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Nonperturbative aspects of the quark-photon vertex
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The electromagnetic interaction with quarks is investigated through a relativistic, electromagnetic
gauge-invariant treatment. Gluon dressing of the quark-photon vertex and the quark self-energy
functions is described by the inhomogeneous Bethe-Salpeter equation in the ladder approximation
and the Schwinger-Dyson equation in the rainbow approximation, respectively. Results for the
calculation of the quark-photon vertex are presented in both the timelike and spacelike regions
of photon momentum squared; however, emphasis is placed on the spacelike region relevant to
electron scattering. The treatment presented here simultaneously addresses the role of dynamically
generated qq vector bound states and the approach to asymptotic behavior. The resulting description
is therefore applicable over the entire range of momentum transfers available in electron scattering
experiments. Input parameters are limited to the model gluon two-point function, which is chosen to
reHect confinement and asymptotic freedom, and are largely constrained by the obtained bound-state
spectrum.

PACS number(s): 24.85.+p, 13.60.Le

I. INTRODUCTION
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FIG. 1. The EM vertex for a composite pion at tree
level. The quark Green's functions QPV and the pion
Bethe-Salpeter amplitudes are dressed in a consistent, gauge-
invariance manner.

As hadrons are subjected to more detailed examina-
tion in electron scattering experiments, such as those pro-
posed at CEBAF, a quark-based description of their elec-
tromagnetic (EM) interaction, which is applicable over a
broad range of momenta, becomes desirable. Local efFec-
tive field theories based on hadronic degrees of &eedom,
although attractive for their eKciency, are subject to dif-
ficulties when conditions are sufhcient to probe charac-
teristics of subhadronic origin [1]. An ideal perspective
on this problem can be gained by sacrificing local in-
teractions in favor of retaining some knowledge of the
quark substructure content of the effective hadron fields

[2], and is the spirit of the present investigation. In
such a treatment, the EM interaction with a pion at tree
level in the hadron fields is, for example, illustrated in
Fig. 1. There, the pion Bethe-Salpeter amplitudes I' re-

Hect the ability of the internal degrees of freedom to share
the transferred momentum, while the quark-photon ver-
tex (QPV) I'„contains information about the interac-
tion with a dressed quark, including the production of qq
vector-meson modes expected from vector-meson dom-
inance or dispersion theory phenomenology. At larger
momentum transfers where the e8'ective scale provided
by the vector-meson poles has been exceeded, the QPV
also provides information about the approach of photon-
hadron vertices to asymptotic behavior. A quantitative
understanding of the QPV is therefore central to the EM
description of hadrons at intermediate momentum scales,
and must address issues of confinement, dynamically gen-
erated qq vector bound states, and asymptotic freedom.

In addition to its role in the EM interaction, the QPV
is a quantity of interest on its own merit. It is well known,
for example, that a formal description of meson bound-
state spectra and wave functions can be obtained by con-
sidering the interaction of a quark with an external field
having the quantum numbers of the bound state of inter-
est. In such a description, the external field excites a qq
pair &om the vacuum. Their subsequent gluon-mediated
interactions provide self-energy and vertex dressing. The
existence of bound states is exhibited by poles in the
dressed vertex. The position and residue of a given pole
yield information about the bound-state mass and wave
function respectively. Vertex functions of quarks with ex-
ternal fields thus provide a uniq~. "e environment in which
to study the formation of meson bound states. The in-
teraction with a photon is simply one example of this,
and it is expected that the approach presented here can
be applied to the description of bound states with other
quantum numbers as well as vectors.

In this paper the QPV with gluon dressing at the
ladder level of approximation is investigated in both
the timelike and spacelike regions of photon momentum
squared. Particular attention is given to the formation
of vector bound states and confinement phenomenology,
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however, the primary goal of this initial investigation is to
develop a description of the quark-photon interaction in
the spacelike region relevant to electron scattering which
simultaneously addresses the role of vector mesons and
quark substructure. The equations implied by the ladder
approximation are the inhomogeneous Bethe-Salpeter
equation

4, d4K
r„(P,q) = —'&„—-g' D(P —K)p G(K+)

xl„(K,q)G(K )p„,

and the Schwinger-Dyson equation

and the Ward identity (WI),

BG '(P)
(4)

are satisfied by this approximation. This is easily demon-
strated by directly substituting (3) or (4) into (1) for the
vertex, and employing (2). Further, it has been shown re-
cently how gauge invariance at the quark level in the lad-
der approximation to the QPV fits into a gauge-invariant
description of composite mesons leading to WTIs at the
hadronic level [2].

Second, in the vicinity of a qq resonance, the vertex
obtains the form4, d4K

Z(P) = —g D(P —K)p G(K)p„, I'„(P,q) = O„(P, q),
q +Mv (5)

where K~ = K 6 qj2, the quark Green's function, G,
is defined &om its inverse G (P) = i P + Z(P), and
for convenience the model gluon two-point function is
taken to be diagonal in Lorentz indices (D~„= b~ D).
In Eq. (1) q is the photon momentum, while P is the
average of the incoming and outgoing quark momenta.
These expressions are illustrated in Fig. 2. The current-
quark masses in this investigation are assumed to be zero,
which allows an overall charge matrix to be omitted from
Eq. (1), but the approach can be easily extended to in-
clude nonzero masses. The absence of masses further
implies that all dimensionful constants enter through the
parametrization of the gluon two-point function, D. Here
the in&ared contribution to this quantity is characterized
by an efFective strength g and an effective range Ro, in
addition to the known ultraviolet form.

