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Four new superdeformed bands have been observed in !°°Pb, the first time superdeformation has been
observed in an odd-A Pb nucleus. Two of the bands have a dynamic moment of inertia that is nearly constant
as a function of Zw. This is the first time that bands with such behavior have been observed in an odd-A
nucleus in the A=~190 region and it is interpreted as the result of the blocking of the alignment of neutron pairs.

PACS number(s): 21.10.Re, 23.20.Lv, 25.70.Jj, 27.80.+w

We report here the observation and interpretation of four
superdeformed (SD) bands in !®°Pb, the first time superde-
formation has been identified in an odd-A Pb nucleus. It is
also the first time that bands with constant dynamic moments
of inertia (. Z(®) have been observed in an odd-A nucleus in
the A=~190 region [1]. SD bands have been reported and
extensively investigated in experimental studies of the
even-A Pb nuclei, 19%194196:198pp [2-15], and in the isotones
of 1%Pb, namely '**Hg [16—20] and '°*T1 [21]. Despite pre-
vious extensive searches for SD states in odd-A Pb nuclei,
none had been identified. However, there appeared to be no
theoretical reason why they should not support superdefor-
mation.

SD bands in odd-A Pb nuclei provide a means to examine
the effects of Pauli blocking and of specific neutron orbitals
on SD properties. The similarity of the yrast SD bands in
192Hg [11,22,23] and '*Pb [2,4,11] suggests that the added
protons in '**Pb do not change the SD rotational properties
in the observed frequency range [24]. Thus, SD bands in
odd-A Pb might be expected to have similar properties to
their Hg isotones.

Four new SD bands have been observed in !°°Pb using
GAMMASPHERE. Two of these bands have Z(® values that
are approximately constant with Zw, and we propose that
they are the favored and unfavored signatures of the N=7
neutron orbital. The other two bands have Z®) values .that
are similar to that of the yrast SD band in !°*Pb, and are
proposed to be signature partners built upon the deformation
aligned v[624]9/2 orbital. Six new SD bands have also been
observed in !**Pb, which form three signature partner pairs,
and which have been assigned to the configurations with the
odd neutron in the N=7 favored and unfavored signature
intruder orbitals, the [512]5/2, and the [624]9/2 orbitals. The
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bands built upon the N=7 orbital have approximately con-
stant 7 for '*Pb as well. The results for **Pb will be
presented in a separate article [25]. In both instances, there
are important differences in the rotational properties of the
SD bands in the odd-A Pb nuclei and their lighter mass iso-
tones, as will be presented below for *>Pb.

This experimental study was performed at the Lawrence
Berkeley Laboratory 88-Inch Cyclotron, with the early
implementation configuration of GAMMASPHERE (29
Compton-suppressed, 75% efficient germanium detectors).
The 'Pb nuclei were produced with the reaction
17%yb(**Mg,5n) at a beam energy of 130 MeV. The target
was a stack of three foils of !7*Yb, each approximately 500
ug/cm? thick. A total of 400X 10° events with a coincidence
requirement of three or more “clean” +y rays were recorded
onto magnetic tape for off-line analysis. Doppler shift cor-
rections were made on-line during the data accumulation.
132By and %Co sources were counted to obtain information
on the ADC nonlinearity and the detector singles efficiency
in the energy region of interest. The energies of previously
known low-lying transitions in ®3Pb [26,27] were obtained
to within 0.1 keV with the resulting energy calibration.

