
PHYSICAL REVIEW C VOLUME 52, NUMBER 2 AUGUST 1995

Tests of time-reversal invariance in nuclear and particle physics
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There is a theorem that states that there can be no null test of time-reversal invariance (T sym-
metry) in exclusive reactions; that is, T symmetry does not require any single observable to vanish.
This theorem is extended to inclusive reactions. Also, a general argument, that an experimental
observable vanishes from T symmetry if a corresponding operator changes sign under time reversal,
is shown to be invalid.

PACS number(s): 24.80.Dc, 11.30.Er, 13.10.+q, 13.60.Hb

I. INTRODUCTION

There have been statements throughout the literature,
direct or implied, arguing that an experimental observ-
able, the expectation value of an operator, must vanish
from time-reversal invariance (T symmetry) if the corre-
sponding operator changes sign under time reversal [1].
Such an operator and/or observable is then identified as
being T noninvariant or T odd. If this were a valid gen-
eral statement, i.e., independent of the interaction dy-
namics, it would follow that such a vanishing observable
would provide a null test of T symmetry. The very exis-
tence of a null-test observable would be very important
with respect to the level of experimental precision at-
tainable in such a test of T symmetry. Since null tests
of parity conservation exist, it has been possible to reach
the remarkable precision of 2 x 10 in such tests [2,3],
and so a comparable null test of T would permit an im-
provement in experimental precision of several orders of
magnitude over that thieved in past tests.

However, ten years ago, a proof of the nonexistence
of a null test of T in a two-particle in and two-particle
out reaction was established. It states that in such a
reaction there can be no single experimental observable
that is required to vanish by T symmetry [4]. Thus the
above often expressed view, that T symmetry requires a
so-called T-odd observable to vanish, is in direct confIict
with the theorem. It follows, then, that the finding of
a nonzero value of any observable cannot be taken as a
proof of T-symmetry violation without some additional
condition(s) that must be provided by the interaction
dynamics.

The theorem, however, does not encompass total cross-
section observables, and it has been shown that, there,
T-odd spin-correlation observables provide null tests of
T symmetry [5].

Since the importance of the "no-null-test" (of T) the-
orem has not been widely appreciated [6], it is devel-
oped in Sec. II from a more experimentally oriented per-
spective than that of the formal theoretical approach of
Ref. [4], and the characterization of T odd a-mplitudes
and observables is discussed. The theorem is also ex-
tended to include the accessible observables of the in-
clusive reactions a + 6 ~ c+ K. A parallel discussion

of parity-nonconserving (P-odd) amplitudes and observ-
ables is presented, mainly for purposes of comparison and
contrast, but the principal focus is on tests of T symme-
try. In Sec. III the argument that the expectation value
of a T-odd operator is required to vanish by T symme-
try is discussed and shown to be faulty. Then, however,
the dynamical conditions imposed by the electromagnetic
and/or weak interactions are seen to provide limited null-
test observables, because the level attainable in such a
test of T symmetry is limited by nonvanishing second-
order contributions and/or final-state interactions and
not by experimental precision alone. Section IV provides
a summary of the discussion and conclusions.

II. NONEXISTENCE OF A NULL TEST
OF TIME-REVERSAL INVARIANCE

For a reaction or scattering with two particles in and
two out, the underlying reason for the lack of a null test
of T symmetry can be clearly stated by comparison, for
example, with a null test of parity conservation (PC). In
the latter case, one compares a transition amplitude or an
experimental observable with the corresponding ampli-
tude or observable for the same, but parity-transformed,
process. Then, since PC requires that the correspond-
ing amplitudes and observables be the same, any P-odd
amplitude or observable vanishes [7]. The fundamental
di6'erence in a test of T is that one compares an observ-
able in a reaction with a different observable in the in-
verse, i.e. , time-reversed. , reaction, so that the difference
(or sum) of the two observables is required by T symme-
try to be zero. Thus there is no single-observable null
test of T in these reactions.

