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Inversion potential analysis of the nuclear dynamics in the triton
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We report H binding energy calculations using inversion potentials generated from phase shifts correspond-
ing to contemporary nucleon-nucleon potentials as well as modern phase shift analyses. We place limits upon
the calculated triton binding energy based on a local potential due to the underlying uncertainties in the

potential model generated directly from the nucleon-nucleon phase shifts. We explore the role of the nonlo-

cality of momentum-dependent potentials in the triton binding energy. In particular, we find the additional

binding energy in the case of the Bonn-B potential is due to a long range nonlocality.
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Triton model calculations, utilizing new Nijmegen local
potentials [1] that fit the nucleon-nucleon scattering data in

the range 0—350 MeV almost as well as the Nijmegen phase
shift analysis, were recently reported [2]. The results for the
three local potential models, for which a one-pion-exchange
(OPE) tail was enforced, were summarized as yielding a
binding energy of 7.62 ~ 0.01 MeV, some 0.86 MeV smaller
than the experimental value of 8.48 MeV. We examine here
(1) the limits placed upon local potential triton calculations
by the uncertainties in potentials generated directly from the
nucleon-nucleon phase shifts, (2) the role of the nonlocality
of momentum dependent potentials in the triton binding en-

ergy, and (3) the effects of long range nonlocality exhibited
by certain contemporary potential models.

Realistic potential models fitted to the nucleon-nucleon
scattering observables have been generated by several
groups: for example, Paris [3], Nijmegen [4], and Bonn [5].
The fits are at least semiquantitative. The limited number of
parameters in these potential models implies that the y /N fit
to the observables will necessarily be larger than that ob-
tained in a precision phase-shift analysis. By constructing
partial-wave local potentials, the Nijmegen group [1] have
succeeded in obtaining models whose fits to the data are
comparable to those obtained in phase-shift analyses. Alter-
natively, the technique for constructing inversion potentials
from phase-shift data has been developed to the point that
one can generate equally precise partial-wave local potentials
[6—8]. Thus, one can compare triton binding energy results
for potentials constructed from (1) a theoretical, meson-
exchange approach and (2) an inversion prescription that
generates an equivalent partial-wave local function. There-
fore, the effect of nonlocality in the potential models can be
investigated quantitatively, both for short range nonlocality
as one finds in the Paris potential and for long range nonlo-
cality as appears in the Bonn-8 potential.

There is no claim for a particular interaction model dy-
namics in the inversion prescription. (In particular, no spe-
cific radial form for the potential is enforced. ) The physics
resides in the assumption about the applicabilty of a differ-
ential form of the Blankenbecler-Sugar (relativistic Schro-

dinger) equation with a local potential for each partial wave.
What we gain, by dint of its construction with the Gelfand-
Levitan-Marchenko integral equations, is that the resulting
partial-wave local potentials reproduce the input phase shifts
along with the deuteron spectroscopic data; that is, the physi-
cal observables and phase shifts from which the potentials
were generated are exactly reproduced. If nonlocality in the
nucleon-nucleon interaction can be shown to be mandated
then, in the future, it shall be included in the inversion pre-
scription.

The discrepancy between the experimental value for the
triton binding energy and results for various potential models
has been attributed by some to the need to include a three-
body force (3BF) in the Hamiltonian [9]. Carlson [10] has
shown that a phenomenological 3BF adjusted to reproduce
the triton binding energy will also yield a correct value for
the ground-state binding energy of the alpha particle. Sauer
and collaborators [11] have argued that the three-nucleon
force, which results when the 5 is eliminated from an NN-
NA coupled-channel model of the nucleon-nucleon interac-
tion, contributes little to the triton binding. Further model
calculations by Picklesimer and collaborators [12] support
this claim. However, when the full Tucson-Melbourne (TM)
three-nucleon force [13] (arm; mp, and pp terms as recently
published by Coon and Pena [14]),which was designed to be
used with nucleon-nucleon potentials that incorporate only
nucleon-nucleon degrees of freedom, was combined with the
Reid soft-core [15], Paris [3], and Nijmegen [4] potentials,
Stadler et al. [16]found that the model H binding energies
were close to 8.48 MeV. Critics of this approach point out
that the meson-nucleon form factor cutoffs in the TM 3BF
are soft whereas those in the nucleon-nucleon potential mod-
els are hard. Nonetheless, the calculations demonstrate that a
3BF can play a role in the triton. Furthermore, Polyzou and
Glockle have shown [17] that there is a unitary transform
relationship between specific classes of Hamiltonian com-
prised of local NN plus NNN potentials and Hamiltonians
comprised of nonlocal potentials.

