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Two-loop corrections with scalar and vector form factors are calculated for nuclear matter in the
Walecka model. The on-shell form factors are derived from vertex corrections within the framework
of the model and are highly damped at large spacelike momenta. The two-loop corrections are
evaluated first by using the one-loop parameters and mean fields and then by refitting the total
energy/baryon to empirical nuclear matter saturation properties. The modified two-loop corrections
are significantly smaller than those computed with bare vertices. Contributions from the anomalous
isoscalar form factor of the nucleon are included for the first time. The efFects of the implicit density
dependence of the form factors, which arise from the shift in the baryon mass, are also considered.
Finally, necessary extensions of these calculations are discussed.

PACS number(s): 21.30.+y, 21.60.Jz, 21.65.+f

I. INTRODUCTION

The traditional theory of nuclear structure is based on
the Schrodinger equation with a nucleon-nucleon (NK)
potential that has its origin in meson exchange. In this
nonrelativistic approach, one fits the NN potential to the
empirical properties of the deuteron and to low-energy
NN scattering data, and one then attempts to predict
the behavior of many-nucleon systems. A natural and
appealing generalization of this approach is to incorpo-
rate special relativity by using a relativistic quantum field
theory with explicit meson and baryon degrees of free-
dom. These degrees of &eedom are chosen because they
are the most efIicient for describing low- and medium-
energy nuclear experiments. This generalization allows
us to study interacting, relativistic, nuclear many-body
systems, which future experiments will examine. The two
basic questions are: what kind of field theories should we
use, and how well can we describe nuclear systems using
field theoretical models with hadrons, which are actually
particles with internal structure7 These are broad and
hard questions that can be answered only after intensive
and systematic investigation.

Renormalizable relativistic quantum field theories with
hadronic degrees of &eedom, often called quantum hadro-
dynamics or QHD, have been studied for some time [1—3].
At the level of the mean-field theory (MFT) and one-loop
approximation ("relativistic Hartree approximation" or
RHA), these models can reproduce nuclear matter sat-
uration and can realistically describe many bulk and
single-particle properties of finite nuclei [2—4]. The dy-
namical assumption behind renormalizability in QHD is
that the quantum vacuum and the internal structure of
the hadrons can be described in terms of hadronic degrees
of &eedom alone. This assumption must ultimately break
down at very short distances, and its limitations can be
tested by explicit calculations.

Some approximate QHD calculations beyond the one-
loop level [5—8] indicate large vacuum corrections, and
even the validity of the one-loop vacuum contribution
has been questioned [9]. However, it is unlikely that we
can calculate consistently beyond the mean-field level by
introducing ad hoc procedures, such as including only
the. nucleons in the Fermi sea and simply throwing away
Dirac-sea contributions. Indeed, it is already known that
vacuum contributions are indispensable for maintaining
the conservation of momentum and the electromagnetic
current at the level of the random-phase approximation
(RPA) [10,11]. These results imply that we must develop
practical and reliable techniques that go beyond the MFT
and that include vacuum dynamics.

A straightforward two-loop approximation for nuclear
matter in the Walecka model was examined in Ref. [5],
where large vacuum corrections were found. The loop
expansion does not appear to be convergent or asymp-
totic in any sense. This is not a surprise if we notice that
the two-loop corrections are essentially perturbative in
the large couplings. An alternative expansion in terms of
meson loops (after integrating out the baryon fields) en-
counters the well-known ghost problems [6—8]. The ghost
poles can be removed by using Redinond's procedure [12],
but the vacuum contributions are still too large [8,13].
These calculations suggest that vertex corrections (and
short-range correlations) should be included to compute
vacuum loops reliably in QHD theories [14].

Since hadrons have internal substructure, one could
argue for the use of nonlocal couplings and the introduc-
tion of ad hoc vertex form factors. This procedure was
adopted in Refs. [15—17]. We remark that the introduc-
tion of form factors implies nonrenormalizability of the
theory &om the outset, and thus the renormalization pro-
cedure in Refs. [15] and [16] needs justification. (In other
words, various subtractions were made in the computa-
tion of the energy that arise naturally only in a renormal-
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izable theory. ) This ad hoc procedure also says nothing
about ofF-shell or density-dependent effects. Moreover,
although @CD in principle gives a complete description
of nucleon structure, some part of the internal proper-
ties of the nucleon, particularly at large distances, must
be equivalent to that provided by virtual hadron loops.
These are the physical efFects we intend to study in this
paper.

As pointed out recently by Milana [14], a theory with
baryons and vector mesons contains proper vertex func-
tions that are highly damped at large spacelike mo-
mentum transfers, due to the contributions &om virtual
bremsstrahlung summed to all orders. This d.amping
arises from the long-range (infrared) structure of the ver-
tex and so should be calculable within the QHD frame-
work. Since the QHD theory is renormalizable, the ver-
tex function can be expressed in terms of the couplings
and masses of the theory, with no ad hoc parameters.
Although it may be impossible to achieve a truly quanti-
tative description of the hadron structure within a QHD
model, due to the complicated nature of the vertex func-
tions, our goal is to understand at least the qualitative
features of the vertex functions implied in a hadronic the-
ory and to see how these features affect calculations with
vacuum loops.