The motivation for employing the ladder approxima-
tion is provided by the following arguments. First, it of-
fers an EM gauge-invariant description. Both the Ward-
Takahashi identity (WTI),

q„I'„(P,q) = G '(P ) —G '(P+),

qP—

(a)

FIG. 2. The ladder approximation for (a) the QPV and
(b) the quark self-energy. The Green's functions are defined
by their inverse G (P) = i P + Z(P).

The Euclidean metric, in which a a = a„a„and (p„,p„) =
2b„, is used throughout this work.

where O~ is the residue at the pole, and, &om (1), satis-
fies

4 2 d K
O„(P, q) = ——g D(P —K)p„G(K+)

xO„(K,q)G(K )p

for q = —Mv. This is the homogeneous Bethe-Salpeter
equation in the ladder approximation for a vector qq
bound state. One can conclude &om (3) and (5) that
the on-mass-shell solution of the homogeneous equation
satisfies q~B&(P, q) = 0, provided the self-energy func-
tions are nonsingular. The Bethe-Salpeter equation at
this level has been investigated previously, and accept-
able results have been obtained for the lowest mass bound
states [3—6]. It is therefore anticipated that, in the ad-
dition to providing an EM gauge invariant description of
the quark-photon interaction for use in electron scatter-
ing, this level of approximation has the ability to describe
the spectrum and structure of vector bound states.

Finally, the Schwinger-Dyson equation (2) has been
extensively studied with regard to confinement phe-
nomenology and dynamical chiral symmetry breaking [7].
It has been demonstrated, for example, that for a suitably
chosen gluon two-point function D, quark Green's func-
tions which are free of singularities on the real P axis are
produced in the vacuum; therefore denying the existence
of a single-particle spectrum. It is shown here, however,
that this is not a suKcient condition for the formation of
finite-size qq states, but is an essential ingredient in a de-
scription of confinement based on an interaction between
dressed quarks which does not rise to infinity at large
distances. This alternate description of confinement in
fact relies on the interaction between dressed quarks di-
minishing at separations beyond the characteristic length
scale Ro, at which point the quark Green's function ap-
proaches its vacuum value. The quarks are then repelled
by the vacuum due to the absence of a mass pole in the
vacuum quark Green's function. The effective "rising po-
tential" of traditional models of confinement occurs here
as a result of the repulsive interaction of quarks with the
vacuum in combination with the decreasing interaction
between dressed quarks with increasing separation. Such
a description has proven successful in the formulation of
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a confining nontopological soliton model for baryons [8].
There propagating quark modes are made possible by the
baryon mean field. However, as a quark moves toward
the edge of the baryon where the mean Geld vanishes, the
constituent-quark mass rises to infinity. Quarks are thus
confined to the region of nonzero mean field by virtue of
their repulsive interaction with the vacuum. This mech-
anism arises naturally here, and is pursued as a possible
realization of confinement.

The paper is organized as follows. In Sec. II the general
features of the QPV are given along with the reduction
of Eq. (1) to a form suitable for computer applications.
The solution of the homogeneous Bethe-Salpeter equa-
tion (6) is also discussed there. In Sec. III a discussion
of confinement is presented in the context of a particular
model which yields analytic solutions to both the inho-
mogeneous Bethe-Salpeter and Schwinger-Dyson equa-
tions (1) and (2) respectively. Also discussed there is the
criteria for the formation of finite-range bound states in
the context of this model of confinement. The numerical
evaluation of the QPV for both the timelike and space-
like regions of the photon momentum squared is given in
Sec. IV. Finally, a summary is presented in Sec. V.

II. GENERAL FEATURES

A. The inhomogeneous Bethe-Salpeter equation

In this section, the steps required to reduce the inho-
mogeneous Bethe-Salpeter equation (1) to a form suitable
for computer applications are outlined. The approach is
straightforward and is based on the general features of
the QPV as described by (1). Where possible, lengthy
algebraic manipulations are omitted. To begin, it is use-
ful to write the self-energy Z from (2), in the form

Z(P) = i P A(P') —1 + B(P'),
where

d4W

A(K )P K
K'A'(K') + B'(K') (8)

and

, 16 d'K B(K')
3 (2 )

( )K+ (K)+B (K

(9)

G(P) = i gn(P ) —+ P(P ),

G '(P) = &&(P') + B(P') (10)

where n and P are defined in an obvious fashion from
G

From Eq. (1) it is evident that the QPV, in addition to
its Lorentz four-vector structure, is a four-by-four matrix
in Dirac indices and is in general a function of two non-
orthogonal four vectors, P and q (P q g 0). On first
appraisal, one might therefore expect that the complete
set of 16 Dirac matrices {1,ps, p~, ps'~, o„) must be
employed in its description. However, by limiting the
gluon two-point function D to diagonal components in
Lorentz indices, the tensor 0~ is excluded. This is seen
explicitly by rewriting the integrand of (1) using

The quark Green's function G and its inverse G can
then be written as

h„G(K )r„(P,q)G(K )&„],, = (&„), [G(K )r„(P,q)G(K )],„(&„)

