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Integral characteristic parameters of the giant M1 resonance
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The dipole magnetization of a heavy spherical nucleus is studied with macroscopic standpoint.
The semiclassical model under consideration focuses on the giant M1 resonance as a result of long
wavelength oscillations of the collective magnetization current induced in the surface massive layer
of finite depth. The macroscopic picture of the excited collective flow is found to be like that
for the torsional elastic vibrations of the peripheral layer against the central spherical region inert
with respect to external perturbation. The emphasis is placed on calculation of scaling behavior of
integral characteristic parameters of magnetic dipole resonance.

PACS number(s): 21.60.Ev, 24.30.Cz, 25.30.Dh

Studying the giant M1 resonance in medium and heavy
nuclei has been and still is the subject of current inves-
tigations [1]. First experiments carried out in the past
decade by means of (e, e’) and (p, p’) scattering [2—4] have
allowed establishing that the energy of magnetic dipole
resonance is centered at E(M1) ~ 41 A~'/3 MeV. An
important finding of the nuclear resonance fluorescence
measurements is the regularity of the B(M1) factors:
the total excitation probability of the M1 resonance is
smoothly enhanced throughout the periodic table [5-7].
In this Brief Report an attempt is made to discover the
scaling behavior of total excitation strength and other
integral characteristic parameters of the magnetic dipole
resonance, that is, their dependence upon atomic Z and
mass A numbers.

In what follows we study the dynamics of dipole nu-
clear magnetization, based on the continuum method
which has been used with success for systematizing the
data on both the electric [8,9] and magnetic [10-12] res-
onances of the multipole order A > 2 (see also Sec. 2
of Ref. [13]). It is noteworthy that the continuum ap-
proach in question presumes that spherical nucleus reacts
as an elastic solid globe rather than as a liquid drop. The
elastic behavior of a heavy nucleus in the energy range
of giant resonances, as was first pointed out in Ref. [8],
has a quantum nature in the sense that restoring elastic
force originates from anisotropic distortions of the nu-
clear Fermi sphere [8,9,13]. Specifically, in the semiclas-
sical model under consideration a heavy nucleus of radius
R = 79 A'/3 with spin zero in the ground state is viewed
as a spherical piece of an elastic Fermi continuum with
the uniform densities of charge n. = ¢(Z/A)no and mass
po = mng (m is the nucleon mass). In this Brief Re-
port we use the simplest parametrization for the particle
density no = (2/37%)k3 = 3/(4wr3), where kr = mpr /h
and pr is the Fermi momentum. Dynamics of nuclear ex-
citations is described in terms of harmonic fluctuations of
the velocity field 6V (r,t) = a(r) ¢(t), where a(r) is the
field of instantaneous displacements. The collective flow
accompanying the giant magnetic response is described
by the toroidal solution to the vector Laplace equation:

ASV =0, divéV =0. (1)
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A magnetic resonance is considered as an eigenmode of
the oscillator Hamilton function:

B Jd')2 C¢2
==t @

where the inertia J and stiffness C are given by

1 da;  Oa; 2
== dr.
¢ 2/“<8wj+8wi) T
(3)
Here p = po(h® k% /5m?) is interpreted to be the nuclear
shear modulus. The details of calculation of J and C

can be found in [12]. The position of energy peak and
the total excitation probability are calculated as follows

J=/Poaiaid7",

E<M1>=h\/§, B(M1) = 3(M(ML)P),,  (4)

where

M(Ml)=‘/—1373?c—2/j-[rxV]rsin0dT, (5)

is the collective dipole moment! induced by oscillations of
the electric current density j = n.6V = n. a¢; hereafter
¢ stands for the light velocity. In Eq. (4) symbol (---);
means the time averaging. In particular, (@), = 1pdw?
and ¢o = (Aw/2C)'/? [14]. The method allows one to
evaluate another integral characteristic such as the mag-
netic oscillator strength S(M1) and the magnetic polariz-
ability as related to the energy and the total excitation
probability as follows:

97 B(M1)
=-2=""1 (6
oM =~-3 o) ©
These quantities are often regarded as a macroscopic ana-
log of sum rules [15,16].

S(M1) = E(M1)B(M1),

!n this Brief Report all analytic calculations are carried out
in the frame with fixed polar axis.
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The phenomenological method developed in [9,11] al-
lows one to evaluate the spread width of a giant resonance
caused by the two-body collisional damping of collective
motions. Making use of this method the following simple
relation

2 _ o
roan =g (EME, 9= Sl ()
can be inferred (see for details [11]). The parameter
7 =~ 0.03 £ 0.01 x 0.948 Afm ™2 stands for the viscosity
coefficient.