In a recent calculation [18], the on-shell vector form
factor was studied in a model with baryons and vec-
tor mesons. The behavior at large spacelike momentum
transfer Q was determined by the leading logarithmic
infrared behavior, which arises &om the sum of all dia-
grams with vector ladders and crossed ladders across the
hard vertex. At small Q, the lowest-order vertex cor-
rection was used. , and the complete vertex function was
constructed by interpolating smoothly between the low-
and high-momentum-transfer regimes. (See Ref. [19] for
a similar analysis with a somewhat different strategy. )

In this paper we extend the method of Ref. [18] to
the scalar-baryon vertex and. apply the form factors so
obtained to two-loop calculations in the Walecka model,
with the Lagrangian density

l: = Q(iP —g„P —M+ g, P)g
+ 2(B„QB"p—m, p )
——,'F„„F + —,'m„'V„V + bZ,

where E~ = 0"V —0 V" and bZ contains the coun-
terterms. We observe that the ofj-shetl vertex functions
should be used in a fully satisfactory calculation with
loops. A full off-shell calculation is quite complicated,
however, as one needs to know the off-shell behavior of
the vertices at all spacelike momenta, as well as the modi-
fication of the vertices in the presence of valence nucleons
at finite density. Calculations exploring these off-shell
vertex functions are in progress [20]. Here, as a first step,
we use an on-shell approximation, in which the off-shell
vertex functions are replaced by their on-shell forms at
zero density. This procedure is analogous to that used
in Refs. [15] and [16], where parametrized, on-shell form
factors were used at the vertices, except that we use form
factors obtained from within our model. Note also that
the form factors used in Refs. [15] and [16] were chosen to

have simple momentum dependence, which allowed the
two-loop energy to be calculated directly from the results
of Ref. [5]; in contrast, we allow for an arbitrary momen-
tum dependence in the form factors, which requires us to
implement a different renormalization procedure for the
two-loop contributions. Moreover, the anomalous vector
form factor is included here in the two-loop results for
the first time. Finally, we also estimate the effects of the
implicit density dependence due to the effective nucleon
mass M* that appears in the integrals that define the
form factors.

To include the form factors systematically, we apply
the method of Freedman and McLerran [21] to nuclear
matter in the Walecka model. One of the approximations
that can be developed &om this formalism is a two-loop
approximation with one dressed vertex [13]. Using this
approximation, we calculate the corrections to the one-
loop energy: first by using the coupling parameters and
mean fields determined at the one-loop level and then by
refitting the total energy to the empirical nuclear matter
saturation properties. We find that the behavior of the
two-loop corrections is significantly improved compared
to that obtained with bare vertices [5]. (This agrees with
results obtained in calculations with ad hoc vertex func-
tions [15,16].) The contribution from the vector anoma-
lous vertex is small compared to those &om the vector
charge and scalar vertices, but not negligible. The effects
of the M* dependence and of the uncertainty in our inter-
polations for the form factors are modest compared to the
overall size of the two-loop corrections, but are neverthe-
less significant on the scale of the nuclear matter binding
energy. These new effects, which are usually neglected in
studies using ad hoc form factors, are therefore important
for a detailed description of the saturation properties of
nuclear matter, because of the sensitive cancellations in
the energy that occur near equilibrium density. It will
certainly be necessary to extend our calculations to in-
clude the integrations over the off-shell vertex functions
before any definitive statements can be made about nu-
clear matter saturation in this model.

We emphasize that the basic motivation for the present
work is to make some qualitative statements about the
role of vertex modifications that arise within the kame-
work of the Walecka model. The meson-baryon vertex
functions are highly damped at large spacelike momenta
[14,18], so it is necessary to include them in loop inte-
grals for the energy density. The inclusion of dynamical
vertex functions leads to significant new complications
in the evaluation of the energy of nuclear matter; simi-
lar complications would arise regardless of the degrees of
freedom used. These new problems are usually not dis-
cussed in calculations using ad hoc vertex functions, and
many of them are not resolved here; we make several im-
portant approximations whose validity can be tested only
by extending our calculations, as discussed in the Sum-
mary. Nevertheless, we arrive at finite expressions for the
nuclear matter energy density that contain vertex form
factors calculated within the model, and we expect that
these results are adequate for a qualitative discussion of
the impact of these vertex functions on the size of the
two-loop corrections.
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Some remarks are also in order about our calculation
of vacuum fluctuations involving the scalar Beld. Here
we treat the scalar field that represents the o meson as
"elementary, " although it should, as generally believed,
be considered as simulating the exchange of two corre-
lated s-wave pions [22—25]. Our goal in this work is
to develop tools for calculating vacuum corrections in
a model with an NN interaction that has short-range
repulsion and midrange attraction, as is empirically ob-
served. The Walecka model is a simple one that satisfies
this constraint. A more complete discussion of the role of
chiral symmetry and of the dynamical generation of the
midrange NN attraction, together with the implications
for vacuum loops, should be considered as a necessary
refinement of the work presented here [3,25]. It is pos-
sible that a more detailed treatment could modify our
results significantly, but it is also possible that a simple
scalar Geld could remain an adequate approximation to
correlated two-pion exchange even for the calculation of
vacuum loops. We leave these extensions as topics for
future study.

The rest of this paper is organized as follows. In Sec. II
we discuss the renormalization of the energy corrections
in the two-loop approximation with one dressed vertex.
The Gnite expressions that are used in our numerical cal-
culations are generated. In Sec. III we present our ap-
proximations for the vertex functions and the method for
determining the on-shell form factors. The results for the
energy of nuclear matter with the vertex functions fixed
at their &ee-space forms are given in Sec. IV, and we
study the effects of medium-modified vertices in Sec. V.
Section VI is a summary, and some technical details are
included in an Appendix.

II. TWO-I OOP APPROXIMATION WITH
VERTEX CORRECTIONS

To include vertex functions in loop calculations of the
nuclear matter energy density, it is convenient to apply
the method of Freedman and McLerran [21], in which the
thermodynamic potential is constructed as a function of
the full, connected propagators and proper vertices that
satisfy the Schwinger-Dyson equations. By truncating
the expansion of the thermodynamic potential and the
Schwinger-Dyson equations appropriately, we can obtain
various well-known approximations, such as the MFT,
the RHA, the straightforward two-loop approximation
[5], the relativistic RPA, etc. Details of these formal pro-
cedures are reported elsewhere [13,26]. Here we merely
quote the results for the two-loop approximation with
one dressed vertex.

Although the method of Freedman and McLerran pro-
vides for systematic truncation, it says nothing about the
best way to approximate the exact thermodynamic po-
tential in the case of strong couplings. It is also possible
to truncate the expansion to include dressed vertices at
both ends of the two-loop diagram. Here we shall take
a conservative approach and include only one dressed
vertex; if this gives adequate suppression of the vacuum
loops, two dressed vertices will give even more. The ques-

tion of which of these truncations is a better starting
point can be answered only by including the next term
in the expansion, and we leave this as a topic for future
study.

