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Limits of proton stability near Sn
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The two-proton stability in even-even nuclei around the doubly magic Sn is examined by the self-
consistent Skyrme-Hartree-Fock-Bogoliubov theory. According to our analysis, the nuclei Sn and ' Te are
stable to two-proton decay while Sn and ' Te lie beyond the two-proton drip line.
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A study of properties of heavy doubly magic nuclei and
neighboring systems is a very important testing ground for
the ability of the existing models to describe and predict the
underlying shell structure. Until recent years, the nucleus

Pb was the only heavy doubly magic system with the
experimentally known binding energies of the valence
single-particle states. On the neutron-rich side, a consider-
able amount of data have recently been collected for the
doubly magic Sn [1].The heaviest self-conjugate system
(doubly magic 0 Sn) has been found very recently in mul-
tifragmentation studies [2,3]. This nucleus is expected to lie
very close to the border of the proton stability. Indeed, al-

ready in the early work by Leander et al. [4], based on a
structural analogy between " Sn and "Ni [5], the binding
energy of the proton g9ip shell in Sn was predicted to be
only about 3 MeV. Undoubtedly, the many-faceted spectros-
copy of nuclei around Sn will soon become the major part
of the research program using radioactive beam facilities [6].
Theoretically, considerable effort has been devoted to ex-
plore the single-particle and collective aspects of Sn and
its neighbors [4,7—16].

The main objective of the present study is to investigate
the position of the two-proton drip line around Sn. We
present calculations which were performed using the spheri-
cal Hartree-Fock-Bogoliubov (HFB) method in spatial coor-
dinates introduced in Ref. [7].All the details of calculations
closely follow Ref. [7].The effective interaction used in our
study is the Skyrme parametrization SkP obtained in Ref. [7]
by a fit to properties of several magic nuclei and to the chain
of the tin isotopes. In addition, a set of HFB calculations is
presented with the forces SIII and SkM@' of Ref. [17].In
the p hchannel, these -forces are the standard SkM* [18]and
SIII [19]Skyrme parametrizations, respectively. The pairing
components of these forces are given by the density-
dependent contact interaction. (For details of these param-
etrizations, see Ref. [17].)

Figure 1 shows the calculated two-proton separation en-
ergies, S2~, for the proton-rich even-even Sn and Te iso-
topes. Together with the HFB predictions, are shown results
of two macroscopic-microscopic models, the extended
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FIG. 1.Two-proton separation energies for the even-even Sn and

Te isotopes around ' Sn predicted in the HFB calculations with the

SkP, SIII P, and SkM P effective interactions (this work), the ETFSI
model [20], and the FRDM model [21].Experimental data are taken
from Ref. [22]. (The points with error bars indicate values estimated
from systematic trends. ) The deformation-corrected HFB+SkP val-
ues for the Te isotopes are denoted as SkP"" (see text).

Thomas-Fermi-Strutinsky-integral (ETFSI) model [20] and
the finite-range droplet model (FRDM) [21]. Both of these
approaches explic&tly take into account deformation effects,
and they treat pairing by means of the BCS method.

For the tin isotopes, the results of HFB+ SkP, ETFSI,
and FRDM are very similar. Namely, the nucleus Sn is
two-proton bound (S2(„" i ——1.63 MeV) and the lighter iso-

tope, Sn, is weakly unbound (S(2 ) ———0.46 MeV). For
Sn, all three models give a fairly good agreement with

the masses of Ref. [22] deduced from systematic trends. In
addition, the calculated values of Q for ' Sn (—251 keV,
HFB+SkP; —275 keV, ETFSI; 65 keV, FRDM) are close to
the experimental value of 290+ 190 keV. According to the
ETFSI and FRDM calculations, the Cd isotopes with 44~%
~52 are nearly spherical; the equilibrium quadrupole defor-
mations, Pz, vary between 0 and 0.05, and the deformation
energies do not exceed 30 keV [20]. Consequently, the as-
sumption of spherical shape in our HFB calculations seems
to be well justified.

According to the HFB+SkP, ETFSI, and FRDM, the
nucleus 0 Te is on the border of particle stability (see Fig.
1). All three models underestimate the experimental values
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value of binding energy for Sn agrees well with other
calculations, namely 824.4 MeV (ETFSI), 825.9 MeV
(FDSM), 831.0 MeV (relativistic HF model [10]), 832.3—
835.8 MeV (relativistic mean field approach (RMF) [16]),
and with 824.5 MeV estimated from systematic trends [22].