In the above calculation scheme the main ingredient
is the velocity field (more precisely, the field of instanta-
neous displacements) subjected to Eq. (1). Having found
the solution of this latter equation the method permits
one to estimate, in fact, a complete set of the measurable
integral characteristics of M1 resonance.

Our consideration is essentially relayed on conclusions
stemming from the single-particle shell model. As is well
known in this model the magnetic dipole resonance is in-
terpreted to be caused by transitions between spin-orbital
partners (j; =l =+ s — j» =l F s) with high angular mo-
menta /. From this model it follows that the probability
of the nucleon localization is shifted from center to sur-
face with increasing orbital moment: the higher the /, the
closer the nucleon happens to be localized to the nucleus
surface. This means that M1 resonance is dominated
by coherent motion of nucleons localized mostly into the
surface layer of the nucleus. Based on this observation
we explore the following collective mechanism of dipole
magnetization. It is assumed that a heavy nucleus be-
ing irradiated by the electromagnetic field turns out to
be decomposed into two subsystems so that only the pe-
ripheral layer of the nucleus is involved in the motion,
whereas a central spherical region of the radius R, stays
unperturbed. This perturbation gives rise to the long
wavelength torsional oscillations of charged flow taking
place only in the peripheral layer of finite depth. It is
presumed that such a picture of nuclear decomposition
appears and exists only in the course of excitation and
should be considered as an essentially dynamical macro-
scopic model of the process of dipole magnetization.

Following the above prescription we look for the solu-
tion to Eq. (1) in the form of toroidal vector field

8V(r,t) = rot rx(r) cos 8 $(t). (8)

The explicit view of the velocity field [in fact, the radial
function x(r)] can be uniquely established based on the
following boundary conditions. The coordinate depen-
dence of velocity on the nucleus edge is assumed to be
the same as in the case of rigid rotational oscillations

8V (r,t) = [r X Qo(t)]r=r, (9)

where €24(t) = e, ¢(t) with ¢(t) = ¢o sin wt. Consider-
ing that external perturbation produces motions in the
surface spherical layer of finite depth AR = R — R,,
whereas the internal spherical region of radius R, unaf-
fected by the perturbation stays at rest, we put

6V = 0| (10)

r<R."

As a result one obtains

r 1 R3R3
Xm:K(E“ﬁ)’ K=p-m M

Spherical components of the field of instantaneous dis-
placements are written as

r

1
1 1 1 _ ;
a, =ay5 =0, ay =K (Rg ——T2>sm9. (12)

This field bears a strong resemblance to that for tor-
sional elastic oscillations of the surface layer against cen-
tral spherical region which stays at rest.

It is worthwhile to emphasize that the density of per-
turbed electric current may be represented in the well-
known form of the magnetization current

j=nV =crotM,

where

n T 1 ;
M(r,t) = —r l:?e K (1—2;3— - ﬁ) cos 0] o(t). (13)
From the macroscopic electrodynamics it is known that
the magnetization current (in contrast with the current
of conductivity) is not accompanied by transportation of
charge in the course of excitation. Notice that similar
property is attributed to the quantum-mechanical cur-
rent of spin magnetization. However, it is not our pur-
pose here to speculate about the microscopic origin of
the giant M1 resonance. The considered mechanism of
dipole magnetization carries an essentially collective con-
tent, since the model in question is formulated in terms
of macroscopic electrodynamics of continuum medium.

Analytic calculations are easily performed with use of,
instead of R., the parameter £ = R./R measuring the
part of nuclear mass

AM =M — M, = M (1—2?),
(14)
M =T poR®, M, = T poRS

involved in the collective dynamics. In terms of z the
torsional stiffness is given by

23
1—23

8
C = ?ﬂ-pgv% R3

(15)

From this latter equation it follows that the nonzero value
of C is achieved only due to effective splitting of nucleus
into two spherical subsystems. Indeed, the parameter C
is canceled if R, = 0 (in this case z = 0). Inserting (12)
into (3) the mass parameter takes the view

J = 8—7[-p()}25

- (16)

1 — 5z + 92° — 5z
(1—=3)2
From (16) it follows that when £=0 the torsional inertia is

reduced to the moment of inertia of a rigid globe J(z =
0) = (2/5)MR?. Having calculated the parameters C
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and J we arrive at the following expression for energy:

C\ /2
E(M1)=h (J—l) =k A"Y3MeV, (17)
1
3z3(1 — z3) 1/2
1 — 5z3 + 925 — 5z6 )