At the one-loop level (or RHA), the nuclear matter
energy density can be written as [2]

2 m2' (M —M')'
2m2 ~&+ 2g2

kp
d

RELY',

+ AE'(M'),
(2') s (2.1)

where E& = (k + M' ) ~ and M* = M —g, go, with
$0 the average scalar field. The spin-isospin degeneracy
p = 4 for nuclear matter and p = 2 for neutron matter,
and the mean vector field has been eliminated using

ge gv
3

Vo=, pa=-m„m 6' (2.2)

since it is a constant of the motion. The one-loop vacuum
correction ("zero-point energy") is

1 M* in(M*/M) + M (M —M*)

——,
' M'(M —M')' + —", M(M —M')'

——;;(M —ns )'),

AZ(M*) =—

(2.3)

FIG. 1. The two-loop corrections to the RHA energy den-
sity. The solid, dashed, and wavy lines represent the baryon
Hartree propagator, the free scalar propagator, and the free
vector propagator, respectively. The subtractions for the
overall divergences and for the vacuum expectation value of
the energy are not shown.

where the renormalization conditions of Chin [27] have
been used, and we have assumed that p = 4 for the Dirac
sea.

The two-loop approximation with one dressed vertex
obtained using the method of Freedman and McLerran
is most transparently described by Feynman diagrams.
The two-loop corrections to the RHA energy density can
be drawn as in Fig. 1, where E denotes the renormal-
ized proper baryon self-energy shown in Fig. 2, and A,
(A„) stands for the dressed scalar (vector) vertex. The
square brackets indicate that the enclosed subdiagrams
are renormalized by the inclusion of the appropriate sub-
tractions. (We follow the diagrammatic conventions of
Ref. [21].)

The propagators in Fig. 1 are as follows. The baryon
Hartree propagator is
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FIG. 2. The proper baryon self-energy. The diagrammatic
notation is the same as in Fig. 1. FIG. 3. The unrenormalized two-loop diagrams.

G*(k) = G~(k) + G~(k), (2.4)

where

G~(k) =

Ga(k) =

g+ M*
k2 —M* + ie

(g + M*)h(k' —Ek)0(kp —~ki),

(2.5)

(2.6)

and the momentum has been shifted to eliminate Vo,
which is perinissible for the evaluation of closed loops [5].
The &ee (noninteracting) scalar and vector propagators
are

A (q) =
Q

—m, +zc2 2
(2.7)

D„(q) =
~

-g„+ ", ~D (q),m2 )
D'(q) =

g —fA + XE

(2.8)

(2.9)

By separating the renormalized subdiagrams into
unrenormalized parts and counterterm contributions
(CTC s), we obtain the more familiar diagrams in Fig. 3,
where the CTC's are not shown, since they can be de-
termined easily &om Fig. 1. Evidently, an exact evalua-

tion of these loops requires the knowledge of the ofF-shell

proper vertices A, and A, including their explicit den-
sity dependence. These oK-shell vertices are currently
under investigation [20], but in this work, as a first ap-
proximation, we will replace them by their on-shell forms
at zero density:

ig, A, (q) = i,g,F, ( q'), -
—ig„A"„(q) = ig„—F„i( q')p-"

+ ~F.2(—q') ~""q-

(2.10)

(2.11)

where o" = i[p~, p ]/2, and q~ is defined as the incom-
ing momentum transfer at the vertex. Note that in the
calculation of the energy, the on-shell form factors are
needed only at Spacelike momentum transfers, so we can
use the results of Ref. [18]. We emphasize that a simi-
lar on-shell approximation (with ad hoc form factors) is
commonly used in essentially all calculations of nuclear
matter properties (see, for example, Refs. [15] and [16]);
here, however, we will determine the on-shell momentum
dependence within the context of our model. This also al-
lows us to discuss some of the implicit density-dependent
effects (contained in M*), which we examine in Sec. V.

With these considerations, we can translate the Feyn-
man diagrams in Figs. 1, 2, and 3 to obtain the renor-
malized two-loop correction

g(~)
S tr [G*(k) G* (k +. q)] F, ( q) 4 (q)—

——g„ tr [G*(k)p„G' (k + q) A„"(q)] D (q)

d4k
+ i tr [Z,t,.G*(k)] —) n„go —VEV,

n=1
(2.12)

where "tr" denotes a trace over spin and isospin indices,
and Z & contains the counterterms for the baryon self-
energy, as given in the Appendix. In Eq. (2.12), we have
discarded the longitudinal q~q term in the vector prop-
agator, since its contribution vanishes by baryon current
conservation, as can be easily verified in our approxi-
mation. The vacuum-expectation-value (VEV) subtrac-
tion is obtained by replacing all of the Hartree propa-
gators G'(k) with noninteracting Feynman propagators
G+(k) = (g —M + ie) and by omitting the quartic
polynomial in Pe. Note that some of the n counterterms
contain both one-loop [O(h)] and two-loop [O(hz)] contri-

butions. The one-loop contribution comes &om counter-
terms in the renormalized meson polarizations in Fig. 1.
See Eq. (2.79) of Ref. [5] for the details of this separation.

Due to our use of on-shell vertex functions in the two-
loop integrals, the renormalization procedure is nonstan-
dard and requires some discussion. In principle, the only
unambiguous way to renormalize with vertex insertions
is to use the o8'-shell vertices inside the integrals and
include all required counterterms; this is clearly exceed-
ingly diKcult and motivates our simplified calculation
using the on-shell vertices. We now observe that most
of the efFort in renormalizing the two-loop integrals with
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bare vertices involves the baryon propagators (in the self-
energy and polarization loops). The noninteracting me-
son propagators simply follow along in the analysis, and
although they determine which integrals diverge, they are
otherwise innocuous. This suggests the following renor-
malization procedure with dressed vertices.

(1) We first carry out the renormalization of the ver-
tex functions to arrive at 6nite, on-shell functions of the
momentum transfer. This procedure is discussed in the
next section, where we specify the detailed form of our
model form factors.