In the HFB theory with Skyrme interaction, there exists
an exact relation between the proton Fermi energy, X, and
the derivative of the total energy with respect to the proton
number
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FIG. 2. Total energy, E(N, Z), for the N=46, 48, 50, and 52
isotones of Cd, Sn, and Te. The smooth curves were obtained by
making a fit to calculated values for fixed N and varying Z. For
each X, the arrows indicate the minima of E(N, Z). The tangent
P ~=dE/dZ at Z=50 is shown schematically. The energy of the
HFB vacuum at Z =49 is indicated by a black dot. The curves are
shifted vertically with respect to one another in order not to expand
the energy scale too much; the calculated binding energies of

Sn are given in the text.

of S in Te (2.48+.0.16 MeV) and ioTe (4.84~0.06
MeV) [22]. In a recent study of ' Te, its alpha decay of
4128 9 keV and a half-life of 60+@~ p, s were identified. As
expected from Fig. 1, the HFB+SkP, ETFSI, and FRDM
calculations overestimate this experimental value of Q giv-
ing 5.45, 5.75, and 6.02 MeV, respectively. The as-
sumption of spherical shape, valid for the Sn-Cd pair, is less
justified for the Te-Sn pair. Indeed, in the ETFSI model the
values of Pz for the ' Te isotopes are 0.09, 0.125, and
0.14, and the corresponding deformation energies are 0.65,
0.99, and 1.20 MeV, respectively. By adding these deforma-
tion energies to the HFB+ SkP binding energies, one obtains
values denoted by SkP"", which present a more satisfactory
agreement with the data. In particular„ the nucleus Te be-
comes proton stable, Sq~=0.27 MeV, and the value of Q in

Te is now Q (SkP"")=4.82 MeV. The nucleus Te is
predicted to lie beyond the two-proton drip line in all models

(Sz~ ———1.84 MeV in SkP""').
In the SIII ~ and SkM ~ calculations, the Sn isotopes are

too strongly bound with respect to the Cd and Te isotopes,
thus yielding too large (small) values of Sz~ in Sn (Te). (For
a recent analysis of shell-gap sizes in the SkP, SIII ~, and
SkM ~ models, see Ref. [17].) We checked that even by sub-
stantially increasing the strength of the pairing interaction in
the SIII ~ model, one does not change the pattern shown in
Fig. 1.

Total energies, E(N, Z), calculated in the HFB+ SkP
model for the N=46, 48, 50, and 52 isotones of Cd, Sn, and
Te are shown in Fig. 2. The curves representing different
isotonic chains are shifted with respect to one another in
order not to expand the vertical scale too much. The actual
binding energies of ' ' Sn in the HFB+SkP model are
760.7, 792.7, 823.5 [23], and 847.9 MeV, respectively. Our

(T)
k, +

N

where X„' is the Lagrange multiplier fixing the number of
protons, and the term containing the average value of the
kinetic energy, (T), comes from the standard center-of-mass
correction (see the Appendix in Ref. [19]). On the other
hand, an approximate relation giving the two-proton separa-
tion energy reads [24,25]:

dE
Sq = —2

N
(2)

Consequently, the system is stable when X~(0, the two-
proton drip line (S@~=0) is met when li.~ =0, and for
X~)0 the nucleus is expected to be unstable to two-proton
decay.

As seen in Fig. 2, for the considered isotopes of Cd
(Z =48), X~(0, and they are expected to be particle-stable.
For the Te isotopes, there is also a consistency between re-
sults presented in Figs. 1 and 2. Namely, all Te isotopes with
N~52 are predicted to be proton-unstable and X )0. An
interesting situation is predicted for the Sn isotopes. As dis-
cussed above, Sn is calculated to be particle bound. How-
ever, according to Fig. 2, its value of X~ is positive. This
apparent contradiction can be easily explained by recalling
that Eq. (2) is based on the assumption that the finite differ-
ence can be well approximated by a local derivative. This
assumption breaks down around the drip line where X
changes quickly with Z. As discussed in Ref. [24] in such a
situation, Eqs. (1) and (2) can be expressed as Sz~(N, Z)= —2k~(N, Z —1), where k„(N,Z —1) is the Fermi level
corresponding to the HFB vacuum at an odd proton number.
(In Fig. 2, the energy of the HFB vacuum at Z=49 is indi-
cated by a black dot; X~(N, Z —1) is a tangent at this point. )
With this definition of the two-proton drip line, the results for
the tin isotopes shown in Figs. 1 and 2 are consistent.
Namely, for 9sSn the value of li. (N=48, Z=49) is still
negative [it lies on the left-hand side of the minimum in
E(Z) indicated by the arrow], and for the proton-unstable

Sn the value of k„(N=46, Z=49) is positive. However,
the asymptotic properties of the HFB solutions [7] are still
governed by the values of k'(N, Z) of Eq. (1). The differ-
ences discussed above are a clear illustration of applicability
limits encountered when particle-number-violating theories
are used near drip lines.

