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We show how pion-nucleus scattering data can be used to constrain four-quark in-medium matrix
elements, whose uncertainty is currently the most important problem inhibiting the use of +CD
sum rules to study hadrons in nuclear matter, a problem related to early-universe phase transitions.
We take an important step towards determining the matrix elements by extracting a value for a
particular linear combination using the Isobar-Doorway model propagator of the in-medium A(1232)
and a +CD sum rule analysis of both the free and in-medium A.

PACS number(s): 12.38.Lg, 13.60.Hb

I. INTRODUCTION

One of the important discoveries with meson facilities
was the observation that it is possible to extract the prop-
agator of a A(1232) from the analysis of pion-nucleus
scattering. In the isobar doorway formalism [1], it was
shown that the pion optical potential can be closely re-
lated to the 4 propagator if 4-nucleus doorways are the
dominant mechanism to entering the nucleus. An analy-
sis of experimental data [2] showed that this is indeed a
reasonable picture and the pole position of the in-medium
4 was extracted. In the region of the resonance, the real
part M&, the 4 mass in the nuclear medium, was found
to be within about 10 MeV of the free 4 mass. The
width was found to be broadened by about 10/0. More
recent studies [3] that take into account the theoretical
and experimental advances of the last decade conGrm the
qualitative description of the L found in the isobar door-
way analysis. In the present work we do not attempt to
calculate the in-medium width, but use the phenomeno-
logical value of M& to estimate certain four-quark matrix
elements, which we discuss below.

The method of QCD sum rules [4] has been success-
ful in fitting masses of the nucleon, the D(1232) [5],
and other hadrons, as well as a number of other proper-
ties. Recently, there has been a great deal of interest in
studying the properties of hadrons in nuclei. The masses
are particularly interesting since hadronic masses come
primarily from nonperturbative QCD (NPQCD) effects,
mainly the quark condensates. Therefore, the sum rule
method is the natural one for treating hadronic masses in
nuclear matter, and in recent years there have been sev-
eral studies [6—8]. In the pioneering work of Drukarev and
Levin [6], an estimate of the quark condensate in nuclear
matter was given. However, it has been found that the
four-quark condensates (matrix elements in the nuclear
medium of products of four-quark fields) are crucial for
these studies. Four-quark condensates in the vacuum are
generally treated by factorization [4]. In nuclear matter,
however, there is no justification for factorization. More-

II. FREE A SUM RULES

The starting point of the analysis is the two-point func-
tion, usually called the correlator:

II(p)~„=i (O~T[q„(x)q„(O)]~O) d'x e*'~,

where the quantity rl+(x) is a composite field operator,
the A(x) current,

~ (*) ="'[u (*) &~"u'(x)]u'(x)

(O~rl„(x)~A) = A~v„, (2)

over, it has been shown [7] that for the nucleon in nuclear
matter a factorization of the in-medium four-quark con-
densate as the product of two in the medium two-quark
condensates leads to an increase of the scalar nucleon
mass with increasing density for low density, while a fac-
torization to vacuum values gives a reduction of this mass
to approximately 0.7M~, about the value used in most
relativistic nuclear mean-Geld-theory calculations. Since
the former factorization is a priori most natural, this is
in conflict with the expectation of many nuclear theo-
rists. Recently, an estimate of four-quark condensates
needed for nuclear matter has been made [9] using the
Nambu- Jona-Lasino model.

In the present work we reverse the procedure: We use
the known value of the position of the pole of the 4 prop-
agator in the nucleus and carry out the operator product
expansion of the correlator in the nuclear medium using
the two-quark operators which are approximately known,
and extract the value of the four-quark matrix element.
In Sec. II we briefly review the sum rules for the free
4 and derive the sum rules for the 4 in nuclear mat-
ter in Sec. III. In Sec. IV we discuss the structure of the
four-quark condensates. The results are discussed in Sec.
V.
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where C is the charge conjugation operator and the u(x)
are u-quark fields labeled by color, A~ is a structure pa-
rameter, and v„is a Rarita-Schwinger (spin 2) spinor.
Note that [5] the current for the 4 is unique except for
derivative terms.

