (1) or (2).

The muonic decay mode of Eq. (1) will be open if the
energy spacing between the pineuts 2VZ and 2V(Z —1)
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is less than 34 MeV. As one can get &om Fig. 3, the
energy spacing is about 45 MeV so that the decay mode
(I) is closed and the decay mode (2) will be the one that
proceeds.

Another result that is obtained &om Fig. 3 is that one

needs at least 5 pions in order to produce a pineut. This
explains the negative results of the experimental searches
[6,9—14,17], which have been restricted to Z ( 2.
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