A. Reaction a + 6 —+ c + d

For a more formal illustration of these remarks, con-
sider a reaction with the simple spin structure 2 + 0 ~
2 + 0. The matrix of amplitudes in the 2 x 2 spin space
can be expanded in terms of the Pauli spin matrices [8],
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M(0) = ) a~(0)o, , j = O, x, y, z, o.p ——1.
2

z; (zg) = k, (kf),

y=k;xky, x, (xf) =yxz, (zg),
(2)

where k; (kf) is the c.m. momentum of particle a (c).
Then with the P and T transformations k, y

—+
—k; f, o. ~ o and k, ~ —kf, o ~ —o, respectively,
and noting that o = o . x, etc. , one has the following
transformations under the P, T symmetry operations:

Choosing the center-of-mass helicity frame [9,10], in
which the conditions imposed by T symmetry on the
scattering or reaction amplitudes are most naturally ex-
pressed, unit vectors along the coordinate axes are

Consider, now, the experimental observables for reac-
tions with this particular spin structure [13],

X(j,k) = TrMo~Mtoi, /TrMMt, j, k = O, x, y, z, (7)

where j labels the polarization component of the initial-
state particle, k labels the observed final-state polariza-
tion component, and j(k) = 0 for unpolarized incident
particles (unobserved final polarization). Since, by defi-
nition, the P transformation of the M matrix is M ~ M,
the combination M, Mt contributes no change of sign in
the P transformation of an observable, and so its P sym-
metry is determined by the explicit spin operators o~
and og in (7). Its T symmetry is determined in the same
manner. Thus, with (3), it follows from (7) that these
observables can be classified according to their P and T
symmetries in exactly the same way as was found for the
amphtudes in (4) [15]

P. o~) oy) oz ~ —ox) tTy) —ozI

oz) oy) oz ~ oz) oy) oz.

P: X(j, k) = (—1)"-+"*'X(j,k);
T: X(j, k) = (—1)"-X'(k,j).

(8a)

(8b)

Then the corresponding M-matrix amplitudes in (1) and
in M = P a.o~, the M matrix for the inverse reaction,
can be classified according to their P and/or T syinme-
tries as follows:

P .
( 1)(n +n)

T: a, =(—1)" a,';
(4a)

(4b)

M(0) I
M(++) M( —+) )~

iM(+ —) M( ——)~
A comparison with (1), expressed in terms of the (in-

variant) amplitudes a~,

and an amplitude a~. is P odd (T odd) if n + n, (n )
is odd, where n (n, ) is the number of x (z) subscripts
[11].Thus PC requires the P-odd (P-even) amplitudes to
vanish when the product of the particles' intrinsic parities
is even (odd), but T symmetry imposes no such condition
on the T-odd amplitudes. It requires only that the T-odd
amplitudes satisfy the condition (4b) that a~ = —a [12].
Only in the case of elastic scattering, which is its own
inverse reaction, does this condition force the amplitude
to vanish.

Another form of this 2 x 2 matrix is that in which
the elements M(if) are the actual transition amplitudes
between initial and final helicity states,

So, now, PC requires a P-odd observable to be zero, but
the T-symmetry condition is that an observable is equal
to (+/ —), a difI'erent observable in the inverse process
(k, j), which proves the "no-null-test" theorem that there
can be no single vanishing T-odd observable.

Even in the case of elastic scattering, where the T-odd
amplitude a vanishes, the theorem applies. This cir-
cumstance can be understood from the specific expres-
sions for appropriate pairs of observables in terms of the
amplitudes, for example, analyzing powers and polariz-
ing powers. From (1) and (7), with I =

&
TrMMt, one

obtains

IA~ = IX(j,0) = 2(Reapa* + Ima&a&), (9a)
IP~ = IX(0,j) = 2(Reapa*. —Imaya&*),

j, k, l cyclic in x, y, z. (9b)

It is clear from (9), with the T odd amplitud-e a = 0,
that none of these observables goes to zero [16] and that

A = —P, Ay ——Py, A = Pz,

all in accordance with (8b). Since there are typo either
P-odd or P-even amplitudes which vanish when parity is
conserved, the P-odd observables vanish, now in accor-
dance with (8a).