The @CD sum rule method, in brief, involves three
steps: (1) deriving a dispersion relation for II(p)„„to
express it in terms of physical quantities to be evaluated
[called the right-hand side (RHS)]; (2) carrying out an
operator product expansion (OPE) for II~„(p),including
operators of high enough dimensions to ensure that the
expression is naively convergent [called the left-hand side
(LHS)]; and (3) equating the RHS and LHS after a Borel
transform to enhance the convergence of the LHS and to
weight the desired states in the RHS expansion, usually
pole terms or double-pole terms.

Using the Rarita-Schwinger spinors for the 4,

FIG. 2. Processes for the free II(x)~ correlator.

)b,RHS P2
[

P v/3] J'—
+NU + continuum, (3)

2L 28 j27
6
ss 2 2L 16/27/M2 (5)

p @~ 4p2 (4)

After the Borel transform we find from the II cor-p
relator, with the LHS terms shown in Fig. 1 (with all
propagators and condensates defined in the vacuum), the
sum rule

where p = p~p„.The first term in the equation is the pole
term of the RHS, arising &om the one-4 intermediate
state, and by the notation NU we mean pole terms that
are not used in the present analysis. For Eq. (3) the
term NU= A& [2p„p„/9M'+ (p~p„—p "p&)/3M~], which
follows &om the use of the v„spinors.

The LHS OPE has been carried out through dimension
9 in Ref. [5]. Errors have been pointed out in Ref. [10],
but in a term which is to small to change the numerical
results significantly. We find it convenient to use the
correlators de6ned by

and from the IIi correlator, with processes shown in Fig.
2, the sum rule

2 M~ A~exp( —M~/MH )

M El i — M ELi /2i29 —mpa
7 bL 16/27 (6)

The quantities in Eqs. (5) and (6) are A~ ——(27r)2A~,
a = —(27r) (qq), b = (g G ) (the gluon condensate), and
L = 0.6211n(10M'), corresponding to a 1 GeV renor-
malization point and a 100 MeV @CD parameter. The
functions Eo ——1 —exp( —x), Eq ——Eo —x exp( —x), and
E2 ——Eq —x exp( —x), with x = so/M&, are introduced
to regulate the large M~ behavior of the continuum, Sp
being the continuum parameter [4]. We use standard val-
ues of a = 0.55 GeV and 6 = 0.474 GeV for the vacuum
condensates, and take sp = 2.6 GeV . The last term in
Eq. (6) differs from the results of Refs. [5,10], but the
e8'ect on our numerical results is very small.

In our analysis we take the ratio of Eqs. (6) and (5) and
introduce a continuum factor of C(MH) = cq + c2M& +
csM&4, with the condition that C(MH) 1.0 at the value
of M~ at which the plateau is reached. We find that
M~ (1.35 + 10%%u~) GeV with MH = 1.4 GeV.

(a)

(c)
(a) (c)

FIG. 1. Processes for the free II(z)„correlator.
FIG. 3. Processes with one quark propagator in the

medium.
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(c)
FIG. 5. Diagram for the II(x)„„~correlator.

,
C)

,
C&
C3

FIG. 4. Processes included in the II(z)„~calculation in
addition to those depicted in Fig. 3.

III. IN-MEI3IUM M~ SUM RULES

We now treat the propagation of the L in the nuclei.
The starting point is the correlator in nuclear matter,
which is the two-point function

where IA) is the nuclear ground state. The advantage of
using a two-point function is that our phenomenological
expression has a pole term which is clearly identifiable
with the in-medium baryon propagator, which we can
evaluate &om the results of the isobar doorway analysis.
One can at tempt to extract the in-medium mass using
a three-point function [6,8], in which the alteration of
hadronic properties is treated as arising &om scattering
by the medium, extracted &om a double-pole term. How-
ever, by using a two-point function one has an immediate
identification with the hadronic propagator.