= —M;)tr [M G(K+)r„(P,q)G(K )],

where the set of matrices

M 1
y x+5 y Spy 2y 4+5+@ 2

from which a~„ is absent, is obtained through Fierz re-
ordering, and the repeated indices are summed. Further,
the pseudoscalar matrix p5 can be excluded by consid-
ering that the corresponding term in (11) has the form
psA (P, q), where the matrix structure has been corn-
pletely factored. In order to contribute to the QPV, this
term must form a four vector, which requires A„(P, q) to
be an axial vector. It is immediately evident that this
is impossible since there is an insufFicient number of four
vectors (P and q) to combine with the tensor e„p to
form an axial vector. The solution to (1) must therefore
have the general form

I

where the matrix structure is now explicit and the quan-
tities A( ) are dimensionless functions with Lorentz struc-
ture indicated by their indices. The constant g has di-
mension of (length) and is associated with the infrared
strength of the gluon two-point function.

The further reduction of the A('~ to a set of invariant
functions is achieved through the use of the symmetry
transformations of the vertex r~(P, q) under ps, charge
conjugation, C = p2p4, and parity, 7 = p4. The trans-
formation properties are determined directly from the in-
homogeneous Bethe-Salpeter equation (1) and are given
by

~.r„(P,q) ~, = -r„(—P, -q),
CI'„(P, q)C = —I „(—P, q)

Pr„(P, q)P = ~„„r (P4, —P, q4, —q),
I'„(P,q) = lA~ l(P, q) + ip„A~„l(P, q)

+ipse„el „~pP~qpq 'A ' (P, q), (12)
where w„=diag( —1, —1, —1, 1) and t denotes a matrix
transpose. From the general form given in (12) and the
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first two expressions in (13), it is clear that A~„(P, q) and
A(sl (P, q) are even in both P and q, while A„(P, q) is
odd in P and even in q. The quantities A(') can therefore
be written as

to be immediately determined from the WTI (3) in terms
of the self-energy functions A and B given in (8) and (9)
respectively. The longitudinal coefFicient functions are
thus given by

q~qg l~ AT
q

PT
A('l(P, q) =

9 q

P PT
A('l(P, ,) = '" 'A'+

Vp ~ 2 2 2 2 2

q„PTP . q

(i4)

Af =B(P') —B(P'),
7l

A2 = A(P ) —A(Pi),

As~ = — A(P') + A(P+') .

The additional constraint provided by the WI (4) obtains
the soft-photon limits:

A('l(P, q) = AT.

Here the coefFicients A are functions of P, q, and C&
where CJ q

—P q/(Pq) is the direction cosine between P
and q, and P = P~ —P qq„/q is the vector transverse
to q~ (P q = 0). The behavior of the coefficients for
large spacelike q2 consistent with asymptotic freedom [9]
can be anticipated from (12) and (14). In particular, as

q ~ oo the coefFicients A3' must tend to unity, while
all others tend to zero. The separation in (14) into longi-
tudinal and transverse contributions with respect to the
index p allows three of the eight coefficient functions, A,

I

A
L
1 q

—P

L
q=p

A
L

q=p

Ai = 2qB'(—P ),
A2 = 2' A'(—P ),
As =A(P ),

(16)

where the prime denotes differentiation with respect to
the argument.

The five unknown transverse coefBcients can be iso-
lated using (12) and (14), and the orthogonality of the
Dirac matrices. The closed set of equations so obtained
can be written in matrix form as

b; = Af;, (P, CJ, , q )A,. (P, CI, ; q ) + dKK (17)

where M and JV (b and A ) are matrices (vectors) in
the five-component space of the coefBcient functions and
CKq is the direction cosine between K and q. The steps
required to reach the result (17) along with the explicit
forms of M, JV, and b are given in the Appendix. Equa-
tion (17) contains the same information as the trans-
verse component of the inhomogeneous Bethe-Salpeter
equation (1); to this point, no approximations have been
made. To proceed further requires the specification of
the gluon two-point function, D.

The association of the coefficients P('l with the coeffi-
cients A~'l of (12) is directly observed from the relation-
ship between the solutions to the inhomogeneous and ho-
mogeneous Bethe-Salpeter equations given in (5). The
substitution of (18) into the homogeneous equation (6)
allows a description in the form of the eigenvalue equa-
tion

d KA ~ (P, K;q)C (Ks, q) = n(q )C (P, q) (19)

B. The homogeneous Bethe-Salpeter equation

~.(P,.) = 1~.'"(P,q)+
' ..~."„'(P,q)

+ Vs'Y 4' „(»q).
2

(18)

The solutions of the homogeneous Bethe-Salpeter
equation (6) describe the coupling of a qq vector bound
state to a quark, and thereby provide information about
the internal dynamics of the bound state. Although these
solutions can be obtained directly from the coefFicient
functions A; of the preceding section, their normaliza-
tion is more readily achieved by considering the solution
of the homogeneous equation. To this end, the quantity
B~(P, q) is decomposed as

to be obtained. The quantity A b (P, K; q) is defined as

9 d4 —i(P—K)7

+b"'(P —K)tr [M G(K+)M'G(K )]