In the more general case of a reaction, consider (9b)
for the inverse reaction,

M(0) = Q a~(0)ca~ =
~

2

(6)

shows the connection between the two sets of amplitudes.
For the general case of all four particles with helicities
n+ p ~ p+ b, M(if) = M(np, pb), and the conditions
imposed by the P and T symmetries directly on these
helicity amplitudes, M(nP, pb) and M (pb, nP) have been
established [10],and these conditions are correspondingly
satisfied in (6) by the conditions (4) imposed on the am-
plitudes a~ and a. (a~I, and a & in the general case).

I'P~ = 2(Rea~~a'. * —Ima'„a(").

Then, with the T odd amplitudes a~-= —a, from (9a)
and (11) one finds [17]

A = —P', A„= P„', A = P,', (12)

just as required by (8b).
The entire foregoing discussion is easily generalized to

reactions and/or scattering of more complex spin struc-
tures. Consider, for example, the case of particular in-
terest in particle physics, a+ 6 —+ c+ d, with four spin-2
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particles. The required 4 x 4 M matrix can now be ex-
panded in terms of direct products of the 2 x 2 (a, c) and
(b, d) matrices o'~ and o'&, respectively [18],

M(0) = ) a~i, (8)o~ Sc7i„j,k = O, x, y, z, op = 1.

In a more compact form, with the 4 x 4 matrix o~k =
O~ Ok)

M = ).ci,.s cT, ~,
j,k

and the 16 M-matrix amplitudes

QPP & QPx, aPy p aPz ~ QxP & ax» a», a~z &

Qyp p ay+ p Qyy p Qyz p azp ~ azx & azy & azz &

can then be classified, as in (4), according to their P
and/or T symmetries,

P. (16a)

(16b)

have, as in (8a) and (8b), the symmetries

Also, again from (3), the experimental observables

X(jk, lm) = TrMo~ &Mtoi~. /TrM. Mt,

j, k, l, m = 0, x, y, z, (17)

counterpart with respect to T-odd observables and T
symmetry. In fact, both (pairs of) T-even and T-odd
observables, e.g. , (12), are available for tests of T sym-
metry when P is not conserved, and it is only when
the appropriate condition (19) is not satisfied that T
symmetry violation is demonstrated. Since PC requires
that A = P = A, = P = 0, it is interesting to
note that the rather standard nuclear physics test of
Ay —P„=0 is a T-even test of T symmetry.

B. Inclusive reactions a+ 6 ~ c+ X

In view of the fact that many inclusive experiments
are pursued, especially in particle physics, it is of obvi-
ous interest to know whether or not there are P and/o-r
T-imposed symmetries on the available experimental ob-
servables in such reactions a+ 6 ~ c+ X, where only
particle c is detected in the final state [20]. From en-
ergy and momentum conservation, X can be treated as
a composite "particle" of known mass and momentum,
with, however, unobservable spin. This latter fact has no
effect on the observables involving particles a, 6, and t",

and it will be seen that these observables retain the same
symmetries as in the 2 ~ 2 exclusive reactions, namely,
(18a) and (18b).

Consider a reaction in which a, b, and c are spin-&
particles, i.e. , fermions. Then from baryon and lepton
conservation, "particle" X is also a "fermion" and, for
the purpose of illustration, is taken to be spin 2. Then
the available observables are given as in (17) with m = 0,
corresponding to the fact that the "polarization" of X is
not observed [21],

P: X(j k, lm) = (—1)~ +" lX(jk, lm);
T: X(jk, lm) = (—1) X (lm, jk).

(»-)
(18b)

X(j k, l0) = TrMcT, I,Mtcrip/TrMM".

Here j, k designate the polarization components of par-
ticles a, 6 and t, m the observed polarization components
of c, d.

Finally, since the components 8& of the spin operator
for any spin S transform just as the o~. in (3), the symme-
tries (18a) and (18b) apply to reactions of particles with
arbitrary spins. This includes the second- (and higher-)
rank tensor observables, since the corresponding spin op-
erators are constructed from combinations of the rank-I
operators S~ [15]. The equivalent symmetries imposed
on the observables in their spherical-tensor form, rather
than the Cartesian form used here, have been established
[io,i9].

