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Low-energy theorem for a composite particle in mean scalar and vector fields
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For a relativistic particle moving in the presence of mean scalar and vector fields, the energy at second order
in the scalar field is shown to contain two contributions in general. One is a momentum-dependent repulsive
interaction satisfying a low-energy theorem pointed out by Wallace, Gross, and Tjon. The other does not vanish
at zero momentum and involves a "polarizability" of the particle by the scalar field. The first of these
contributions is independent of the details of the structure of the particle and the couplings of its constituents
to the external fields. The appearance of such a piece in the central nucleon-nucleus potential thus would

support the existence of strong scalar fields in nuclei, without requiring the use of a Dirac equation for the
nucleon.

PACS number(s): 24.10.Jv, 24.85.+p, 12.39.Ba

Treatments of nuclei based on the Dirac equation have
been very successful, particularly in describing intermediate-
energy proton-nucleus scattering I1,2]. These typically in-

volve large scalar and vector potentials of opposite sign. Al-
though these cancel to leave a small net central potential, the
significant reduction of the nucleon mass by the scalar po-
tential gives rise to a number of interesting effects. Among
these are a strong momentum dependence of the central po-
tential and an enhanced spin-orbit coupling in nucleon-
nucleus scattering I1,2], and an enhanced axial charge I3].
For pointlike Dirac nucleons all of these arise from "Z-
graphs, " which can be interpreted as excitations of virtual
nucleon-antinucleon pairs. However Brodsky has argued that

pair creation should be suppressed by form factors for com-
posite systems I 4] and the validity of such an explanation for
these effects has therefore been questioned.

Recently Wallace, Gross, and Tjon I5] have pointed out
that, when the Dirac equation is reduced to two-component
form, the Z-graphs produce an interaction of second order in
the scalar field that satisfies a low-energy theorem. This in-

teraction provides an important momentum-dependent repul-
sive piece in the central nucleon-nucleus potential. This low-

energy theorem was obtained from the classical energy of a
relativistic particle and its validity was demonstrated in a
simple model for a composite fermion consisting of a bound
fermion and boson. This model was based on a zero-range
force between the constituents, and external vector and scalar
fields which coupled to the conserved vector current and
scale anomaly, respectively.

The appearance of the second-order interaction in an ex-
pansion of the classical energy of a relativistic particle sug-
gests that this result should be valid in general. However the
arguments of Ref. I5] relied heavily on the chosen forms of
scalar and vector couplings and left open the possibility that
this result might not apply to QCD. The purpose of the
present paper is to show that the term identified by Wallace
et al. is indeed universal and does not depend on the details
of the nucleon structure, or on how the external fields are
coupled to the constituents. I also point out that for a com-
posite particle in general there can be other second-order

interactions, with different momentum dependence, which do
depend on its structure through various "polarizabilities. "

Consider a composite particle moving in the presence of a
uniform medium which generates mean scalar and vector
fields, o. and ~". I will refer to the particle as a nucleon,
although the results will be more general. The dispersion
relation connecting the energy and the three-momentum can
be written in the invariant form

This form relies only on the covariance of the dynamics and
it holds for both composite and "elementary" particles, irre-
spective of their spin. It is convenient to re-express this as an
equation for p in terms of the other invariants,

(2)

For simplicity, let me assume that the co field is sufficiently
weak that only terms to second order are needed:

p =M (o)+I n, (o) G„(cr) ]to2—+2G, (o)to p

+~,(~)(~ p)'. (3)

Here M(o.) is the mass of the nucleon in the absence of the
vector field, and G, (o.) is its coupling to the vector field. In
general these will depend nonlinearly on the scalar field o..
The quantities cv, „are "monopole polarizabilities" of the
nucleon by the uniform vector field. A similar scalar polariz-
ability u, can be defined by expanding M in powers of the
o. field:

M(tr) =MD+ g, cr+ ~n, o +1 2 (4)

and a mixed scalar-vector one n„by

G, (o.) =g„+ct,„o.+ (5)

Here Mo denotes the mass of a nucleon in vacuum and

g, , are its couplings to the scalar and vector fields.
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~v+ ~pME*—=E(p=0)=M+G„co+ co .
2M

(7)

The energy for small p can be used to define an inertial mass
M* for the nucleon by

E(p) —=E*+,+P
(8)

This inertial mass has the form

av —AMM*=M+
2M

Note that, because of the factor 1+n co multiplying p in
Eq. (4), the inertial mass is not, in general, equal to the
Lorentz scalar piece of E*,

n„+ npMM'—=E*—G, co=M+ co .
2M

(10)

Expanding the energy to second order in the scalar and
vector fields (but keeping terms to all orders in the momen-
tum) gives

E(p) = e(p) + (g, + u„cr) o)+ g, o + —,u, o.
p

[u.+ u, e(p)']~'
2MO

2
P

( )3 gs

where e(p) is the energy of a free nucleon of momentum p.
The second term in this expression is linear in co and can be
interpreted as the vector potential experienced by the
nucleon in the presence of the fields. The third term can be
expressed in terms of a scalar potential for the nucleon,

In the rest frame of the medium, where co" has only a
time component, Eq. (3) can be solved to give the energy of
a nucleon of momentum p:

E(p)=G, co+ g(1+ u (u )p +M +(u„+u~M2)co2,
(6)

where terms beyond co have again been dropped. The rest
energy of the nucleon is

gE Q

gv
a„+npM=G„+

M
(14)

thought of as arising from the modification of the nucleon's
mass by the scalar field. This is clearer if we replace g, o. in
(13) by the scalar potential 5, which we can do since we are
considering only terms in the energy to second order in the
fields. ' Although the second-order term appears here as a
momentum-dependent repulsion, it is equivalent to the more
familiar energy dependence of the central potential that ap-
pears when the Dirac equation is reduced to a two-
component Schrodinger equation [6].