(20)

and plays the role of an inverse propagator for the qq
composite system, as has been demonstrated in previous
work on the hadronization of quark field-theory mod-
els [10]. That description is extended here to include
the more general structure in (18). The eigenfunctions
are defined in terms of the coefficient functions P('l as
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@i—:P„, 42 s = P „, and Cs s = P „. The ma-(x) (2) v (3)

trices M—:lc 1~ (l, ip„/~2, ipse„/~2) include unity
in the color and two-component Havor space, and the
trace is taken to include their indices as well as those
of the Dirac matrices. The homogeneous equation (6)

is regained through the requirement that the eigenvalue
vanishes on the mass shell, that is, n(q = —M&) = 0.
The normalization condition for the eigenfunctions is ob-
tained by multiplying (18) on the left by 4"(P, —q) and
integrating over relative momentum P, which gives

d Pd K4"(P, —q)A q (P, K; q)@i,(K, q) n(q ) d P4"(P, q)C—"(P,q)

~

(q'+ M~) Z(q'). (21)

The last line in (20) follows from the fact that the on-mass-shell eigenfunctions 4" contain only components transverse
to the center-of-mass moinentum q„. The (dimensionless) wave-function renormalization constant Z(q ) can be
absorbed into the Bethe-Salpeter amplitudes by defining C' = 4 //Z( —M&2). The normalization condition can then
be written explicitly as

d Pd K4"(P, —q) A ~ (P, K;q) @i",(K, q) = 2q~, (22)

which is the standard result [11].In terms of the properly
normalized Bethe-Salpeter amplitude, the relationship to
the QPV given in (5) now reads

M O„(P, q)
q'+ M~2

where fv = I/gZ( —M&2) is the effective coupling of the
vector meson to the photon.

III. A SIMPLE MODEL

3 'm4
D ((P —K) ) = h~ )(P —K). (24)

At the present level of approximation, the self-energy
dressing from the vacuum is provided by Eqs. (8) and
(9). The solutions to these implied by (24) are

2, P2& "4

)+2g P2) g

P2 & "—
p2 ) TJ

(25)

Traditional descriptions of quark confinement are
based on a potential between quarks, in an appropriate
color combination, which rises with increasing separation
(to infinity in the absence of pair creation). Explored
here is the notion that this efr'ect may be in part due to
the interaction of quarks (or more generally colored ob-
jects) with the vacuum. In particular, that confinement
is manifest in the absence of a mass pole in the vacuum
Green's function of a colored object implies that the ob-
ject is repelled by the vacuum, and hence attracted to
other colored objects to form a color singlet by virtue of
the interaction with the vacuum. An illustration of this
mechanism is afforded through the use of a simple model
[12, 8] of the gluon two-point function given by

I

That the solutions (25) produce a model of confinement
as described above can be seen by the absence of a solu-
tion to the expression P +M (P ) = 0, with M = B/A.
The presence of other colored objects in a color sin-
glet configuration can supply the additional interaction
necessary for the formation of a propagating mode, as
is demonstrated in the nontopological soliton model of
Ref. [8]. There, for example, in the case of quarks cou-
pled to a constant scalar mean Geld by the self-energy
function B, the quark inverse Green's function obtains
the form G (P) = i g A(P2) + B(P )(1+y), where
0 & y & —2 characterizes the strength of the mean Geld.
In this case a continuous single-particle energy spectrum
E (P ) = P + M& is obtained because of the infinite-
range potential, with the constituent mass given by

4 1 —(1+~)' (26)

From (26) it is evident that the increase of the constituent
mass as the strength y of the mean Geld decreases toward
its vacuum value (y = 0) is due to the repulsive interac-
tion with the vacuum. For the case of the constant mean
field, the quarks are allowed to propagate throughout
space. However, due to the energy stored in the mean
field, the self-consistent (minimum-energy) solution ac-
quires a finite range. In that case, a a quark in the
system is separated from the others, the inHuence of the
mean Geld on the quark diminishes and the mass rises as
in (26). The quarks are thus confined to the region of
nonzero mean Geld by virtue of their interaction with the
vacuum.

The situation is similar for the QPV of interest here.
The use of the gluon two-point function (24) reduces the
equations in (17) to algebraic form, which can then be
solved by numerical or symbolic techniques. Shown in
Fig. 3 is the solutions for the five transverse coefFicient
functions in both the timelike and spacelike regions of
photon momentum q for P = C~q ——0. The single
parameter, and the only dimensionful constant, g is given
the value 5 fm . It appears &om Fig. 3(a) that there is
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or q = -'g /2. Closer analysis of the 2 P2
pole, but is instead a continuous t . F h

ysis o e q — plane shows, however that the
s spec rum. or the re ion P2 &

e singularity structure is not

form
h g + g ~'4, the analytic solutions have the simple

e a

4q B(P+') + B(P')
1

Iq2 —4P2+ 5q2+ B(P+2)B(P2) '

2

A2 = ——A
g

4

2 2g —4P2+ q2 y B(P2)B(P2)
3g2 —8P2 + 6q

—32@4
4 g2 —4P2 + 5q2 + B(P+2)B(P2) [Sg —8P2 + 6q2I

8g
5 3g2 —8P2+6q2 '

(27)
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anticipate that as the range of the interaction increases,
the density of bound-state poles increases, finally giving
rise to a continuous spectrum as illustrated above. Sec-
ond, the identification of a true bound-state pole requires
careful examination of the P -q plane. Finally, with
regard to electron scattering, in general the singularity
structure of the QPV in the timelike region of photon
momentum squared dominates the behavior in the low
momentum region of spacelike q . This feature is exhib-
ited here despite the absence of a bound-state pole. The
intercept at q = 0 is provided by the constraints (16) de-
rived from the WI, which the coefIicient functions given
in (27) satisfy explicitly. Further out in the spacelike re-
gion a transition to asymptotic behavior is expected. As
is illustrated in Fig. 3(b), an unphysically sharp transi-
tion occurs here due to the nonanalytic structure of the
self-energy amplitude B in (25). Based on these observa-
tions, the approximation (24) does not provide a useful
description of bound states or the approach to asymp-
topia, but is of pedagogical value for investigating the
behavior of the QPV for the situation where the confine-
ment length scale, defined here as the quark separation at
which the vacuum becomes apparent, is taken to in6nity.