Four new SD bands have been identified in our experi-
ment (Fig. 1). The transition energies are listed in Table I.
The spectra display the typical behavior of SD bands in the
A=~190 region. The y-ray transitions are regularly spaced in
energy, with AE',~40 keV at the bottom of the bands. All of
these bands have their last transitions near 200 keV, similar
to the last transitions in '**Pb and '*°Pb. We were not able to
assign multipolarities to these transitions, normally deter-
mined using DCO ratios, because there were no detectors at
6=90° degrees in this experiment; we assume these transi-
tions are of E2 multipolarity. The 162-, 203-, and 244-keV
transitions of band 2 appear in coincidence with band 1,
while the 182- and 222-keV gamma rays of band 1 appear in
coincidence with band 2. Similarly, the 214-, 258-, and 298-
keV transitions of band 4 are in coincidence with band 3, and
the 198- and 235-keV transitions of band 3 are in coinci-
dence with band 4. We take this crosstalk as evidence that
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FIG. 1. Double-gated triples spectra of super-
deformed bands in '®Pb. SD band 7y rays are
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bands 1 and 2, and bands 3 and 4 share the same basic
structures and are signature partner pairs.

The relative intensities of the transitions in the four bands
as determined from the spectra in Fig. 1 are plotted in the
insets. These relative intensities are not corrected for the ef-
fects of gating, and are plotted to show the similarity in the

TABLE 1. Energies of °°Pb SD transitions in keV. Errors reflect
only statistical errors.

Y no. Band 1 Band 2 Band 3 Band 4

182.13%0.21
222.33+0.14
261.97+0.10
301.52+0.09
341.09x0.09
380.54x0.10
419.29+0.16
458.26+0.09
497.38+0.09
535.69+0.15
574.52+0.18
612.68+0.29
650.88+0.35

162.58+0.18
203.22+0.16
243.99+0.11
284.63x0.09
325.64*+0.09
366.91+0.10
407.99+0.11
449.14+0.09
489.70x0.08
530.51£0.13
570.32+0.16
610.75+0.23
650.58*+0.31

198.19£0.40
236.19+0.14
277.47+0.13
317.60+0.12
357.22%+0.11
396.08+0.13
434.02+0.13
471.52+0.15
509.46+0.14
545.51+0.16
581.04+0.17
615.97+0.31
649.65+0.53
684.41+0.81

213.58+0.39
257.66+0.23
297.70£0.17
337.83+0.16
377.68+0.17
417.59+0.19
454.21+0.14
491.68+0.20
528.60+0.29
563.93+0.34
600.55+0.42
631.92+0.39
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relative intensities between these bands and SD bands in
other A~ 190 nuclei. It is difficult to determine the intensities
of the bands as a fraction of the 5n channel that populates
195pb, as they are weakly populated, and several known
long-lived isomers in 1°*Pb complicate the normalization to
the total production in the 5n channel. Therefore, we esti-
mate the relative yields of the ®Pb SD bands through a
comparison with data rates in our **Pb experiment [14]. In
this way, we estimate that band 1, the most intense SD band
observed in !°°Pb, comprises about 0.25% of the total
195pb y-ray flux. The least intense band, band 4, comprises
about 0.1%.

The assignment of these four bands to '*Pb is based on a
comparison of the data obtained in the present experiment
with those data obtained from our other experiments on
neighboring nuclei. The known yrast SD band of °°Pb is
observed at approximately the same intensity as band 4 of
195pb in the data from this experiment, while the SD yrast
band in '**Pb is not observed. In a large data set optimized
for 19*Pb (8.1x 108 three- and higher-fold events), the bands
assigned to !°°Pb are observed, but not the °°Pb band. Simi-
larly, we have searched in the present data for known SD
bands in °#1%T1 and °>19Hg, which are predicted to be the
most intense charged-particle channels, and have not found
them. Thus we assign these four bands to °Pb. Low-lying
195pb transitions are observed in coincidence with the bands.
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FIG. 2. The Z® moments of inertia for the four bands in t 05l (p)
195pp, (®@—band 1, M—band 2, ®—band 3, A—band 4, no
symbol—1%“Pb.) 0.0
However, their intensities vary greatly with the manner in 0»
which the background is subtracted. The only consistent co- s -
incidence is with the Pb x rays. 2 -0.1
The Z®’s for the four bands are plotted in Fig. 2 as a g 02
function of A w. Also shown in Fig. 2 for comparison is the ) .
g p .
Z@ for the yrast SD band in **Pb. Bands 3 and 4 have 03 © ®e
7@ ’s that are similar to those of 194pb and most other SD o0 0 300 400
bands in the A ~190 region. However, the 7 (2’5 for bands 1 holkeV]

