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The recently discovered nearly universal anharmonic vibrator behavior (with constant anharmonicity) of
nuclei with E(4;)/E(2;) between 2.0 and 3.15 has been shown to be a natural and nearly automatic outcome
of numerical interacting boson approximation (IBA) calculations. Here, we present an approximate analytic
derivation and discussion of this based on the idea of the QO phonon.

PACS number(s): 21.10.Re, 21.60.Fw

Recently, it was shown [1,2] that a nearly universal em-
pirical behavior characterizes nuclei between the vibrator
and rotor limits. Specifically, for all nuclei from Z=38-82
with

2.05<R,,=E(4])/E(2{)=<3.15, 1)

E(47) is empirically linear in E(2;), with a slope of 2.0.
Such behavior is described by the equation

E(47)=2.0E(2])+e,, )

where g, is the (constant) intercept. This equation is that of
an anharmonic vibrator (AHV) and can be generalized for
higher spin yrast states as

n(n—1)
2

et n(n—16)(n—2) o 3)

E(n)=nE(2;r)+

where n=1/2 is viewed as the phonon number and where
g¢ is another parameter. Such an expression has been dis-
cussed, for example, by Das, Dreizler, and Klein [3]. For
I=8, it is sometimes useful to include the &4 term. g4 is
found to be much smaller than &,.

The remarkable feature is that the anharmonicity, &4, is
constant for nuclei of such varying underlying structure. The
AHYV behavior is also reflected [2] in yrast B(E2) values as
well, raising again the question of whether the success of the

AHYV equations actually reflects an underlying phonon struc-
ture of nearly all collective nonrotational nuclei.

An equally surprising theoretical result has also recently
been obtained [2]. The interacting boson approximation
(IBA) model [4] naturally reproduces the linear AHV behav-
ior of both yrast energies and B(E2) values, for a very wide
range of Hamiltonian parameters.

We show in Fig. 1 (reproduced from Ref. [2]) the empiri-
cal and IBA results for £, to highlight both the remarkable
linearity of the data (i.e., the adequacy of an AHV interpre-
tation with constant anharmonicity) and the excellent repro-
duction of this behavior with the IBA. The only significant
constraint on the IBA calculations of this AHV behavior is
that, with the IBA Hamiltonian

H=¢en;,—xQ-Q, (4)
where
0=(std+dts)+ x(dTd)?, (5)

the calculated R, value must be less than 3.15 (i.e., non-
rotational nuclei) and the quantity
1 3 X
e/4kN> =|1— —+

AR 3 ©)

where N is the boson number. Hence £/4xkN>0.1 to 0.4. A
practical upper limit on /4N is ~2.

T
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% %\ FIG. 1. Correlation of E(47) with E(2]).
= = Left, empirical values for all collective, nonrota-
. 1k 4 . 1k 4 tional even-even nuclei (ie., 2.05<R,,<3.15)
=y = for Z=38-82. Right, IBA calculations for a
ziipoffg'iOOng'S{zev slope=1.98+0.01 broad range of parameters that give this same
0 ) | 0 . L range of Ry, values. Based on Ref. [2].
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This theoretical result is so striking both in the quality of
reproduction of the data and in the breadth of parameters that
accommodate such a linear behavior that it suggests a simple
origin reflecting basic features of the model. It is therefore
interesting, and the purpose of this Rapid Communication, to
show that the numerical IBA results can indeed be derived in
a simple and analytic way by using the concept of global

RAPID COMMUNICATIONS

R2299

To approach this problem, we consider an (yrast or
stretched) state (with spin I=2n) in the Q-phonon basis [5]

LM =D)=|n)=1"""05)gs.), ™

where 7, 122 is a normalization factor. For simplicity, we
drop the subscripts on Q,, in the following. We consider an

multi-quadrupole-phonon structure of the low-lying even-
spin yrast states [5,6]. With this idea, both the wave func-
tions and the Hamiltonian are known, and it is therefore pos-
sible to calculate the energies in an approximate way. This
derivation therefore explicitly supports the phonon origins of
the empirically universal correlations of Ref. [1].