Therefore, we wish to study the bounds on the triton bind-

ing energy that result from the assumption of a local poten-
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TABLE I. H properties for the NN potential models.

Quantity

B2

Q
PD

A,
rl

~rms

Nijm-II

2.22458
5.66
0.2707
0.8847
0.0252
1.9671

Bonn-B

2.22461
4.99
0.278
0.8860
0.0264
1.9688

Paris

2.2249
5.77
0.279
0.8866
0.0261
1.9716

Experiment

2.22459 I 18]

0.286 I 19]
0.88

I 20]
0.026 I 21]
1.96 [20]
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Quantity

B2
PD

Q
A,

~rms

Nijm-II

2.2245(8)
5.53
0.2705
0.8848
0.0252
1.9672

Bonn-8

2.2246(5)
5.81
0.2877
0.8861
0.0264
1.9709

Paris

2.2249(0)
5.69
0.2788
0.8869
0.0261
1.9716

Amdt

2.2246(0)
6.27
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0.8860
0.0264
1.9748
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TABLE III. Comparison of H binding energies in MeV for
model and inversion potentials.

Source

Nijm-II
Nijm-II*
Paris
Bonn-B
Amdt FA91

BE (model) [MeV]

7.62

7.467
8.14

BE (inversion) [MeV]

7.60
7.67
7.472
7.84
7.36

to account for the charge dependence of the nuclear force. )
The difference between 7.62 MeV for the Nijm-II model [2]
and 7.60 MeV for its inversion potential is attributed to the
different phase shifts between 300 MeV and infinity, and to
the use of OPE for the higher partial waves (3~j«4) in the
inversion potential calculations. We do consider this as a
measure of agreement (a null signal) in view of the high
energy phase uncertainty. That is, starting from pion sub-
threshold phase shifts coming from a partial-wave local po-
tential, we have generated a corresponding inversion poten-
tial which is also partial-wave local and subthreshold phase
equivalent, and we have demonstrated that the two yield es-
sentially the same H binding energy.

We turn next to the Paris potential. The fact that the H D
state for the model and its inversion potential are very simi-
lar implies that the momentum-dependent Paris potential be-
haves almost like the equivalent local inversion partner in
this context. This is confirmed by the triton binding energies
listed in Table III. The 7.47 MeV from the model calculation
[26,27] is close to the 7.47 MeV from the inversion potential.
Comparing the results for the Paris potential with those from
the Paris inversion potential, one can see that there is no
significant nonlocality effect noticeable for the Paris model,
even though 40% of the potential energy in the triton calcu-
lation comes from nonlocal operators [26]. The difference
between the Paris and Nijm-II results can be understood in
terms of the lack of charge dependence in the Paris So
potential model [9,27].

The Bonn-8 potential is considerably different, as we em-
phasized above. The H D-state probability difference be-
tween the model and its local inversion potential signals this.
The triton binding energies in Table III confirm it. (We note
that the difference in the value of 82 in Tables I and II is a
measure of the numerical precision in this calculation; the
calculated numbers are of 5 digit accuracy at the 2-body
level. ) The long range r-space nonlocality in the Bonn-B
potential is a nontrivial aspect of the model. If one also takes
into account the subthreshold model phase-shift differences,
such as those due to the charge dependence omitted in the
Bonn-B model, then the result from the inversion Bonn-B
potential is quite close to that for the Nijm-II model. That is,
the H binding energy from the Bonn-B local inversion po-
tential is very close to that obtained from other local poten-
tials which fit the two nucleon data. Therefore, we conclude
that phase differences between the Bonn-B and Nijm-II mod-

[24]. Results for the Nijm-II model are listed in the first line
of Table III. (For Nijm-II we have used the effective charge-
symmetric interaction [25] given by

V( So) = —,'V„„+—,'V„~

els do not play a key role in determining the binding energy
of the triton. In contrast, the remaining difference between
the 7.84 MeV from the inversion potential and the 8.14 MeV
[27] from the original Bonn-8 model is a clear measure of
the effect that can be produced by a long range r-space non-
locality (» I fm) in the nucleon-nucleon interaction.