IV. NUMERICAL EVALUATION

A. Methods and approximations

The set of equations for the five transverse coefFicient
functions represented in (17), and given explicitly in the
appendix, forms the basis for the numerical investigation
undertaken here. The approach used in evaluating these
equations is to express each element of the matrices (vec-
tors) in the five-component space of coefficient functions
as a matrix (vector) in the direct-product space of the
magnitude of the momentum P and the direction cosine
C~~. The value of the photon momentum q is a param-
eter of the equations. That is, for each value of q, a
different set of equations is obtained. For the numerical
evaluation, the momentum P and the direction cosine
C~~ are discretized in terms of Gauss-quadrature points.
The integrations are then carried out as matrix multi-
plication. The coupled equations are solved as a matrix
equation in the expanded direct-product space of the co-
efIicient functions and the Gauss integration points. The
dimension of the equation is given by 5 x nppts x ncpts,
where nppts and ncpts are the number of Gauss points
representing the P and C~z integrations, respectively.
The number of points in both integrations is varied to
ensure accuracy. For the momentum, 20 to 40 quadra-
ture points are used, while six to ten are used for the
direction cosine.

| luon tu)o-point function ansatz

where the first term (which has the coordinate space rep-
2 R2resentation e ) +o) provides a length scale Bo character-

izing the in&ared behavior while the second term models
the known ultraviolet form. The parameter A, which
is associated with the @CD scale, is fixed at 1 fm
throughout this investigation. As Ao approaches infin-
ity the erst term reduces to the delta-function model of
Eq. (24). The gluon two-point function (28) has been
employed previously in the study of Bethe-Salpeter and
Schwinger-Dyson equations [4], and is expected to pro-
vide an acceptable accounting of the in&ared effects for
the purposes of the investigation conducted here.

g. Quark self energy a-nsatz

The solution of the Bethe-Salpeter equation in the
timelike region requires knowledge of the quark Green's
functions, and hence the self-energy functions, for corn
plex values of their arguments. The solution of the
Schwinger-Dyson equation in the complex plane is a chal-
lenging problem in itself [13,7], and is being pursued else-
where for forms such as that in (28) [14]. Although these
solutions are crucial to a comprehensive study of the
present problem, reasonable approximations are avail-
able. The analytic solutions given in (25) for the self-
energy functions obtained using the simple model two-
point function (24) are useful in this regard. It is shown,
for example, in Ref. [4] that the solutions to (8) and (9)
for the self-energy amplitudes obtained using (28) display
behavior similar to the simple model solutions of (25) on
the real axis with the exception of an additional tail on
the scalar amplitude B attributed to the ultraviolet con-
tribution in (28). Others have argued on both theoretical
and experimental grounds that the asymptotic form of
the scalar contribution to the self-energy should behave
as B(P ) 4m&/P, which, in the Landau gauge, is
exact within a logarithm [15]. The self-energy functions
used in the numerical work here are thus modeled as

2, P2& 94

A(P' =
&

1

sp2) ((7 )

P2

P2 ( g

P2 ) g

(29)

the QPV in the spacelike region. To this end, a suflicient
parametrization of the gluon two-point function is given
by

3' g 4 ~2~2(4 16m2 2 2

16 11P2ln (e + P2/A2) '

(28)

The aim in this initial investigation is not necessarily to
reproduce the known bound-state spectrum, but rather
to correlate trends in the spectrum with changes in the
parameterization of the infrared form of the gluon two-
point function. The sensitivity of the spectrum to these
changes then provides a constraint on the calculation of

where the quantity mD has been referred to previously as
the "dynamical-quark mass" [15, 16], which sets the scale
for dynamical chiral symmetry breaking. Its value is de-
termined here by demanding that the function B' and
its first derivative match at the point rt2/6, and is thus
given by m~ = [24'/3] i~ rj 0.29rI. For rt 1 GeV,
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B. Results

Timehke q and bound state8

Shown in Fig. 5 are the solutions to Eq. (17) for the
five transverse coefEcient functions in the timelike region
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FIG. 5. The five transverse coefBcient functions are plot-
ted versus timelike photon momentum q for P = Cz~ ——0.
The dependence upon the infrared scale Ro is illustrated by
comparing (a) where Bo = 1 fm with (b) where Ro ——0.75
fm.

a dynamical-quark mass of mD 290 MeV is obtained,
which is consistent with the notion of a constituent-quark
mass. In Ref. [15], using evidence from e+e annihila-
tion, the dynamical mass is estimated to be mD = 244
MeV. These arguments place constraints on the range of
the parameter rI, which is thereby fixed at 5 fm (- 1
GeV) for the remainder of this work. The ansatz (29) en-
compasses the expected behavior of the solutions to the
Schwinger-Dyson equation (2) on the real axis [7], and is
here taken to define the solutions in the portion of the
complex plane sampled by the QPV calculation.