and 2 are quite constant as a function of frequency. Other SD
bands in the A=~190 region that display this feature are
bands 3 and 4 in the odd-odd nucleus '°’Tl [28], and
1°Hg band 2 [29]. The mean value of Z® for bands 1 and
2 in 1%Pb are 102.1(8) and 98.8(8) £*MeV ™!, respectively,
compared with 107 A2MeV ! for the 2Tl bands. The an-
gular momenta of the lowest observed levels in the *>Pb SD
bands are estimated to be I,=15/2%, 13/2h, 15/2#, and
17/2#, for bands 1 through 4, respectively. These estimates
are based on the rotational model by extrapolating from the
two lowest energy transitions for each band. The K values
used in this estimate are derived from the asymptotic values
of € for the orbitals to which the bands are assigned.

In order to understand the results of this experiment, com-
parisons are made to appropriate theoretical calculations for
quasiparticles at SD shapes in the A~ 190 region: the calcu-
lations of Gall et al. [30], who use the cranked Hartree-Fock-
Bogoliubov method with the Lipkin-Nogami prescription for
the treatment of pairing (CHFBLN) to calculate quasiparticle
levels and Routhians for *°~1%Hg and °“Pb; and a cranked
Woods-Saxon calculation (CWS) [31] for Pb. The
quasineutron Routhians for '**Pb in the CHFBLN model,
and for *>Pb in the CWS model, are plotted in Figs. 3(a) and
3(b), respectively. The main differences between them, rel-
evant to the experimental data, are that the N=7, a=+1/2
signature orbital is the second lowest energy orbital in the
CWS model, and that interactions occur over a much broader
frequency range in the CHFBLN model. At Aw=0, three
low-lying quasiparticle neutron states are within 300 keV of
each other in both calculations: [512]5/2, [624]9/2, and an
N="7 orbital. The following features are evident in the
quasineutron Routhian plots: (a) the [624]9/2 orbital and the
[512]5/2 orbitals lie within 50 keV of each other at Zw=0,
and show no signature splitting over the frequency range
calculated; (b) the next quasiparticle orbital, the N=7,
crosses the [512]5/2 orbital at fairly low frequency

FIG. 3. (a) CHFBLN quasineutron Routhians for '**Pb (repro-
duced from Ref. [30]) (7, a): solid=(+,+1/2), dashed=(+,-1/2),
dash-dotted=(-,+1/2), dotted=(—,—1/2). (b) The CWS quasi-
neutron Routhians for **Pb with deformation parameters 3,=
0.47, B4= 0.05, and y=0. The orbitals are labeled by their asymp-
totic Nilsson quantum numbers, except for the N="7 orbitals, which
are labeled 7;, 7,, ..., in order of increasing energy. (,a):
solid=(+,+1/2), dotted=(+,—1/2), dash-dotted=(—,+1/2),
dashed=(—,—1/2). (c) Experimental Routhians for the *Pb SD
bands. . Z7=88.5+100w? #*MeV ™! is used for the reference. An
arbitrary offset is applied to each Routhian, so that all bands ex-
trapolate to e’ =0 at Aw=0. @—band 1, M—band 2, ¢ —band 3,
A—band 4, no symbol— **Pb.

(Aw=~100 keV in the CWS calculations, and over a broader
frequency range of approximately 100 to 250 keV in the
CHFBLN); (c) after the crossing, the lower energy orbital,
now principally of N=7 character, shows significant signa-
ture splitting starting at A w=150 keV in the CWS model,
and at #w~200 keV in the CHFBLN.