(2) To renorinalize the baryon self-energy and meson
polarizations, we approximate the full ofF-shell vertices
by the on-shell forms derived in step 1; these vertices are
functions only of the momentum transfer. For the baryon
self-energy, this approximation yields the renormaliza-
tion procedure discussed in Appendix A. For the meson
polarizations, the vertex functions factor out of the loop
integral. The polarizations are then analyzed with the
procedure in Ref. [18] by first renormalizing using point
vertices and then by multiplying the 6nite results by the
appropriate on-shell vertex functions.

(3) Since the form factors are on shell, we can associate
them with the corresponding meson propagators (which
carry the same momenta). The form factors then serve
only to modify the momentum dependence of the me-
son propagators, producing so-called "M@ller potentials"
[28,37].

(4) The counterterms in Eq. (2.12) are then defined
exactly as in the two-loop case with bare vertices [5],
using the Mpller potentials in place of the noninteracting
boson propagators.

While this renormalization procedure is not unique, it
has the following advantages. where

—~EX + ~LS + ~VF (2.i3)

(1) Finite results are obtained with the same number
of counterterms as in the original two-loop calculation.
All of the counterterms are constants that are defined by
vacuum amplitudes, and all counterterm subtractions are
local.

(2) All subintegrations for the meson polarizations and
baryon self-energies satisfy the standard renormalization
conditions [5] for any choice of vertex functions.

(3) The resulting energy density satisfies the same
renormalization conditions as in the original two-loop cal-
culation, for any choice of vertex functions. In particular,
the original results are obtained automatically when the
model vertices are replaced by bare vertices. Note that,
even with the form factors included, nested and overlap-
ping subtractions remain divergent, although the over-
all subtractions are finite, as are the baryon self-energy
counterterms.

We remark that in a theory that postulates nonlocal
vertices in the Lagrangian, the definition of the renormal-
ization counterterms is essentially arbitrary. In particu-
lar, since the overall subtractions to the energy are finite,
there is no justification for stopping at O(&Po), and one
can simply remove all vacuum fiuctuations by fiat. (That
is, one can include an infinite number of counterterm
subtractions. ) To our knowledge, the only justification
for stopping at a quartic polynomial is that the underly-
ing theory is renormalizable, so that terms of O(/os) and
higher can never be removed.

Following Ref. [5], we decompose the two-loop contri-
bution into exchange, Lamb-shift, and vacuum Buctua-
tion energies. Thus

4 4

~Ex — g 4 4 tr [GD(k)GD(k + q)] &'(q)& (—q')

4 tr [GD (k)VPGD(k + q)A."(q)]D'(q) (2.i4)

dk dq d k
~Ls = g.' «[GF(k)GD(k+ q)] &'(q)+ (—q') + ~ tr [~ tGD(k)l

—g„ tr [G~ (k)p„GD (k + q) A„"(q)] D (q), (2.15)

t'vF = —g. tr [G~(k)G~(k+ q)] & (q)+, (—q') + ~ tr [&.&G~(k)]
1 2 dk dq d k

2 ' (2vr)4 (27r)4 2' 4

d~k d
g tr [Gp(k) Y„Gp(k + q)A„(q)]D'(q) —) ~„&", —VEV .

2 " (2~)4 (2~)4
(2.16)

Here the divergent integrals have been regularized by writing them in 7. dimensions, with the limit w —+ 4 taken after
the divergences have been removed. Note that, these energy densities are implicitly functions of the baryon density

p~ and the mass parameter M, with the latter to be determined by minimization of the full energy density.
The exchange contribution E'gx is finite. It is straightforward to work out the traces and arrive at the following

form that is feasible for numerical integration using Gaussian quadrature:
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&F I 2 2 +1 - p2+ 4M+2
E'Ex = dk dq dx g.F,(P )

P —2M* 6g„M*F„2(P )P+ 2g„'F„,(P') I2+ m2 P2+ m2 (2.17)

where we have defined P—:2(F&F* —M' —kqx), with the dummy variables k—:~k~ and q = ~q]. (Here and
henceforth we take the spin-isospin degeneracy p = 4.) Note that, since the momenta flowing through the meson
propagators are spacelike, one does not encounter any poles.

The Lamb-shift contribution E'I,s can be written as

d4k
ZLs

—= i —tr [G~ (k) ZF (k)]
27r 4

d~k M*= ZF„( M*'—)+M'ZF~( M*'—
) 4 . 0(kF —

~k~)
(2vr)s E„'

t~ „(-M*')+M

(2.18)

(2.19)

where the renormalized Feynman part of the baryon self-energy is

ZF(k):—ZF~( —k )+gZF~( —k )
'r

, [g,'GF (k —q) A'(q)F, (—q') —g„'A„"(q)GF (k —q)p„D (q)] —Z.. . (2.20)

and the specification of the counterterm coeKcients

Z, t, = —(~(g —M) + p, Pp + M, (2.21)

is discussed in the Appendix. The scalar density of baryons is denoted by p, .
By following the procedures in Ref. [5], the vacuum fluctuation energy fvp can be evaluated by expanding the

integrands in Eq. (2.16) in powers of (M —M) using the algebraic identity

G* (k) = ) (M* —M)'[G' (k)]'+' + (M* —M)"+'[G' (k)]"+'G* (k) .
i=0

(2.22)

Here n can be any positive integer or zero, and GPF(k) is obtained &om GF(k) by replacing M* with M. The zeroth-
order term in the expansion [Zvp(M)] is canceled by the VEV, and the counterterms n are chosen as usual to cancel
exactly the coefficients of the first four powers of (M* —M), which minimizes many-body forces [27,2]. The final
result can be written as

Zvp = i(M —M*)
d4k

( [G (k)]'G' (k) Z (k) + [G (k)] G* (k) A (k) )

+ —(M —M*)'
2

+ —(M —M*)
2

, tr([GF (k —q)]'GF (k —q)

x (g.'» [GF(k)]'A."(q)D'(q) —g.'[GF (k)]'&'(q)F (-q') ))

, t ([ ("— )] (k —
)