of photon momentum squared. Two different values of
the infrared scale Ro are reported, &om which it is ob-
served that the spectrum is quite sensitive to changes in
this parameter. In particular, an increase in Ro leads
to an increase in the density of bound-state poles. This
situation is, for example, analogous to a potential well,
where Ro plays the role of the range while the barrier
is provided by the repulsive interaction with the vac-
uum. With the value of Ro set to 1 fm, the ground-
state mass occurs at 880 MeV. This is in reasonable
agreement with the observed p mass, considering that
pion dressing is expected to lower this value [17],yet the
excitation spectrum does not coincide with experimen-
tally observed quantities. Comparison with the measured
excitation spectrum can be improved by decreasing the
range Ro, however, this also leads to an increase in the
ground-state mass, and away from the known value. As
illustrated previously with the analytic solutions (27), in
the limit as Ro approaches in'. nity a continuous spec-
trum is obtained. Prom this discussion, and the behavior
displayed in Fig. 5, it is evident that the combination
of the gluon two-point function (28) and the self-energy
functions (29) is not sufficient to reproduce the empiri-
cal excitation spectrum. Nevertheless, it is encouraging
that this approach affords the investigation of spectra be-
yond the ground state, which until recently [6] has been
the focus of Bethe-Salpeter phenomenology applied to
mesons. The reproduction of spectra is clearly essential
to constraining the interaction between quarks. In this
regard, the utility of the approach presented here is that,
given a gluon two-point function and the associated solu-
tion to the Schwinger-Dyson equation, the vector bound-
state spectrum can be obtained. The ability to reproduce
the experimentally observed spectrum is then contingent
upon the capacity of the ladder approximation to capture
the relevant dynamics of QCD.

The extraction of bound-state wave functions is
achieved by considering the dependence of the coeKcient
functions A; on the momentum P and the direction co-
sine C~q in the vicinity of a pole. Shown in Fig. 6 are
the solutions for the ground state with mass 880 MeV,
and with Ro ——1 fm, as a function of P for the two
limiting values of the direction cosine C~q ——0, 1. The
normalization is chosen such that the largest coefFicient
function is unity at P = C~q ——0. The relative strength
of the other coeKcients can then be observed. The ab-
solute normalization is obtained through application of
Eq. (22), but is not relevant to the present discussion.
A rough estimate for the dependence of the solutions
on the momentum and the direction cosine can be ob-
tained by fitting the curves to an exponential of the form
e + I'~ ~, which gives a ~ 0.29 and 6 ~ 3.5
fm . The corresponding estimate of the spatial extent
is rv 2/4 0.57 fm.

2. SpaceLiIce q and eLectt'on 8cattev'ing

The description of the QPV in the spacelike region is
largely independent of the spectrum in the timelike re-
gion with the exception of the ground state, which dom-
inates the low momentum structure. The approach to
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asymptotic behavior at higher momentum is primarily
determined by the asymptotic forms of the gluon two-
point function and. the self-energy functions. Care has
been taken here to accommodate both of these low and
high momentum attributes in a manner that is consistent
with their known features. The results of the calculation
in the spacelike region are summarized in Figs. 7 and 8.

In Fig. 7 the solutions for the coeFicient functions
are displayed versus the photon momentum q for

P = C~q ——0. A smooth transition from the low mo-
mentum region, dominated by the ground-state vector-
meson pole, to the high momentum approach to asymp-
topia is observed. It is therefore expected that the range
of applicability of these solutions spans the entire range of
momentum transfers available in electron scattering ex-
periments. With the exception of Az, which approaches
unity asymptotically, the coefBcient functions vanish for
large momenta consistent with asymptotic freedom [9].
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FIG. 7. The five transverse coefBcient functions are plot-
ted versus the photon momentum q for P:C&q: 0.
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FIG. 8. The five transverse coefBcient functions are plot-
ted versus the momentum P for photon momentum q = 10
fm, and the limiting values of the direction cosine (a)
C~q = 0 and (b) C~q = 1.
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The asymptotic form is apparent at q 50 fm ( 2
GeV2), .where the coefficient function As achieves roughly
twice the strength of the other coeKcients. It is also
worth pointing out that to a very good. approximation
the coeKcients A& and A5 are equal over the momentum
range reported.

Shown in Fig. 8 are the coeKcient functions versus

the momentum P for q = 10 fm, and for the lim-
iting values of the direction cosine, C~q ——0, 1. Only a
modest angular dependence is apparent, and again the
coeKcients Az and A5 are approximately equal. The ob-
served behavior in the spacelike region can be roughly
characterized in terms of the scales of the problem by
the following analytic forms:

A, =a;. . . ln(e+ (P +q'/4)/A')

As =1+ ln(e+ (P + q /4)/A )1+q2 M2-

i/3,

where the constants a,. can be read from Fig. 7, and in the
present case the ground-state vector mass is M~ = 880
MeV. The falloff with the momentum P is reminiscent
of the self-energy functions, while that with q reBects
the presence of the singularity in the timelike region. It
should be understood that these forms are not the result
of a detailed fit, but are rather offered as a guide to the
qualitative behavior over the momentum range reported. .