The experimental Routhians for the bands are plotted in
Fig. 3(c). We note that bands 1 and 2 are sharply downslop-
ing, relative to bands 3 and 4 and the yrast SD band in
194pp, with signature splitting that increases with frequency.
At low hw, the transitions of band 2 are at the midpoints
between the transitions of band 1, but diverge from this re-
lationship at higher frequencies. Under the assumption that at
fiw=~0 these bands have the same energy, we observe a sig-
nature splitting in the Routhians of approximately 100 keV at
fhiw= 300 keV. This is consistent with bands 1 and 2 being
built upon the N =7 intruder orbital. Comparison of the ex-
perimental and theoretical Routhians suggests that band 1 is
built upon the = —1/2 favored signature, and band 2 upon
the unfavored signature. Since the N=7 favored signature
orbital is calculated to be the lowest energy orbital in the
region of Aw in which the bands are populated, we expect
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the band built upon it to be the most intensely fed band,
which is consistent with our assignment of band 1 to this
orbital. These assignments are consistent with the assigned
spins for these bands. Also, the intensity of the observed
crosstalk is consistent with that expected for a jis5,
Q) =5/2 orbital.

Bands 3 and 4 have no signature splitting in their y-ray
energies. In the CHFBLN calculations, the only low-lying
orbital which matches these properties is the v[624]9/2. In
the CWS calculations, both the v[624]9/2 and the [512]5/2
match these properties, but the [624]9/2 orbital lies 200 keV
lower in energy in the population region. Therefore, we pro-
pose that these bands are built upon the v[624]9/2 orbital.
However, bands built on the [512]5/2 and the [624]9/2 orbit-
als might have nearly identical transition energies, which
would require a more sensitive experiment to resolve. Bands
3 and 4 are fed more weakly than bands 1 and 2, consistent
with the corresponding orbitals being higher in energy in the
population region.

Let us now consider 7. 7 of the **Pb SD yrast
band (Fig. 2) increases as a function of % w, a property which
is characteristic of most SD bands in the A~190 region. It
has been suggested that this rise in _Z® results from the
alignment of the angular momentum of paired particles in
high-j, low-£} intruder orbitals with the collective rotation,
and from the gradual disappearance of pairing correlations
with increasing frequency [32,33]. An odd particle will in-
crease the value of 7 @) at low frequency, and reduce the
slope in 7 @), by reducing the amount of pairing. An odd
particle in the lowest low-{) intruder quasiparticle excitation
further reduces the rise in_Z(® by blocking the alignment of
a pair of particles in that orbital. This is consistent with the
greater slope of the Z7(® in 1%Pb bands 3 and 4 compared
with bands 1 and 2, given the configurations assigned to
these bands.

The relative values of the Z(? for bands 1 and 2 are
consistent with the predicted curvatures in the cranked
Woods-Saxon quasiparticle Routhians [Fig. 3(b)]. The indi-
vidual quasiparticle contributions to Z(* are given by
—d?e;/dw?, where e; are the quasiparticle Routhians. The
N =7 unfavored signature, having a greater positive curva-
ture than the favored signature at # w>200 keV, thus might
support a band with lower Z(? than the favored signature.

The constant value of 7® for bands 1 and 2 is surpris-
ing. While blocking of the neutron intruder orbital is ex-
pected to reduce the slope of 7 (), we might still expect to
observe some positive slope in_Z® as an effect of proton
pair alignment in an intruder orbital. The other cases of SD
bands with constant_Z(? in this mass region were 2Tl [28]
and '"Hg [29]. In the case of !°’Tl the constant 7 was
interpreted to be due to blocking of low-{) intruder orbitals
by both the odd proton and the odd neutron (double block-
ing). Clearly, double blocking is not likely for the lowest
energy SD bands in '*Pb.