[ '( )]' *( ) ."( ) '( ) — .'[ '( )]' *( ) '( ) .(—')k) (2.23)

where ZPF(k) is obtained from ZF(k) by replacing M' with M, and the renormalized vacuum scalar vertex at zero
momentum transfer,

AP(k) —= A'„(-k') + |tAP~( —k')
T'

(g, [GF (k —q)] 6 (q) F.(—q ) —g„A„"(q) [GF (k —q)] p„D (q) ) + —',
gs (2.24)

is discussed in the Appendix. Note that all integrals in Eq. (2.23) are finite, even for point vertices.
After working out the traces, one can perform a Wick rotation to Euclidean momenta and evaluate the angular

integrals analytically, leading to (tvp = fvp/M )
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1 (1 —m')'y
~VF =

2 dg
27r~ p (y + l)s(y + m*2) (&/g(y) y' —5(2+ m')y'+ 5(1+ 2m*)y —m'

+ Z~~(y) [(5 + m')y —10(l + m*)y + 1+5m'j y)

+ 2 y 4 2 (&~(y) (4+ m')y —2(2+ 3m*)y+ m'(1 —m*)'y
y+1 4 y+m*2

A~—(y) y —2(3+ 2m*)y+ 1+4m* yj

+ 4 da d& s,~ ( t —3(m'+ l)t+ m' [ui(a, t)Ai(a)
128vr p p t+ 1 t+m

—vi(a, t)B(a)] + [(m* + 3)t —3m' —1] [u2(a, t)A2(a) —v2(a, t)B(a)) ) .

Here we have scaled all dimensional variables with the nucleon mass, set m*:—M'/M, and defined

(2.25)

g.'F, (a)
s+m

( )
g8 8( )
s+ m~

3g„'F„2(a)
s+m

4g„'F„i(a)
s+ m„

2g„'F„i(a)
s+ m2

(2.26)

(2.27)

(2.28)

and

8st
ui(a, t) = m*C(a, t)

(1 —m') 2

5+ m*
(a+ I+ 1 —Z), (2.29)

4st s —t+ m*
u2(a, t) = (t —a —1) + C(a, t)

a —i+3 —Z+ —(1+m*) (a+t+1 —Z),z- 2

4st t —s+ m*"(,t)=, (t- +1)- . , C( t)

(2.30)

t —a + 3 —Z + —'(1+ m') (a + t + 1 —Z),Z- 2

v, (a, t) = (t+ a+ 1)—,C(a, t)
4st m'(t + a + m*')

(2.31)

(5+ m*)(a+ t+ m' —Z) + 9+ 2m* —3m* (a+ t + 1 —Z), (2.32)

42

C(a, t) = g(a+ t + m'2)2 —4at —Z+ (a + t + 1), (2.33)

with Z—:g(a + t + 1)2 —4at. We remark that the first
two integrals in Eq. (2.25) correspond precisely to the
final two integrals in Eq. (2.93) of Ref. [5]. The final
integral in Eq. (2.25), however, was obtained here with
a new renormalization procedure, and thus it cannot be
directly compared to the quadrature in Ref. [5].

The integrals in Eq. (2.25) can be evaluated numeri-
cally using Gaussian quadrature. We found that split-
ting the integrations into two regions in each integral
produced results that were accurate to better than 0.1%
with a moderate number of points ( 32 in each region).
The largest uncertainty comes &om the Anal integral in
Eq. (2.25). We checked our computations by using two
separate computer codes; all results for the nuclear mat-
ter energy presented below agreed to at least three digits.

III. SCALAR AND VECTOR VERTEX
FUNCTIONS

In the preceding section, we renormalized the two-loop
energy with the approximation that the fully ofF-shell ver-
tices can be replaced by their on-shell forms at zero den-
sity, namely, Eqs. (2.10) and (2.11). Here we evaluate
these form factors within the &amework of our model.
Since an exact calculation of the vertex function is im-
possible at present, we must make approximations. Our
strategy is to include in the on-shell vertex functions the
dominant physics that is accessible in a hadronic theory.

We begin with the well-known fact that the proper
vertex function in QED falls rapidly when the momentum
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q~ entering on the photon line becomes large [29,30]. In
particular, the asymptotic form for the on-shell vertex at
large spacelike momenta q ( 0 is

+ ~ ~ ~

u(pg)A"u(p ) : u(p~)~"u(p. )

x exp — ln
~

— ~, (3.1)167r' q m')
+ 0 5 ~

where p = p& ——m, and m is an in&ared regulator
mass. In a theory with a massive neutral vector bo-
son, the regulator mass m is replaced by the boson mass,
and the electron charge e becomes the vector coupling
g . The physical origin of the strong damping is the
large likelihood for virtual bremsstrahlung of soft vector
bosons. In diagrammatic terms, the exponential arises
&om summing all ladders and crossed ladders involving
the exchange of soft bosons across the single hard vertex,
as shown in Fig. 4. We emphasize that, although the
momentum transfer to the vertex is large, the damping
arises from the infrared structure of the theory, as the
required factors of ln (—q ) are generated by loop mo-
menta that are on the order of the vector meson mass.
Thus it is reasonable to include this long-range vertex
structure in. a renormalizable theory containing hadron
loops. Later work supports the assumption that non-
leading logarithms appear only as multiplicative factors
[31-34].

It is easy to show that the exponential damping in
Eq. (3.1) is also reproduced by diagrams in which vector
ladders and crossed ladders dress a single (hard) scalar
vertex, at least to leading logarithmic order. Since the
inclusion of higher-order vertex diagrams involving scalar
meson exchanges produces only ultraviolet ("hard") log-
arithms, as suggested by the work of Appelquist and Pri-
mack [35], these diagrams will not ruin the exponential
damping [34].

The general forms for the on-shell scalar and vector
vertex functions at zero density are given in Eqs. (2.10)
and (2.11). Following Ref. [18], we assume that the be-
havior of both vertices at small ~q ~

is determined by the
lowest-order vector vertex correction, that is, the mid-
dle diagram on the right-hand side of Fig. 4. Then, by
knowing the large ~q ~

behavior of the form factors, we
can interpolate smoothly between the small and large
momentuxn-transfer regimes. Note that we need only
spacelike (or Euclidean) rnomenta to compute the en-
ergy, so the form factors should be smooth, which makes
the interpolation practical.