Finally we turn to the question of calculating the binding
energy of the triton using inversion potentials for the Amdt
phase-shift analysis FA91. The result is listed in Table III and
the noticeable difference is explained primarily by the very
different e& phase shift as compared with all other data. The
0—200 MeV energy interval is of particular concern [22].As
a result, the H binding energy for the Amdt inversion po-
tential does not agree with that of the other inversion poten-
tials. In other words, the exceptionally high value for PD of
6.27Fo combined with the known correlation between PD
and the triton binding energy implies a lack of binding for
the Amdt inversion potentials, as we find. This indicates an
urgent need for reconsideration of the phase-shift analysis
and the experimental data employed in that analysis.

Let us now consider the question of the uncertainty in the
triton binding energy due to uncertainties in the fits to the
underlying high energy nucleon-nucleon phase shifts. The
first element of this analysis can be found in Table III. The
Nijm-II potential is said to reproduce as precise a fit to the
NN observables as does the Nijmegen phase shift analysis
for 0 to 300 MeV laboratory incident energies [2]. However,
the phases at higher energies are not strongly constrained.
The Nijmegen group are careful to state that the phases from
their potentials are not to be taken as definitive outside of the
region in which they were fitted. In fact, the Nijm-II phases
correspond to attractive and repulsive core potentials at short
distances. We also observe a short range attraction in the
'F3, 'P&, P&, and F3 channels. For that reason we
modified the Nijm-II phase-shift extrapolation towards the
Amdt phase shifts [22] at higher energies or simply took a
smooth rational function extrapolation to enforce soft repul-
sive core potentials for all channels.

Implementing an alternative choice of a smooth extrapo-
lation is straightforward with inversion techniques. Thus the
influence of the high energy phases upon the H binding
energy can be investigated without changing the low energy
phase shifts. A different choice of high energy phase extrapo-
lation, which aims toward even softer repulsive core poten-
tials for the Nijm-II inversion potential [7], yields the result
for the triton identified in Table III as Nijm-II*. The 70 keV
difference between these two inversion potential triton bind-
ing energies represents a minimum of uncertainty in local
potential model calculations. This degree of uncertainty is
further exemplified by the triton results summarized in Table
IV. We use the Bonn-B 'So phase [7] as a reference, and we
smoothly continue above 300 MeV such that the phase
passes through the series of quoted values at 800 MeV. The
corresponding resulting inversion potentials change from
having a softly repulsive to a strongly replusive core poten-
tial producing the triton binding energies listed in Table IV.
Such a modification of the high energy phase shifts affects
most clearly the repulsive core region but concomitantly ad-
justs the potential out to distances of several fm [7].Clearly,
the high energy phase shifts do play a role in the triton bind-
ing energy. As expected, however, this is not as large an
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TABLE IV. Comparison of the Bonn inversion potential 34-
channel triton binding energy results in MeV for the So phase
shifts fixed at 800 MeV at the values shown.

8 [degr]

—35.62
—41.15
—43.04
—44.28
—45.01
—47.97
—54.73

Triton BE [MeV]

7.87
7.85
7.84
7.83
7.82
7.77
7.62

Comment

—Amdt [22]

effect as that coming from the low energy phase shifts, illus-
trated by the Amdt model result.

Based upon these studies of triton binding energy varia-
tions due to uncertain constraints upon higher energy phase
shift extrapolation, we estimate the H binding energy to be
8( H)= 7.6 ~ 0.1 MeV for a local potential model having

phases identical to Nijm-II in the range 0—300 MeV. The
difference between this estimate and the experimental value
of 8.48 MeV may be ameliorated at the two-body interaction
level by new phase-shift analyses and/or the inclusion of
nonlocality in the potentials. For the FA91 potential the dif-
ference between model and experiment is 1.1 MeV, 250 keV
more than for the Nijm-II potential. A specific example of
how long range r-space nonlocality can shift the triton bind-

ing energy is provided by the Bonn-B potential. However,
for a complete picture, dynamically consistent three-body
force effects must also be included.
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