In general the second-order dependence of the energy (11)
on the scalar field also contains a piece which does not van-
ish at zero momentum. This arises from the scalar polariz-
ability of the nucleon u, and corresponds to a second-order
dependence of the scalar potential (12) on the scalar field
tr In .the model of Ref. [5] the scalar field is coupled to the
scale anomaly, ensuring that the nucleon mass remains linear
in o. and so no such term appears. (The vector polarizabilities

a„p and n, v are identically zero in that model, because the
vector field is coupled to the conserved fermion current. )
Similar models with more general scalar couplings do give
rise to a term of this kind in the energy [7].

In models of the type studied by Wallace et al. the
second-order interaction P is produced by composite-
fermion Z-graphs. This is a consequence of the zero-range
force between the constituents and so may not occur in real-
istic treatments of nucleon structure. More generally though,
such graphs are not necessary. As has been noted in other
contexts, quark excitations and quark Z-graphs can conspire
to yield the same result as nucleon Z-graphs [8].This is just
what happens in the more familiar cases of the Thomson
limit of Compton scattering and low-energy theorems for
m.N interactions [9], and is unsurprising given that these are
all basically classical results.

The fact that the interaction (13) does not depend on
nucleon Z-graphs is illustrated by nontopological soliton
models for a nucleon embedded in mean scalar and vector
fields [10],where such graphs do not appear. In these semi-
classical models, "pushing" can be used to determine the
inertial mass of the soliton [11].For comparison with the
results of Ref. [12], the effective coupling strength of the
co to a nucleon with zero momentum is defined by

S—=M' M=g, o+ 2u, o —+(uU+ u&M ) cu, (12) The inertial mass (9) can then be expressed in the form

2
P

2e(p)' (13)

This is a repulsive interaction which increases rapidly with
the momentum of the nucleon. Note that it involves only the
scalar coupling of the nucleon as a whole. It is thus unlike
the other second-order terms which depend on the details of
the nucleon structure through the various polarizabilities.
Such a term appears in any relativistic treatment and can be

plus a momentum-dependent piece involving the polarizabil-
ity n„.

Finally there is the term of second order in o. pointed out
by Wallace et al. [5]:

nvM* =E*—g,*o)+-
M

(15)

In fact such a replacement holds to all orders in o. and to second
order in co for the special case of vanishing polarizability n~.

to order co as usual. Comparing this with Eq. (8) of Ref.
[12], one can see that both have the same form and that the
polarizability n, corresponds to the response of the nucle-
on's structure to pushing in the presence of the vector field.
The energy of the nucleon in these models thus has the form
discussed above and contains a piece of the form (13).
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Although such a momentum-dependent repulsion could
provide good evidence for strong scalar fields in nuclei, it
has proved difficult to identify unambiguously such a term in
the nucleon-nucleus optical potential [2,13].As well as the
mean-field effects included in (1), the self-energy of a
nucleon in matter should include Pauli-exchange (Fock)
terms. These are nonlocal and can lead to a similar momen-
turn dependence to that generated by the relativistic effect
studied here. As discussed by Kleinmann eral. [13], it is
possible that, at least at low energies, the large Fock terms
required for nonrelativistic parametrizations of the NW inter-
action are mocking up the momentum dependence of a rela-
tivistic description.

Various other properties of a nucleon in the nuclear me-
dium are sensitive to the reduction in mass caused by the
scalar potential. Of particular interest is the axial charge
whose observed enhancement [14] is too large to be ex-
plained by pion exchange effects and so provides strong evi-
dence for scalar fields in nuclei [3]. Nuclear magnetic mo-
ments are also influenced by these fields but they do not
provide an unambiguous signal. Spin-dependent couplings to
external axial or magnetic fields can be included in (1) and
used to extract effective coupling constants. However all of
these involve polarizabilities of the nucleon and so do not

satisfy low-energy theorems. This is illustrated by soliton
and bag model calculations of axial couplings and magnetic
moments in medium [10,12,15], where the results depend on
the details of the nucleon structure. The only quantities
which do satisfy such theorems are the orbital magnetic g
factors. These arise from the part of the current that classi-
cally is proportional to the nucleon velocity, and hence is
inversely related to its mass. The enhancement of these due
to a mean scalar field is independent of the details of the
nucleon structure. Unfortunately there are too many other
exchange-current and configuration-mixing contributions to
the orbital g factors to allow this enhancement to be identi-
fied in measured magnetic moments [16].

In summary: for a relativistic particle in the presence of
scalar and vector fields the momentum-dependent repulsive
interaction of second order in the scalar potential is univer-
sal. The appearance of such behavior in the central nucleon-
nucleus potential could thus provide evidence for strong sca-
lar fields in nuclei, independently of the use of a Dirac
equation for the nucleon.

I am grateful to S. J. Wallace for extensive correspon-
dence on these ideas. This work was supported by the
EPSRC.
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