IBA Hamiltonian H and evaluate H|n)=.4", "?HQ"|g.s.).
The simple relation

HQ=QH+[H,0] ®

is an example of a general theorem that

n(n—1)

n—1 n—2 n(n—l)(n—Z)
HQ"=0"H+nQ" [H,01+ == 0" ([H,0],0]+ “— "=

31 Qn_3[[[H7Q]7Q]:Q]+ (9)
For example, applying Eq. (8),

HQ?’=HQQ=(QH+[H,0))0=0°H+2Q[H,0]+[[H,0].0], (10

which is Eq. (9) for n= 2. Equation (10) also shows explicitly that Eq. (9) terminates after n+ 1 terms. In our case, this means
that for the 4, state (n=2) Eq. (9) resembles the form of Eq. (3) with terms up through &4.[ Of course, one has not yet shown
that £, in Eq. (3) is constant. That, in fact, is one of the aims of this paper.]

Applying the relation Eq. (9) to the |g.s.) (which we assign energy E=0) gives

Hlny=1","?HQ"|g.s.y =17 Y (nQ" '[H,Q]|g:s.) + 1(—"2_—}—) Q" ?[[H,01.0]|gs.)
—1)(n—2
TN on((1,01,01, 08 )+ ). (“)

Inserting the unit operator =; ,|7,){I,|=1, where a specifies additional quantum numbers, yields
o n— -1 n—
Hin) =072 00" VS 120211, Q)lgs) + ML) 0723 [4,)(4./[1H.0).0]les)
- - n—
+ 2= L0=2) 013 16,)6,/111H,Q1.Q10 lgs)+ - . (12)

It has recently been shown [6] that the Q-phonon basis is an excellent approximation (at the 95% level) for even spin yrast
wave functions both empirically and in the IBA. In effect, this means that

B(E2:0{ —»21)> >, B(E2:0{ —2;). (13)
i>1

Therefore, in the Q-phonon approximation, the dominant (by far) contributions to Eq. (12) are from the yrast states, so the
S, give contributions from one state only, namely that given by Eq. (7). Thus,

-1
Hin)="""(nQ" L1y Q|g s )(2{|[H,Q]lgs )+ % Q" 27y Q2 g s )4 |[[H,0],0]lgs.)
—1)(n—2
&g)!(l——) Q"5 Qg5 )67 I[[[H.Q1.210]Igs)+ - ). (14)

Using Eq. (7) to replace the .4, "* factors, we get

(27I[H,Q]lgs) n(n—1) (4] |[[H.Q1.Q]1lgs.)

. n(n—1)(n—2) (6{|[[[H,0]1,01Q]lgs.)
(2710|g.s.) 2

“7100lgsy 31 (671000/gs)

Hln)=|n “{lm)

(15)
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or, finally, replacing H|n) by E(n)|n) and using Eq. (8)

n(n—1) (47|[[H,01,Q]lgs.) n(n—1)(n—2) (6 |[[[H,0],0]Q]lgs.)
2 floolesy 3! (6:1000]gss.)

This result, which arises, in essence, because of the goodness of the Q-phonon approximation for the ground band, is
identical in form to Eq. (3): it reflects the phonon content of the yrast excitations. We note that the validity of this expression
does not require any special type of phonon or phonon structure. It is quite generic and applies, for example, even to good rotor
nuclei in which, certainly, Eq. (13) is well satisfied.

For simplicity, and since we are primarily interested in the behavior of E(4; ), we calculate only the first two terms of Eq.
(16). The treatment of the higher terms is analogous though more complicated. The next step is therefore to show that the
second term in Eq. (16) does not vary significantly for broad ranges of IBA parameters. If so, then the empirical result, Eq. (2),
with constant &4, is obtained. In order to evaluate the second term in Eq. (16), we need to specify an IBA Hamiltonian.

E(n)=nEQ2{)+

(16)

Consistent with Ref. [2], we use Eq. (4). With Eq. (4), we obtain, after some straightforward algebra,

(47|[[H,01,0]|g:s.y=2(4]|(d1d) sl gs.) + k[4N11/5(1 — 3xH) (4T |[(d7d)3(d d)3]aalgs) +2(1+ 3x

2)(47100|gs.)