2
2mry

. _ F(om) [

For the total excitation probability we obtain

B(M1) =~ 2% A7 4§,

_9(9m)1/3 3z3(1 — z3)
© 80m (1 — 523 + 925 — 526)3
2
5 3
X [1 —_ 51!3 —+ '2-1!5] N (18)

where p stands for the nuclear magneton. As was men-
tioned above the semiclassical model in question, as any
collective model, is aimed at revealing the scaling depen-
dence of integral characteristic parameters. This depen-
dence may be figured out if the parameter z is taken to
be constant. This latter attitude reflects the fact that
the process of the dipole magnetization has one feature
in common for medium and heavy spherical nuclei. The
continuum picture is unwarranted for light nuclei with a
relatively small number of particles. As it follows from
(18) when z is constant, the latter formula provides the
observable A~1/3 dependence of energy. Taking x = 0.53
and r9 = 1.15 we exactly reproduce the energy of the
M1 resonance in 9°Zr. With the above fixed parameters
we arrive at the following scaling estimate for the energy
centroid and the total excitation strength

E(M1) =~ 41 A~Y/3MeV,
B(M1) =~ 85x 1072224723 %,

It is worthwhile to stress that having fixed the constant
z, the B(M1) factor is calculated without recourse to any
adjustable constants. In Table I a systematic comparison
of the model predictions with the NRF data available is
presented. With above given parameters the part of mass
participating in the collective motion is evaluated to be
AM = 0.85M, that is, the giant M1 resonance is an
essentially volume nuclear response. The model predicts
the following scaling behavior of the magnetic oscillator
strength and the magnetic polarizability [Eq. (6)]

S(M1) ~3.52% A~ u% MeV,
ay ~ —75x10732% A7/3 2 MeV™L.

The spread width of the giant M1 resonance throughout
the periodic table is expected to be

['(M1) = 20 A~2/3 MeV.

Let us shortly discuss the collective characteristics of
inelastic electron scattering. In the semiclassical approx-
imation the transition current density may be defined as

follows:
2, 1/2
> . (19)
t

To calculate this quantity it is convenient to rewrite the
above calculated magnetization current density, Eq. (13),
as follows:

pl,l(r) = <[ ':*c/j(l',t) 'Yll;l a2

8 = ne 6V = ne f(r) Y111 b1(2),

8r 1 z3R3
=52 (- )

Substitution of (20) into (19) leads to

(20)

_ , (r®*—=z*R?) _ [2mhwy Zng
pra(r) = G r2(1 — 23) ’ G= 37, cA (21)

The magnetic form factor calculated in the plane wave
Born approximation [17] is given by

|FM (q))?

2
V127 .
7 /91,1(7’) ji(gr)r®dr

v [42(aR) + 2°(jo(gR) — jo(aRc) — j2(aRc)]*
=N [ 2 o7 2 ] ,
_ 872 E(M1)

2 p8
ng R
Az 2,

(1—=3)2"

(22)

This collective form factor can be compared with the in-
tegral experimental form factor of all the 17 states con-

TABLE I. Comparison of the model predictions for energy E(M1) and total excitation prob-
ability B(M1) of the giant M1 resonance with the Illinois data obtained from nuclear resonance
fluorescence measurements [4-7]. The experimental data for magnetic polarizability ass are taken

from [14,15].
Experiment Model

Nucleus E(M1) B(M1) lon | E(M1) B(M1) lon | T(M1)

MeV w3 w3 /MeV MeV w3 u% /MeV MeV
90 Zr 9.1 6.7 2.1 9.1 6.8 2.6 0.9
120 g 8.3 8.8 — 8.3 8.8 3.7 0.8
140 Ce 7.9 7.5 - 7.9 10.6 4.8 0.7
206 pp, 7.5 19.0 7.0 6.9 16.4 8.4 0.6
208 pp 7.3 17.5 7.0 6.9 16.3 8.4 0.6




tributing to the giant M1 resonance in the inelastic elec-
tron scattering.

As a conclusion it is noteworthy that the presented
scheme of calculation can be thought of as providing
global phenomenological estimates for the integral char-
acteristic parameters of the giant M1 resonance. The
considered picture gives an intuitive feeling of the mo-
tions accompanying the giant magnetic dipole response,
and discloses the collective mechanism by means of which
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a heavy nucleus can accommodate magnetic dipole mo-
ment. It is argued that the giant magnetic dipole reso-
nance is a manifestation of the collective nonrigid rota-
tions of a spherical nucleus. As can be seen from Table I
the expected behavior of integral parameters throughout
the periodic table reasonably agrees with overall trends
in the data available. One may hope, therefore, that the
analysis presented will be useful in further study of mag-
netic dipole response of heavy nuclei.
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