FIG. 4. Diagrammatic expansion of the proper scalar and
vector vertices.

The sum of the diagrams for either the scalar or the
vector verte~ in Fig. 4 results in a rapid suppression at
large spacelike momentum transfers. As shown by Fish-
bane and Sullivan [30], the leading logarithmic asymp-
totic behavior for the on-shell vector charge form factor
at zero density can be written as

F-~(—q') ;exp F'„~(—q)(~) (3.2)

2ME„2 ( q)—: 2ME(2 (0) exp F„~ (—q )
q

(3.3)

where the scale is set by the O(g„) anomalous moment,
which is a conservative choice.

At each order in g, the dressed scalar vertex in Fig. 4
has the same denominator and the same leading power
of q in the numerator of the integrand as the dressed
vector vertex. Since these features determine the asymp-
totic behavior [30],we conclude that the scalar and vector
vertices behave similarly, and we can therefore write

F, ( q)—;exp F, (—q) (3.4)

which again holds for the leading logarithmic behavior.
The lowest-order corrections to the on-shell vector

charge and anomalous form factors are evaluated in
Ref. [18], and we simply quote the results here:

where q = pq —p and the superscript "(1)"indicates the
lowest-order correction. Since the anomalous form factor
is suppressed asymptotically by an additional factor of
1/~q ~, we can write

Fi (Q )= — " du(q) 2 g2 2 [2(1 —u) —u + Q (1 —u/2) ] S(u) + uQ/2
16' 2 QS(u)

ln
S(u) —uQ/2

2u [2(1 —u) —u j 2S(u) S(u) + uQ/2
u2 + m2 (1 —u) Q S(u) —uQ/2

(3.5)

There is also a lowest-order vertex correction involving the exchange of a scalar meson. This additional diagram has a range
similar to the diagram that we evaluate, so its inclusion would not significantly change the values that we obtain for the rms
baryon radii.
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2
2MF( )(Q ) = u(1 —u) S(u) + uQ/2

QS(u) S(u) —uQ/2
(3.6)

where

- i/2

S(u) —= u + + m„(1 —u)
4

(3.7)

Q—:—q /M, Q—:QQ2, and m is written in units of the baryon mass M.
The lowest-order correction to the on-shell scalar vertex can be calculated analogously. Thus

4
F( )(—q ) = ig2 p"G~(pb —k)G~(p —k)p"D„„(k)+ CTC, (3.8)

where the right-hand side is understood to be evaluated on shell (P = Pb
——M), and the counterterm contribution

(CTC) is determined by imposing the on-shell renormalization condition E, (0) = 0, which insures that the scalar-
baryon coupling remains g, when the momentum transfer is zero. Straightforward manipulations similar to those for
the vector vertex [18) yield

(,), g„' ' 12S(u) S(u) + uQ/2 4u(1 —u + u')
16m', Q S(u) —uQ/2 u' + m'(1 —u)

2 2(l —u+ u2) + Q (1 —u+ 2u ) S(u) + uQ/2+ - ln
QS(u) S(u) —uQ/2

(3 9)

It is not hard to show [18] &om Eqs. (3.5) and (3.9)
that for large Q

ln (Q /m„), (3.10)

to leading order in logarithms. When combined with
Eqs. (3.2) and (3.4), this agrees with Eq. (3.1).

As mentioned previously, we want to join the low- and
high-momentum-transfer regimes using a smooth inter-
polation. Evidently, the smaller the region to be in-
terpolated, the more constrained the interpolation. On
the other hand, the larger the high-momentum match-
ing point Qo, the better the leading logarithmic asymp-
totic behavior. It is impractical, however, to take QQ so
large that the nonleading logarithms are negligible com-
pared to the leading logarithms. Thus, for a trade-off,
we will approximate the nonleading logarithms by the
large Q behavior of F„i)(Q ) and F, (Q ). That is, we

choose Qo large enough so that the values of F„i (Q )
(x)

and E, (Q ) can be accurately fitted by the function

g
2

W(Q ) = — " In (Q /m„) + ri ln(Q /m„) + r2

(3.11)

were determined by making a least-squares fit to the ex-
pressions in (3.5) and (3.9). To test the sensitivity to the
nonleading logarithmic behavior, we obtained one set of
parameters for 5 ( Q ( 40, and then obtained another
("exact") set by letting Q2 ~ oo. (The exact ri and
r2 can be determined analytically in principle, but the
numerical evaluation is sufBciently accurate for our pur-
poses. ) Our first least-squares fit yields ri —0.235 and
r2 —1.60 for the scalar vertex, and r» —2.88 and
r2 = 5.76 for the vector vertex, while the exact results
are rq ——0 and r2 ———3.35 for the scalar vertex, and
ri ———3.00 and r2 ——6.66 for the vector vertex (Thes.e
values assume m„= 783 MeV and M = 939MeV. ) The
resulting interpolations for the two choices of r, (as well
as for ri ——r2 ——0) are nearly indistinguishable, which
implies a very small sensitivity to the nonleading loga-
rithmic behavior; for esthetic reasons, we will use the
"exact" parameters in all interpolations henceforth.

In Ref. [18], the last two terms in Eq. (3.11)
were approximated by introducing a single pa-
rameter o; such that the asymptotic behavior is
exp[ —(g„/16m ) ln (Q /nm„)]. For the scalar vertex,
this is not as conservative as our present method. (That
is, the method of Ref. [18] leads to a scalar vertex func-
tion that decays more rapidly with increasing Q.) We

which means that all polynomials in 1/Q are negligible.
For Q & Qo, we take the vertex form factors to be given
by Eqs. (3.2), (3.3), and (3.4), with the lowest-order cor-
rections replaced by Eq. (3.11).