We can write II(x)„„*as

II(x)~„=II(x)~„'&+II(x)~„«+Il(x) ~.s&,

II(p)„„*= i (AIT[rl„(x)rI„(0)]IA)dxe'*

= i d4x e** "II(x)„*,

where the three terms contain only two-quark matrix el-
ements, four-quark matrix elements, and six-quark ma-
trix elements, respectively. Using the current given by
Eq. (2), we find

—iII(x)„"= 2e 'e ' [S(x)"Tr[S(x) p CS(x) Cp"] + 2S(x)"p"CS(x) ' Cp"S(x) ],

with S(x) a quark propagator, and

—ilI(x)~ «=E ~
EPD

—(AI: S(x)- T [u(x)'u(0)' ~"«(0)a™(x)C~"]:IA)

—2(AI: S(x)"p"Cu(0) u(x)'Cp"u(x) u(0): IA)

+4(AI: u(x)'u(0)' p"CS(x) Cp"u(x) u(0): IA)

—2(AI: u(x) u(0)' p Cu(0) u(x) Cp"S(x): IA) (10)

We do not consider II(x) ~, corresponding to six-quark correlations in this work. The processes involving only
two-quark operators considered here are shown in Figs. 3 and 4, and those involving four-quark operators are shown
in Fig. 5.

We first carry out the microscopic @CD evaluation of II(x)„2 since the OPE for this part of the correlator is
closely related to the free L calculation of Sec. II. The nonperturbative part of the quark propagator in nuclear
matter has five lowest-dimensional terms in the OPE in contrast to the quark condensate for the vacuum. Following
previous authors, we use only the scalar and vector terms, which seem to be most important. This gives [6]

(A: q q: IA) = —(b /12) [(qq) p + (quq) pu],

(qq) = (qq)+ ~/(2 .)
(quq) p

——3p/2,

where o~ is the pion-nucleon sigma term, m~ is the quark mass, and p is the nuclear density at which the propagator
is evaluated.
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It is convenient to define three correlators to be used to obtain sum rules:

rr~ g„„=T.[11~„]/4,

rr„g„„=T [Pii~. ] — pT [-rl,„]/4[p' —( p)'],

11~ g„„=&2T [uri~„]—u p T [I-11~„]/4[p2 —(u. p)2].

The diagrams of Fig. 3 correspond to one quark propagating in the medium. They are quite di8'erent than those of
Fig. 1(a). We find

IIX'3
tl

11II, = —,(qq) pp'ln( —p'),
'"3 11

, (quq) pp'ln( —p').

There diagrams also include vacuum and in-medium terms corresponding to the diagram in Fig. 2(a) for the free A.
The ellipses in Fig. 3 stand for obvious permutations of quark lines or other combinations of vacuum and in-medium
condensates.

The remaining processes shown by the diagrams in Fig. 4 can be obtained fairly easily by appropriate changes in
the calculations corresponding to Figs. 1 and 2. The results for nonvanishing terms needed to obtain the sum rules
are

~A 4(a)
p

II& 4(b)

II& 4(c)

IIX' 4(d)
p

II&'4( f)
1

.[(g'G') + ~(g'G') pl»(-p')

576, (g'G') (quq) pip'

5 (qq) [(qq) p
—(qq)/2l h '

» [(qq) p(qgo «) + (qq) ~(qg~ .«).]h '
1

(qgo Gq) pin( —p2),

7„52,[(qq) p(g'G') + (qq) ~(g'G') p]h '. (i4)

We give our values of ap = —(277) (qq)p and bp ——(g G ) + h(g2G )p below. The density variation of the mixed
condensate will be taken to be negligible, i.e. , b(@go . Gq) p

= 0.
The four-quark contribution to the correlator, II(x)+„*4'idefined in Eqs. (8) and (i0) is depicted in Fig. 5. Let

us call the contributions of the three projections of II(z)+ & defined in Eq. (12), Iii~, II i, and II &, with obvious
notation. These are unknowns in our sum rules. We discuss them in detail in the next section.