The particle stability of the tin isotopes can be related to
the neutron-number dependence of the binding energy of the

g9/g proton shell, e~(g9/Q). The single-proton Hartree-Fock
(HF) SkP energies for Z=50 are displayed in Fig. 3 as a
function of N. The binding energy of the proton g9/Q shell in
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FIG. 3. Single-particle proton HF+SkP energies for the even-

even tin isotopes with N =42—52. The nonlocalized, spin-
degenerate orbitals with j=8~1/2 do not depend on N; they are
indicated by the orbital quantum number E. The energies of the

proton g9/2 orbitals obtained within the HFB approach (vanishing
proton pairing and nonzero neutron pairing for ¹+50) are indicated

by dots.

Sn is predicted to be 3.17 MeV in SkP. This is consistent
with other calculations: 3.17 MeV (HF+SIII [4]), 3.47—3.88
MeV (RMF [16]), and 2.99 MeV (shell model [15]). In the
HFB calculations, in tin isotopes only the neutron pairing is
present, and its inhuence on proton single-particle energies is
rather weak. For the g9/z orbital, these HFB values are indi-
cated by dots in Fig. 3. For Sn, one obtains e„(g9/2)
=1.4 MeV, and for Sn ez(g9/2) becomes very small
(0.41MeV); however, this orbital is still bound. Neverthe-
less, Sn is unbound with respect to two-proton emission.
This is so, because the total energy of "Cd is lowered due to
nonvanishing proton pairing correlations. Without pairing
(pure HF calculations), Sn would have been bound with
respect to the two-proton emission by 1.15 MeV.

The first particle-type proton orbital, d5/z, appears in the
positive-energy part of the spectrum. As discussed in Refs.
[14,26], positive-energy quasibound HF states are usually
unstable against the size of the basis (size of the box; here 20
fm), and they do not represent physical resonances. Excep-
tions are the low-energy quasibound proton states which are
localized inside the nuclear volume by the Coulomb barrier
(8.3 MeV in ' Sn). As seen in Fig. 3, the energies of
positive-energy orbitals below -6 MeV decrease smoothly

with the neutron number. This is not true for higher-lying
states whose single-particle energies do not change with W.
The corresponding wave functions are not localized inside
the nuclear volume and, consequently, these states are not
affected by the nuclear mean field. For instance, since these
orbitals are not affected by the spin-dependent part of the
interaction, the states with j=E~ 1/2 are degenerate.
(Hence, in Fig 3, they are labeled by the orbital quantum
number 8 only. ) Of course, with the increasing size of the
basis, the low-lying (especially low-Q quasibound states be-
come unphysical as well, and their use in the continuum shell
model calculations is questionable [27].

According to the HF+SkP model, in ' Sn the g7/z shell
appears above the d5/z shell in both protons and neutrons.
This result appears systematically in microscopic calcula-
tions of single-particle states in this mass region. For in-

stance, the neutron binding energies of the d5/z and g7/z
shells, crucial for properties of Gamow-Teller transitions
around Sn, are 11.8 and 9.5 MeV (HF+SkP), 10.1 and 9.6
MeV (HF+SIII [4]), 11.3 MeV and 10.2 MeV (folded-
Yukawa potential [4]), and 12.7 and 10.7 MeV (Woods-
Saxon potential [11]).In contrast, in recent shell-model cal-
culations of Ref. [15],the authors assumed the inverted order
of ds/2 and g7/2 shells, namely 10.15 MeV (g7/2) and 10.1
(d5/2). We agree with the authors of Ref. [15] that an experi-
mental confirmation of the level structure of ' 'Sn is crucial.

In summary, the self-consistent HFB+SkP model predicts
the nuclei Sn and ' Te to be stable to two-proton decay.
The stability of the first one is obtained within the spherical
approximation, which is probably well justified here. On the
other hand, the stability of the second one requires additional
binding energy coming from the deformation effects at
Z =52, and is an important indication of the deformability of
very neutron-deficient nuclei.
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