To minimize the uncertainty in the interpolations, one
wants to choose Qo as small as is feasible, and we chose
Qo ——5, as in Ref. [18]. The r, parameters in Eq. (3.11)

We note that the onset of the asymptotic regime (Qs) and
the values of the r; parameters are determined by the behavior
of the integrala in Eqs. (3.5) and (3.9). Thus these variables
are all independent of the strength of the coupling g„.
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therefore use Eqs. (3.2), (3.3), and (3.4) for Q & Qo = 5,
with the lowest-order corrections replaced by Eq. (3.11).
We take the values of the form factors and their deriva-
tives at Q = 0, as given. by their lowest-order corrections,
together with the values and the derivatives at Qo, de-
termined &om the asymptotic forms, as four input pa-
rameters to specify the interpolation functions.

In Ref. [18], the interpolating function was taken as

0.4

0.3

& 0.2

0.1

=102.8
olynomial interp.
aussian interp.

(a)

1.0

0.8

0.6

0.4

0.2

f~(Q ) = aexp( b—Q ) + c/(1+ Q ) + d, (3.12)

f (Q') = /(1+Q')'+b/(1+Q')'
+ c/(1+ Q') + d, (3.13)

which yields a unique solution for a, b, c, and d at any
g . To estimate the uncertainties in the interpolation and
their e8'ects on the energy density of nuclear matter, we
also use the Gaussian interpolating function

f~(Q ) = aexp( —Q ) + b exp( —Q /5)
+ cexp( —Q /10) + d, (3.14)

which also yields a unique solution for a, b, c, and d at any
g„. Since F„2(q ) is suppressed asymptotically by a factor
of I/~q

~

relative to F„i(q ), we take its corresponding
interpolating functions to be those of Eqs. (3.13) and

(3.14) multiplied by 2MF„2 (0)/(1+ Q ).
In Fig. 5 we show the scalar form factor and the

vector charge form factor using the mixed, polyno-

where a, b, c, and d are to be determined. This inter-
polating function contains both Gaussian and monopole
terms, so we will call it a "mixed" interpolation for con-
venience of description. As noticed in Ref. [18], for some
values of g„, two di8'erent solutions for the parameters a,
b, t", and d can be found, while for other values, unique
solutions exist. Whereas this behavior can furnish an
estimate of the uncertainty in the interpolation, it also
results in a nuclear matter energy that is a discontinuous
function of g . This is inconvenient when one attempts
to refit the couplings to reproduce nuclear matter satu-
ration.

Thus we use instead the following polynomial interpo-
lating function:

0.0 0.0
0 1 2 3 4 5 0

FIG. 6. The on.-shell vector anomalous form factor (a) and
the uncertainty envelopes generated by the Gaussian and
polynomial interpolations (b). The momentum Q is in units
of M.

mial, and Gaussian interpolating functions for RHA cou-
plings. The vector anomalous form factors obtained &om
Eqs. (3.13) and (3.14) with a further multiplicative factor
of 2MF„2 (0)/(1+Q ) are shown in Fig. 6(a). The uncer-
tainty envelopes generated by the polynomial and Gaus-
sian interpolations are combined in Fig. 6(b). In Fig. 7(a)
we show the vector charge form factor and the corre-
sponding monopole form factor [F (Q ) = A2/(Q +A2)]
that decays similarly, while in Fig. 7(b) we show similar
results for a dipole form factor [Fg(Q2) = A4/(Q2+A2) 2].
The parameters a, b, c, and d for the preceding interpola-
tions are listed in Table I. All values assume g = 102.8,
m„= 783 MeV, and M = 939 MeV.

The preceding figures indicate that the decay of the
form factors as a function of Q depends significantly on
the interpolation functions. Nevertheless, we have veri-
fied that the polynomial and Gaussian forms provide a
reasonable envelope on the uncertainty introduced by the
interpolation. We will therefore use the polynomial and
Gaussian functions to investigate the sensitivity of the
nuclear matter binding energy to the decay of the form
factors.

1.0

0.8

0.6

0.4

102.8
omial interp.

ed interp.
ian interp.

= 102.8
olynomial interp.
ixed interp.

aussian interp.

1.0

0.8

1.0

0.8

(a)
= 102.8

ynomial interp.
ssian interp.
opole A= 0.9 M
opole A= 13 M

(b)
= 102.8
nomial interp.

asian interp.
le A= 1.4 M
le A= 2.1 M
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0.2 0.2 . 0.2

0 1 2 3 4 5
0

0 1 2 3 4 5 6
0

0 1 2 3 4

~ ~ ~ ~
~ ~ ~

0 1 2 3 4 5 6

FIG. 5. The on-shell scalar form factor (a) and vector
charge form factor (b) with the mixed, polynomial, and Gaus-
sian interpolations. The momentum Q is in units of M.

FIG. 7. Comparison of the on-shell vector charge form fac-
tor of Fig. 5(b) with some similar monopole aud dipole form
factors. The momentum Q is in units of M.
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n arameter sets.TABLE I. Interpolation p

Mixed

Poly.

Gauss.

p

+S

a
0.747185
0.792431

—1.30867
—1.45088
—2.94795

0.498343
0.348549

—1.43842

b

0.457293
0.344247
2.21488
2.38433
3.98240
0.541225
0.720836
2.83889

2.60765 x 10
2.12528 x10
9.87004 x10
6.92982 x10

—3.35013 x 10
—4.14082 x10
—7.39583 x]0
—4.19250 x10

d
—7.94998 x10
—4.95969 x10
—4.91063 x10
—2.75043 x 10
—9.41037 x10

1.83978 x 10
4.57337 x10
1.87796 x 10

IV. RESULTS
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20 . 20 TABLE II. Two-loop refitted parameter sets.
0

-20

-40

I

-80 .

-100

-120

polynomial interp.
without F„g

VF

without F„p

-20

-40

-80

-120

Set
A
B

D

Interp.
Poly.
Poly.

Gauss.
Gauss.

No
Yes
No
Yes

gs
63.6

102.6
159.4
233.6

2
gv

130.8
109.6
79.4

106.2

(MeV)
458
600
800

K
(MeV)

600
524
437
494

00 05 10 15 20 25
PB ~Po

0.0 0.5 1.0 1.5 2.0 2.5 3.0
PB ~Po

FIG. 10. The separate contributions to the total two-loop
correction from the vacuum Quctuation, the exchange, and
the Lamb-shift terms, excluding I"„2. The parameters are the
same as those in Fig. 8.

and in Fig. 11 with F„2 included. One observes that the
Lamb-shift energy suffers less suppression from the form
factors than the vacuum Buctuation energy does. When
E„2 is included, the vacuum Huctuation and Lamb-shift
energies become more negative.