As stated above in connection with (4) and (8) and
how with (16) and (18), unlike the PC requirement that
a P-odd amplitude or observable vanish, T symmetry
requires that a pair of amplitudes or observables satisfy
the condition that

X —X = 0 (T even) or X + X = 0 (T odd). (19)

Only in elastic scattering do the T-odd amplitudes van-
ish, but, in general, there is no single T-odd observable.

It is clear, then, that the valid argument, that a P-
odd observable must vanish from P symmetry, has no

IA„o = IX (y0, 00) =
4 TrMo„pM~,

I P„'p = I X'(00, yO) = TrM'M'to. „o, —

and with (14), Eq. (2la) becomes

(21a)

(21b)

IAyp = ~ Tr
(

a&ko&k ' 0'yp l a k 0& k

jk j~kI

(22)

Then, noting that

Tro.,i, oi~ = Tr[(o, cri) g) (oi, o~)] = Trcr, oiTrcri, o~, (23)

we have

]IAyp: 4 Qjka~.1k' Tr0j My' ~ Tzo ko k~

j,k jl,kl
(24)

Then, just as before, these observables have the symme-
tries given in (18). In order to better understand the
specific details of these results, we consider again, for ex-
ample, the expressions for the analyzing power A„p and
the inverse-reaction polarizing power P„p, even though
the latter cannot be determined experimentally. These
are



H. E. CONZETT 52

' » [-»] f» (~ ~') = (* z) [(z *))
«r (2 2 ) = (o &) or (& 0)

0 otherwise,
(25)

and (24) becomes

IAIDO
—) 2(Reaoga*k + Ima pa*i, )

and, similarly,

Here one sees that the matrix operations factor, as they
must, into operations in the separate (a, c) and (6, A)
spin spaces. Then using the properties o~g.~ ——io.~, o 2

o-o, 'Zra. ~o.~ = 28~~, one finds

(o ) = Trp, o = —,'Tr(1+ p 0. )0. = p, (29)

I = (o'p = 1) = Trpb = TrMp;Mt
=

2 TrM(1+ p o )Mt, (3

t ( TrMO. Mt)I~= zTrMMt~ 1+p~ t ~
=I(l+p A ).

which is trivial, not an observable, and bears no rela-
tionship to the polarizing power P . The determination
of the T-odd partner of P, the analyzing power A, in-
volves only the final-state intensity asymmetry with an
initial beam polarization p . It appears as a term in the
expectation value of that intensity and as in (28),

I'P„o = ) 2(Reao&a„*& —lma, &a *&)

k

for the inverse reaction. Comparing these two equa-
tions with (9a) and (ll), one sees that they have identi-
cal forms, with the additional summation over k com-
ing from taking the trace over the (b, A ) part of the
spin space, which performs the sums over the spin pro-
jections of particles b and X. One then recovers the
symmetries (12) and, more generally (18b) among these
inclusive observables, and these are independent of the
"spin" of "particle" X. The parity-imposed symmetries
on the (spherical-tensor) observables in a reaction with a
three-particle Anal-state have been discussed in a detailed
treatment which uses the P symmetries of the amplitudes
to deduce those of the observables [22]. The correspond-
ing inclusive observables are also included.

III. LIMITED NULL TESTS
(3F TIME-B.EVER.SAL INVAB. IANCE

A. T-odd operators and observables

The usual argument made to establish that a T-odd
observable vanishes is that it is the expectation value of
a T-odd operator, which (by definition) changes sign un-
der time reversal, and so must vanish. This argument is
wrong, simply because there are two difFerent observables
that are the expectation values of the same operator in
a reaction and its inverse. For example, consider the T-
odd operator cr(k, x ky) x k;—:o in a reaction with
the initial-state polarization p and in the inverse reac-
tion with its polarizing power P . In the inverse reaction,
only the final-state expectation value of the operator (o. )
is relevant, and this is the final-state observable P with
unpolarized initial-state particles, thus with initial-state
density matrix p; = ao/2, as follows [14]:

(o- )' = Tr(pro )/Trpb
= Tr (M' p; M't a )/Tr M'M't,

(o )' = TrM M'to' /TrM'M't = P,
as in (7). But in the forward reaction, (cr ) is simply the
prepared initial-state polarization p with density matrix
p* = (1+p-~-)/2:

Here I (I ) is the cross section with an unpolarized (po-
larized) beam. Thus the fact that the spin operator o
changes sign under the T transformation, as in (3), does
not result in a corresponding condition on any observ-
able.