Although there are no theoretical predictions of a constant
54 @) in odd-A Pb nuclei, several mechanisms can be pro-
posed to explain the absence of the effects of proton pair
alignment on _Z7® in '®Pb. One possibility is that in the
A=~190 region, proton pair alignment occurs at a frequency
higher than we have observed for !°°Pb. This is consistent
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with SD band 5 in **Hg [20], which has been assigned to
the N=7 unfavored signature orbital, and which has a nearly
constant 7 in the range of % w over which the °*Pb bands
are observed. However, this mechanism is not consistent
with the bands built on the N=7 favored signature orbitals
in 18%191Hg [33,34], or ®*Hg band 1 [16,18] when corrected
for the interaction with >*Hg band 4. In these cases, neutron
pair alignment in the intruder orbital should be blocked.
However, there is still a rise in_Z®, with a slightly lesser
slope than for ®’Hg band 1.

Another possible explanation for the constant Z(® in
195pp is that the proton pair alignment occurs at a higher
frequency in Pb than in Hg and TI. CWS quasiproton
Routhian calculations suggest that proton pair alignment oc-
curs over a wider frequency range, and at 100 keV lower
frequency, for Hg than for Pb. This result is consistent with
the CHFBLN calculations. In this case, one might expect (i)
7@ has a greater slope in Hg than in Pb, at low % w, and (ii)
7@ turns over at a lower frequency in Hg than in Pb. The
former is consistent with the bands with identical neutron
configurations in the odd-A Hg’s and Pb’s. However, it is
inconsistent with the similarity between the SD yrast bands
in ?Hg and '°*Pb, and (ii) is inconsistent with the observa-
tion that the band in '°*Pb turns over at a lower frequency
than the band in %’Hg.

Another possible mechanism for the Z® for bands 1 and
2 appearing to be approximately constant is an interaction
between the favored vN=7 and the »[512]5/2 orbitals, as
was observed for °*Hg bands 1 and 4 [16,18]. However, no
evidence for such an interaction was observed in **Pb.

To summarize, we have observed four new superde-
formed bands in !°Pb. This is the first observation of super-
deformation in an odd-A Pb nucleus, and the first observa-
tion of constant_Z(® as a function of rotational frequency in
an odd-A nucleus in the A =~ 190 region. Crosstalk between
bands suggests that they form two sets of signature partner
pairs. The first pair, bands 1 and 2, have approximately con-
stant 7(?)’s. Relative to '**Pb, their Routhians are sharply
downsloping in energy, and exhibit a signature splitting that
increases to approximately 100 keV at Aw= 300 keV. We
have assigned these bands to the configuration with the odd
neutron in the N =7 orbital, band 1 to the favored signature,
based on comparison to theoretical quasineutron Routhian
calculations, its intensity relative to band 2, and the relative
moments of inertia for bands 1 and 2. Band 2 is assigned to
the N=7 unfavored signature. Bands 3 and 4 show little
signature splitting, and have Routhians which are very simi-
lar to that of '°*Pb. These bands have been assigned to the
two signatures of the v[624]9/2 orbital. The fitted spins for
bands 1 and 2, 15/2 and 13/2, are consistent with the as-
signed parity and signatures.

7@ is constant as a function of % for bands 1 and 2.
This can be explained through blocking of the N=7 neutron
intruder orbital, and the absence of proton pair alignment in
the observed frequency range. The latter may be a result of
the proton pairs aligning at a frequency higher than that ob-
served in this work. The high frequency of the proton pair
alignment might be a general feature of this mass region, or
might reflect the movement of the proton SD Fermi level
away from the w6, and 6, orbitals. There are, however,
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counterexamples to both these possibilities, and more work
needs to be done before a model consistent with all the ob-
served data emerges.

We would like to thank P. Bonche, H. Flocard, P.-H.
Heenan, and S. J. Krieger for stimulating and useful discus-
sions, Jo Ann Heagny for making the targets, and the staff of
the LBL 88-inch Cyclotron. This work was supported in part
by the U.S. Department of Energy, under Contract No.