V. SUMMARY

The inhomogeneous Bethe-Salpeter equation in the
ladd. er approximation has been used to study several
issues that arise in the nonperturbative description of
the electromagnetic interaction with quarks. Specifically,
the investigation presented here addresses aspects of this
problem associated with confinement, asymptotic free-
dom, and the dynamical generation of qq vector meson
modes in an electromagnetic gauge invariant formulation.
The notion that confinement is manifest in the absence
of a mass pole in the vacuum Green's function of a col-
ored object is explored and is implemented for quarks
through the Schwinger-Dyson equation in the rainbow
approximation for their self-energy. The generation of
qq vector meson modes is observed in the solutions of
the inhomogeneous Bethe-Salpeter equation for timelike
photon momentum squared, and their effect on the solu-
tions for spacelike momentum is studied. The asymptotic
behavior of the solutions for large spacelike momentum
is also investigated and is shown to be consistent with
asymptotic freedom. A detailed account of the numeri-
cal results is presented in the preceding section, while a
summary of the qualitative features is given here.

The solution in the timelike region warrants further
study, particularly with regard to the reproduction of the
excitation spectrum. Nevertheless, the description pre-
sented here shows promise in the ability to study the vec-
tor meson spectrum beyond the ground state. Further,
the sensitivity of the spectrum to the introduced infrared
scale, which is demonstrated in Fig. 5, has positive im-
plications for constraining the largely unknown behavior
of the gluon two-point function at low momentum. In

—R I 4particular, the simple Gaussian ansatz (e Ro+ ~ ) em-
ployed here for this low-momentum behavior obtains an
increase in the density of vector bound state poles as the
interaction range Bo increases, and finally gives a contin-

I

uous spectrum in the limit as Bo approaches infi. nity. In
this limit analytic solutions are available and are given
in Sec. III. The emergence of a continuous spectrum is
somewhat surprising for particles which are supposed to
be confined. This result in fact demonstrates that the
absence of a mass pole in the vacuum Green's function
of a colored object is alone not suKcient for a model of
confinement but requires in addition that the subsequent
interaction with other colored objects is finite ranged.
Simply stated, the absence of a mass pole in the vac-
uum Green's function of a colored object implies that it
is repelled by the vacuum. It is shown here, through the
simple model illustration of Sec. III and the numerical
solutions of Sec. IV, that the generation of confined qq
states in such a description requires an interaction be-
tween the vacuum-dressed quarks which diminishes with
their separation allowing the vacuum repulsion to be-
come apparent. Here the gluon two-point function (28)
with an interaction range Ro ——1.0 fm obtains a qq vec-
tor ground-state mass M~ ——880 MeV with the residue
at the pole displayed in Fig. 6. The estimated spatial
extent is r~ 0.57 fm. It should be emphasized that
these results do not include meson dressing. The effect
of varying the interaction range in this study illustrates
how constraints on the low-momentum form of the gluon
two-point function might be imposed through the inves-
tigation of spectra. The utility of this approach is, how-
ever, contingent upon the ability of the ladder approxi-
mation to capture the relevant bound-state dynamics of
@CD.

The solution in the spacelike region is potentially the
most useful result of this investigation. The quark-based
study of the EM properties of hadrons relies heavily on
the capacity to describe the quark-photon interaction.
Modeling this quantity based on gauge invariance alone
provides only partial constraints on its behavior, and
in particular allows for arbitrariness in the components
transverse to the four momentum of the photon, which
are those probed by electron scattering experiments. The
use of vector meson dominance or the bare QPV, is lim-
ited by the momentum range for which these approxima-
tions are sensible. Here a somewhat more fundamental
approach has been taken by describing the quark-photon
interaction through a model in which the dynamics dic-
tates the role of qq vector bound states and the asymp-
totic behavior. The transverse contributions to the QPV
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are thus uniquely defined within the employed ladder ap-
proximation to the inhomogeneous Bethe-Salpeter equa-
tion, and no restrictions on the momentum range are
implied. The solutions in the spacelike region, shown in
Figs. 7 and 8, are inBuenced by the singularity structure
in the timelike region at low photon momentum, while at
large photon momentum they are consistent with the ex-
pected asymptotic form. That is, the solutions approach
the bare vertex at large photon momentum. The smooth
transition between these low and high momentum re-
gions provides useful information about the structure of

photon-hadron vertices, for example, through the dia-
gram of Fig. 1. The solutions obtained here are therefore
expected to provide an essential ingredient in the quark-
based. description of the EM interactions with hadrons.
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APPENDIX: DETAILS OF EQ. (17)

The essential steps required to reduce the inhomogeneous Bethe-Salpeter equation (1) to the matrix form given in
(17) are listed below. To begin, the coe%cient functions are isolated using (12) and (14), and the orthogonality of the
Dirac matrices to obtain

(P)~z,

(P )'qz
9

P. q T q2P q
2 2 4 4+

q2(PT)2
'9

A5

q2 ) h„r„(P,q))

PT
4 g

" tr Ir„(P,q)],
i (

~ pT PT";t. [&„r„(P,q)j,
T

——
(

"T),tr h'-r~(» q)l

i Pqp
8 g2p 2 tr h' »r~(P q)j.

(Al)

The right-hand side of the equations in (Al) are evaluated using the inhomogeneous Bethe-Salpeter equation (1) for
I'„.