— Ix(1 = 3x*)(4710(d1d) o+ (dTd) 10 g.5.) + (X V110/7) (1 — 3x2)(4 ] |(Q(d1d) o) s

+((d'd)4Q)dlgs.)]-

To evaluate this expression approximately we require a
technique which is applicable for the wide range of the
Hamiltonian parameters. A suitable approach is the 1/N ex-
pansion developed for the IBM in [7]. In this formalism the
states belonging to the ground band are given by the angular
momentum projection of the intrinsic state [8] which is taken
as a boson condensate

1
|intrinsic g.s.) = \/—AT;(b;S,)NlO), (18)

where b;;_s_zxos“rxzdg , |0) is the boson vacuum, and
x5+x3=1. This procedure has been shown to lead to a 1/N
expansion for all matrix elements [7]. For many cases the
results obtained in the leading order approximation are suf-
ficient. Since we are interested here not in the exact matrix
elements but in their range of variations, we calculate the
matrix elements in Eq. (17) in leading order approximation
in N.

The straightforward calculation of the matrix elements
such as these in Eq. (17) produces the following expression
for e4:

(471[[H,01,Q]lgs.)

EL =
¢ (47100]gs.)
2 1 1—%y2 e 1
o 1+—X2+—|X|( X% Y
7 Jia M AN M
(19)
where
M= 1—-x§+|—X|—x2=x0+~|X—|x2. (20)

For any set of €, «, and x, the parameters of the creation
operator bgS , Xo and x,, can be found by minimizing the
expectation value of H in the intrinsic state. We will present

(17)

numerical results below, but first it is useful to analyze Eq.
(19) approximately for £/4«xN values less than unity. First,
we note that x, can be approximated by

_ 1 1 e
x2=\/_2_ 4kN

This approximation is quite good for a wide range of Hamil-
tonian parameters. The overall dependence of solutions to
the IBA Hamiltonian in Eq. (4) on the ratio of £ to &N is, in
fact, a familiar property of the intrinsic state formalism [8].
From Eq. (21), we note that x,—0 as £/4kN—1 and
approaches 0.7 near SU(3). Hence x varies only from 1.0 to
~0.7. Thus M does not vary significantly from unity. We
therefore momentarily set M =1, obtaining from Eq. (19)

12
, 0=

e
4 kN

<1, |xl<Vi2. (1)

e 1200 L AV . 22

The third term in Eq. (22) is always small. We therefore have
approximately

~1+2 24 % 23

For 0.2<g/4kN<1 and |x|<+/7/2, this gives a range of
values

4
E—;—l.85t0.65. (24)

Moreover, inserting the value of « for IBA calculations that
reproduce the empirical AHV results, namely «=0.032
MeV, we get

£,=0.12+0.04 MeV. (25)
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FIG. 2. Values for £4/2« as a function of y for several values of
e/4kN<1.

This approximate analysis therefore gives results close to the
actual &, values of 0.16*0.05 MeV from the IBA calcula-
tions of Ref. [1].

It is useful, however, to show the actual numbers, and this
is done in Fig. 2 for a range of values of £/4xkN and x where
it is seen that the results do in fact fall in a relatively narrow
range.
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To summarize, the data in Fig. 1 [complemented by those
for higher-spin yrast states and for B(E2) values [2]] suggest
an anharmonic vibrator description, with nearly constant an-
harmonicity, for a large variety of nuclei which differ sub-
stantially in the energy spectra of their low-lying collective
states. Numerical IBA calculations reproduce this behavior
for the boson pairing plus quadrupole Hamiltonian of Eq.
(4). Here, we have shown that this behavior can be approxi-
mately derived analytically and that the key ingredient is the
fact that the IBA predicts [5,6] nearly pure Q-phonon purity
over essentially the entire symmetry triangle. (The Q-phonon
concept, for the nonrotational yrast states we are considering
here, is essentially equivalent to the normal phonon picture.)
Given the Q-phonon purity embedded in the IBA, the nearly
constant anharmonicity of an AHV description in the IBA
follows for a wide range of parameters. These results there-
fore suggest that the empirical success of the constant-g,
AHV expressions [e.g., Eq. (3)] is not accidental but indeed
reflects the actual applicability of a phonon and multiphonon
description of the yrast states of nearly all collective, non-
rotational nuclei.
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