B. Electron scattering and P and p decay
correlat ions

Even though the argument used above to identify a
(T-odd) null-test observable is seen to be invalid, it does
not follow, however, that such an observable is prohib-
ited when the dynamical restrictions of the electromag-
netic and/or the weak interactions are imposed. That
is, to first order in these interactions, the M matrix is
Hermitian. Then the combined requirements of T sym-
metry and hermiticity, M ~ M and M ~ Mt, impose
conditions on the relative phases of the matrix elements
M(nP, p8), which result in the vanishing of some observ-
ables. These, then, are limited null-test observables, be-
cause nonvanishing contributions are provided by second-
order terms of the interaction and/or final-state interac-
tions. Thus the precision attainable in such a test is
limited by that available in the calculation of these non-
vanishing components and not by the experimental pre-
cision alone. To the present, excluding searches for non-
vanishing (P-odd and T-odd) electric dipole moments,
such tests have been made in electron scattering and in
P-decay and p-decay experiments. The level of precision
attained in the decay-correlation experiments has been
in the range 10 —10, with the determination of the
neutron P-decay analyzing power A (triple correlation
coefficient D) reaching (—0.5 + 1.4) x 10 [23].

Electron scattering provides clear counterexamples to
the argument connecting a T-odd operator to a single
T-odd null-test observable. There have been inclusive
experiments that searched for a nonvanishing analyzing
power Ao„ in the reaction ep ~ eX with a polarized
proton target at energies from 4 to 18 GeV [24]. Even
though Ao& is a T-even observable, it was shown to be a
(limited ) null-test observable, since As& oc ImE I' *, and
the amplitude form factors E and E, must be relatively
real from T symmetry and hermiticity [25]. Then, on the
other hand, there is a genuine T-odd, P-even observable
that does not vanish in (parity-conserving) electron scat-
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tering. This observable is the spin-correlation coeKcient
A = X (zx, 00), which in ep elastic scattering is propor-
tional to G~ [14], and the proton magnetic form factor
GM is certainly not zero.

IV. SUMMARY AND CONCLUSIONS

The theorem, that there can be no null test of T sym-
metry in a two-particle in and two-particle out reaction,
has been extended to include inclusive reactions. Also,
the often used general argument, that an experimental
observable vanishes from T symmetry if a correspond-
ing operator changes sign under time reversal, has been
shown to be faulty.

It is clear, then, that there have been no nonlimited
tests of T symmetry in the weak or electromagnetic in-
teraction. It is somewhat discouraging to realize that the
required comparison, between a reaction observable and
its inverse-reaction counterpart, is essentially impossible
in weak processes and is very diKcult in electron scat-
tering. The two (equivalent [14]) possibilities in elastic
ep scattering, for example, are to test one of the P-even,
T odd cond-itions (18) that

correlation coefficient comparison (31b) since only one
final-state polarization at a time needs to be determined.
In any case, the most difficult part of either comparison
would seem to be the precise determination of the polar-
ization p of the scattered electron. However, in view of
the fact that previous experiments have reached the level
of only + 1% in tests of T symmetry [24], it is perhaps
worthwhile to consider how precise a comparison (31) can
be achieved at a present-day continuous electron-beam
facility with polarized beams and polarized targets.

Although T tests have been more readily available in
strong-interaction processes, it is now important to im-
prove the precision beyond the 10 —10 level of exper-
imental error that has been achieved. Following from the
fact that spin-dependent total cross-section observables
are not included in the "no-null-test" theorem, a total
cross-section spin-correlation coefficient has been identi-
fied as a genuine null-test observable [5]. It is important
to pursue such tests because of the considerably higher
precision that is inherently possible in null tests.
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