The phenomenological expression for II, the RHS, has a pole at the in-medium A mass. It can be obtained from
the pole term in Eq. (3) by replacing M~ with M~*, with

M~. ——M~+ bM~+ bM~u.

This gives, for the phenomenological side,

II(p)„„=A&. [g„—p"p /3] 2 + NU + continuum,
p Qe

Including the projections of II(x)+„4'iin our sum rules here as unknown terms and carrying out the Borel transfor-

mation, we obtain sum rules for three correlators. The II& correlator leads to the sum rule

exp( Mr*, /Ma) = i2opMaEil' 2moQMgEOI 266 Qpbpi

The sum rule obtained from the II„correlator is

2 P2 ( M*2/M2 ) —11M6 @ L,4/27 25 t M2 @ L 4/27 + 5
[ /2]L 28/27 35 2 L 16 27/M2 gi14q

Finally, the II„correlator leads to the sum rule
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sar'
s A&. bM~exp( M—~ /Mz) = 2~ (quq)~M~E, L — b(quq)~L + hll„, (19)

where h114 is the value of the four-quark condensate relative to its factorized in-medium value II v (fac, in-med). In
the next section, we examine II(x)

IV. FOUR-QUARK CONDENSATE CONTRIBUTIONS

Before we consider the four-quark matrix elements in nuclear states, let us review the two-quark matrix elements.
For the vacuum, the familiar result

(oI: q~q, : Io) = ,', b-~—b.—~(qq) (20)

follows &om the fact that only scalar condensates are present in the vacuum. In a nuclear state, matrix elements of
all five independent operators obtained from the Dirac matrices can be present:

(AI: q,'q': IA) = -'(AI q q'(&I&) + q~ q'(&I~ I&) + q ~"q'bl~" I&)

q~"» q—'V I~"» I
l ) + q &~-q'(&

I

o""
I
&) I

A). (21)

Extending Eq. (21), the expansion of four-quark fields needed for II(z) „4'i,defined in Eq. (10), has the form

'' (Al: q, qi, q~i q": IA) = ).&i.(il&,'Ia)(llo,'Im), (22)

where the C„~are condensates in the nuclear medium and the (jlO„lk) are matrix elements of various combinations
of Dirac matrices taken in spinor states

Ij) and lk). Prom this general form we calculate the contribution from Fig. 5
to the correlator II(z)„„vand find, for the three projections of Eq. (12),

rr", =0,
II'~ = O

4 1
[cl cs —2c4/9 + 2cs/3 + c9/9 —c10/3 + 4cll/9 —16c12/9] I2p2 (23)

where

ci ——(Al: q q q q: IA) —3(AI: q A('q'q A("q": IA)/4,

c4 ——(Al: q uq q uq: IA) —3(AI: q uA&'q'q uA~"q: IA)/4,

cs ——(Al: q p q q p q: IA) —3(AI: q p A~ q q p A~ q: IA)/4,

(Al .
q p uq q p uq: IA) —3(AI: q p uP& q q p uP& q: IA)/4,

cs = (AI: q ~"q q'~ q': IA) —3(AI: q ~"~P q q'»~~"q' IA)/4,

cia = (AI: q ~'~" q q'~'~ q': IA) —3(AI: q ~'~"~P q q'~'~ ~~"q": IA)/4

cii ——(Al: q o '~q q a pq: IA) —3(AI: q o '~A('q'q~o pA(~"q": IA)/4,

ci2 ——(Al: q o ' u q q o„pu~q: IA) —3(AI: q cr ' u AP'q'q a~ pu~A&"q": IA)/4, (24)
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with Ag the color matrices. The second term in each
case is closely related to the first term with permuted
color indices.