L. P. FARRIS et al. 51

W-7405-ENG-48 (LLNL) and No. DE-ACO03-76SF00098
(LBL), in part by the Research Corporation Grant No. R-152
and an IPA Independent Research Agreement with the Divi-
sion of Undergraduate Education of the National Science
Foundation, the U.S. Department of Energy Division of High
Energy and Nuclear Physics under Grants Nos. DE-FG02-
92ER40692 and DE-FG02 87ER40371 (ISU), and in part by
the National Science Foundation (Rutgers).

[1] Preliminary reports have been given in E. A. Henry et al.,
Bull. Am. Phys. Soc. 39, 1184 (1994); L. P. Farris et al., “Con-
ference on Physics from Large y-ray Detector Arrays,” Vol. 1,
Report LBL-35687 (1994), p. 41.

[2] M. J. Brinkman et al., Z. Phys. A 336, 115 (1990).

[3] K. Theine et al., Z. Phys. A 336, 113 (1990).

[4] H. Hubel et al, Nucl. Phys. A520, 125c (1990).

[5] T. F. Wang et al., Phys. Rev. C 43, R2465 (1991).

[6] E. A. Henry et al., Z. Phys. A 338, 469 (1991).

[7] A. J. M. Plompen et al., Phys. Rev. C 47, 2378 (1993).

[8] E. A. Henry et al., Phys. Rev. C 49, 2849 (1994).

[9] P. Willsau et al., Z. Phys. A 334, 351 (1993).

[10] E. F. Moore et al., Phys. Rev. C 48, 2261 (1993).

[11] F. Hannachi et al., Nucl. Phys. A557, 75¢ (1993).

[12] W. Korten et al., Z. Phys. A 344, 475 (1993).

[13]J. R. Hughes et al., Phys. Rev. C 50, R1265 (1994).

[14] M. J. Brinkman, “Conference on Physics from Large y-ray
Detector Arrays,” Vol. 2, Report No. LBL-35687 (1994), p.
242.

[15] R. M. Clark et al, Phys. Rev. C 50, 1222 (1994).

[16] D. M. Cullen et al., Phys. Rev. Lett. 65, 1547 (1990).

[17] E. A. Henry et al, Z. Phys. A 335, 361 (1990).

[18] M. J. Joyce et al., Phys. Rev. Lett. 71, 2176 (1993).

[19] P. Fallon et al., Phys. Rev. Lett. 70, 2690 (1993).

[20] M. J. Joyce et al., Phys. Lett. B 340, 150 (1994).

[21] F. Azaiez et al., Phys. Rev. Lett. 66, 1030 (1991).

[22] T. Lauritsen et al., Phys. Lett. B 279, 239 (1992).

[23] E. F. Moore et al., Phys. Rev. Lett. 64, 3127 (1990).

[24] W. Satula, S. Cwiok, W. Nazarewicz, R. Wyss, and A. Johnson,
Nucl. Phys. A529, 289 (1991).

[25] J. R. Hughes et al., Phys. Rev. C 51, R447 (1995).

[26] M. Pautrat, J. M. Lagrange, A. Virdis, J. S. Dionisio, Ch. Vieu,
and J. Vanhorenbeeck, Phys. Scr. 34, 378 (1986).

[27] H. Helppi, S. K. Saha, P. J. Daly, S. R. Faber, T. L. Khoo, and
F. M. Bernthal, Phys. Rev. C 23, 1446 (1981).

[28] Y. Liang et al., Phys. Rev. C 46, R2136 (1992).

[29] B. Crowell et al., “Conference on Physics from Large y-ray
Detector Arrays™ [1], p. 30.

[30] B. Gall, P. Bonche, J. Dobaczewski, H. Flocard, and P.-H.
Heenen, Sov. Phys. Acoust. 348, 183 (1994).

[31] R. Wyes, W. Satula, W. Nazarewicz, and A. Johnson, Nucl.
Phys. A511, 324 (1990).

[32] M. A. Riley et al., Nucl. Phys. A512, 178 (1990).

[33] M. W. Drigert et al., Nucl. Phys. A530, 452 (1991).

[34] E. F. Moore et al., Phys. Rev. Lett. 63, 360 (1989).