The remaining obstacle is the evaluation of the four-dimensional integration present in (1), which upon substitution
into (Al) produces expressions of the form

X= d KD P+K —2P CpqCKT 2p+Cpq+Kq +KT+ P
~
+

& Q ~ CKq& +Pq (A2)

where n = 0, 1, 2; C~~(CJcz) is the direction cosine between K and q(K and P ); and D((P —K) ) = g D((P-
K) )/ (3' vr ). Here F is a generic function representing the integrands obtained from (Al). Since the vectors PT
and q„are orthogonal, they can be used to de6.ne two of the four axes of integration. Rewriting the integration as

d K=2
OO 1

dKK dclcqdc~z dcgdC2b(1 Clcq CIA@ C, C2)—1

where Cq and C2 are the remaining direction cosines, we obtain from (A2) the result

X = 2' dKK
0

dC, S (P', K', q', C~„C&,) D.(P', K', C~„c~,), (A4)

where

D„(P,K, Cg~, C~~) = dCKTD P +K —2P CKT —2PKCpqCKq CKT ) (A5)

and x = 1 —CKKq'
The explicit form of the quantities in (17) is listed below. The vector b is given by

6 = (0, 3, 1, 0, 0).

The matrix A is given by

(A6)
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JV„= 1

&,.=3
2

JV44 ——~,
rl

32 q2

JV4z ——1,
JVss ——1,

(A7)

where all other elements are zero. The matrix M is given by

M11 ——2' D1Fo pT )
K

~13 ———2vrD1 pT V,
K 2~21 ———7rDp —,x V )

KM23 = —xDp 3F1 —2—2x T
= 27rD,q x2T,

K K

AM„= —2~D, ,q O' T,
2

+D1 pL pTCKq V + 2~
KA 43 — 27rD 1 p IpT C,Kq T 1

K%53 ———7rD1 p T,
where all unlisted elements are zero, and

2= 27rD1 pTq2 V+ ~]gCKq
2

K 2 K

KM31 ———~D2 —,V,
KJM33 ———~ F1Dp —2 —,TD2 )

P
2

A K2W„=~ D,~ —D, ,q T,
K&42 = — 1 pi pT CKqF2 )

&44 = —7rD1 pl. pT' CKq ~& F3 )

~M55 ZD1 p~ FpK

(AS)

Fp = ~4 —K —,T+U
2

T = rl4n(K+z)n( K'),
V = rls [a(K+)P(K ) + n(K )P(K+)],

F1 K2 ~4 1T+ U

U—:rl p(K+z)p(K ),
~(K+ )P (K )—a(K )P(K+ )

2K.q

(AS)

The quantities n and P are defined in (10); T, U, V, and W are dimensionless functions of Kz, qz and |~~, and the

components of the momentum P are defined as PL, = PCpq and PT = P 1 —Cp .

[1]

[3]

[4]

[5]

[6]

[7]

[81

N. Isgur, in From Fundamental Fields to Nuclear Phe-
nomena, J.A. McNeil and C.E. Price (World Scientific,
Singapore, 1991), pp. 46—54; R.L. Jaffe and P.F. Mende,
Nucl. Phys. B369, 189 (1992).
M.R. Frank and P.C. Tandy, Phys. Rev. C 49 (1994).
R.T. Cahill, C.D. Roberts, and J. Praschifka, Phys. Rev.
D 36, 2804 (1987).
J. Praschifka, R.T. Cahill, and C.D. Roberts, Int. J. Mod.
Phys. A 4, 4929 (1989).
K.-I. Aoki, T. Kugo, and M.K. Mitchard, Phys. Lett. B
266, 467 (1991).
H.J. Munczek and P. Jain, Phys. Rev. D 46, 438 (1992);
P. Jain and H.J. Munczek, ibid. 48, 5403 (1993).
C.D. Roberts and A.G. Williams, Prog. Part. Nucl. Phys.
33, 477 (1994).
M.R. Frank, P.C. Tandy, and G. Fai, Phys. Rev. C 43,
2808 (1991);P.C. Tandy and M.R. Frank, Aust. J. Phys.
44, 181 (1991);M.R. Frank and P.C. Tandy, Phys. Rev.

C 46, 338 (1992).
[9] W. Marciano and H. Pagles, Phys. Rep. C 36, 137 (1978).

[10] R.T. Cahill, Aust. J. Phys. 42, 171 (1989).
[11] C. Itzykson and J.-B. Zuber, Quantum Field Theory

(McGraw-Hill, New York, 1980).
[12] H.J. Munczek and A.M. Nemirovsky, Phys. Rev. D 28

(1983); R.T. Cahill and C.D. Roberts, ibid 32, 2419.

(1985); C.M. Shakin, Ann. Phys. 192, 254 (1989).
[13] C.J. Burden, C.D. Roberts, and A.G. Williams, Phys.

Lett. B 285, 347 (1992).
[14] Conrad Burden (private communication).
[15] H. Pagels and S. Stokar, Phys. Rev. D 20, 2947 (1979).
[16] R.T. Cahill and C.D. Roberts, Phys. Rev. D 32, 2419

(1985).
[17] L.C.L. Hollenberg, C.D. Roberts, and B.H.J. McKel-

lar, Phys. Rev. C 46, 2057 (1992); M. Herrmann, B.L.
Priman, and W. Norenberg, Nucl. Phys. A560, 411
(1993).