In the limit that nucleons are completely separated
(the density goes to zero), the ratios of the values
of the eight four-quark condensates in Eq. (24) are
5:1:1:—1:4:—4:12:3,respectively, and the four-quark con-
tribution in Eq. (23) approaches the value on the third
line in Eq. (14). For nonzero nuclear density, the abso-
lute as well as relative values of the c; will change. These
values are currently not known, but they are needed in
order to apply QCD sum rules to study hadrons in nu-
clei. Determining them is thus an important problem in
nuclear physics.

Note that the contribution are of the form of scalar,
vector, pseudoscalar, pseudovector, and tensor. In a
conventional meson exchange picture, there would cor-
respond to interactions arising from mesons with those
characteristics. In the sum rule approach that we are us-

ing, with an expansion in the nuclear density, these con-
tributions will be closely related to terms in the micro-
scopic optical potential for pion scattering and reactions
at the region of the 4 [11]. In the present exploratory
paper, we do not attempt this, but use only the isobar
doorway fit to the mass of the 4 in the medium. This
will determine a linear combination of the various coef-
ficients at half nuclear matter density, which we express
relative to the conventional factorized expression.

V. RESULTS AND DISCUSSION

The sum rules used in the present work are obtained
by using Eqs. (23) and (24) in Eqs. (17)—(19). Note
that only the p-type sum rule, Eq. (18), has a four-quark
contribution. For the two-quark in-medium condensates,
we use the values that have been found in Refs. [6—8],
except that we do not use them at central nuclear density.
Theoretical studies of pion-nucleus scattering [1,2, 11] at
resonance energy, where the isobar doorway model has
been applied, have shown that the 4 is formed rather far
into the nuclear surface. With a nuclear density 2 of its

central value, this gives us ap 0 46 GeV and bp: 0 43
GeV .

In our analysis of the sum rules, we follow the analysis
of the free L as much as possible. We take the ratio
of Eqs. (17) and (18) as one sum rule and the ratio of
Eqs. (19) and (18) for the second sum rule. In each case
we introduce the continuum factor of |(M~) = cq +
c2 Mgy + c3Mgy with the condition that C (M~ ) 1.0 at
the value of M~ at which the plateau is reached, using the
identical values as in the free case in order to minimize
the sensitivity of the changes in the mass of the 4 to the
continuum.

Our results are as follows. (1) From the ratio of
II+~ /II+, using the result that the pole position is ap-
proximately the same as its &ee value, which we take
as M& ——1.35 GeV &om the results of Sec. II, we find
that bII„~= —0.026 GeV at

&
central nuclear density

(hli„~ is presumably linear in the density). For purposes
of comparison, we find that in the factorized approxi-
mation 114~(fac, p = 0) = —0.42 GeVs and 114~(fac,

p = po/2) = —0.27 GeV . (2) From the ratio of
Ila /Ila, we find that AM& ——97 MeV. This result
for the vector mass shift is about 4 of that found in the
calculation of Ref. [7] for the nucleon at nuclear density.

Without bII4~, M~ would be about 200 MeV higher,
and so it is seen that the eKect of bII4~ is quite signifi-
cant. Because bM& is quite large, it should be taken into
account explicitly in the theory. When this is done, we
estimate that it will increase the value of bII„~by about
30Fo.

We conclude that it is possible to use the experimen-
tal data on pion nucleus scattering at the energies in the
A(1232) region to extract a value for the four-quark con-
densate term that enters for that resonance in nuclear
matter. To apply this result to the determination of the
nucleon mass and other baryon masses in nuclei will re-
quire further study. The properties of the A(1232) in
nuclei using QCD sum rules has also been considered re-
cently by Jin [12] &om a different point of view.
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