The two-loop energy with vertex modifications F~ & +
F& ~ can be minimized with respect to M* at each d.en-
sity, and the parameters can be adjusted to reproduce
the equilibrium properties of nuclear matter. The vector
meson mass is held fixed at its empirical value of 783 MeV
(for simplicity), but the scalar meson mass must be in-
creased, with the size of the increase determined by how
far the two-loop perturbative result deviates &om the
RHA result. (If too small a value is chosen for the scalar
mass, the resulting interaction is too attractive, and nu-
clear matter always saturates with too large a bind. ing
energy. )

We have found a number of parameter sets that re-
produce the equilibrium properties of nuclear matter. A
representative sample is listed in Table II, where the com-
pressibility K is also shown. In general, the compress-
ibility remains large in this approximation and increases

slightly from the value in the RHA (450 MeV); the form
factors with the polynomial interpolation produce more
suppression of the vacuum contributions (compared to
the Gaussian interpolation), but give a higher compress-
ibility. The corresponding self-consistent nucleon mass is
shown as a function of density in Fig. 12. Here M* is
obtained by minimizing the full two-loop energy density
8( ) (M*)+f (2) (M*) with respect to this parameter. The
two-loop contributions generally reduce the value of M*.

To refit the energy/baryon to nuclear matter equilib-
rium, the scalar mass must be increased significantly,
which suggests that the results in this approximation are
sensitive to the precise shape of the form factors. Nev-
ertheless, the two-loop calculation with vertex modifi-
cations is a better approximation than the conventional
two-loop calculation with bare vertices, since the two-
loop corrections are smaller, and the re6t couplings are of
reasonable size. For quantitative comparisons to nuclear
matter properties, one must know the form factors more
accurately, especially in the intermediate momentum-
transfer region. Thus our calculations imply that it is
inappropriate to draw conclusions &om calculations us-
ing some particular ad hoc choice of form factors, as in
Refs. [15] and [16].

V. RESULTS WITH MEDIUM-MODIFIED
VERTICES

40

20 .

0

-40

& 6o

-80

-100

-120

—total correction
polynomial interp.
w&th F,2

Lg

40

20

-20

-40

-80

-120

One advantage of having an explicit mod. el for the
meson-baryon vertex functions is that we can investigate
how these functions change in the nuclear medium. For
example, the baryon mass changes f'rom M to M', and

1.0

00 05 10 15 20 25
PB ~Po

0.0 0.5 1.0 1.5 2.0 2.5 3.0
PB ~Po

0.8

g 0.6

0.8

0.6

FIG. 11. The separate contributions to the total two-loop
correction from the vacuum Quctuation, the exchange, and
the Lamb-shift terms, including I" q. The parameters are the
same as those in Fig. 8.

0.2
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--- " set A

set B
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set D

0.0
0.5 1 .0 1 .5 2.0 2.5 0.0 0.5 1 .0 1 .5 2.0 2.5
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0.4

0.2

0.0

As is well known, the compressibility can be reduced, if
desired, by including nonlinear scalar meson self-interactions.

FIG. 12. The effective nucleon mass for the refit ted
two-loop approximation with vertex modifications obtained
for the polynomial and Gaussian interpolations, respectively.
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by making this change in the baryon propagators that
appear in the vertex loops, the vertex functions acquire
an implicit density dependence. This is the efFect we
will consider in this section. We emphasize that this
is a first step in the study of density-dependent vertex
modifications in this model, since we are neglecting the
valence-nucleon contributions to the vertex loops, as well
as additional form factor functions that can arise at fi-
nite density. Moreover, as with the calculations in the
preceding sections, a quantitative study requires the full
ofF-shell vertex, as well as the inclusion of pions to more
accurately describe the long-range vertex structure. We
leave these additional modifications as important topics
for future investigations. Although the present calcu-
lation is just a first step, it illustrates numerous issues
that must be dealt with in any microscopic model of the
meson-baryon vertices; many of these issues are simply
omitted by assumption in conventional calculations based

on ad hoc form factors.
By replacing M with M' in the vertex functions, the

mass of the virtual intermediate state is reduced, and
thus the radius of the dressed nucleon increases with in-
creasing density. This is the primary modification we
study here. We emphasize that the leading logarith-
mic behavior at large spacelike Q is unchanged. How-
ever, since we determine the nonleading behavior from
an examination of the lowest-order loop diagrams, this
behavior also changes at finite density; these eBects are
very small and are incorporated here just for consistency.
We will follow the general strategy described earlier: in-
clude efkcts that can be calculated reliably in our simple
model, and treat e8'ects that cannot yet be calculated as
conservatively as possible.

It is a straightforward exercise to generalize the results
in Sec. II to incorporate the modified baryon mass, and
we simply quote the results here:

2 1 4u(1 —u
E,'( l(Q ) = — "2 du 12S*(u)I(u) —12u—

0 'V

2 2m' (1 —u + u2) + Q~(1 —u + ~ u2)
+ . ' . L(u)

m"u'+m~(1 —u)

)+ Suln
u +m„(1 —u)

.(,), g„' ' 2 (m' 2(1 —u) —u' + Q'(1 —u/2)')
16m2 o S' u

2u 2(l —u) —u2—2u — . . +2S*(u)I(u)u' + m„'(1 —u)

m "u' + m„'(1 —u)+ 2uln u2+ m2(1 —u)
(5.2)

1
2ME'(l(Q)= " d I( ),4~', S*(u)

where

1 S*(u) + uQ/2""'=Q'".S (-)--Q/2. ' (5 4)

2Q2
S*(u) = m* u + + m„(1 —u)

4

Q—: q /M, Q:—QQ—2, m* = M*/M, and m is
written in units of the baryon mass M. We note the
important point that the prefactor 2M is used solely
to make the anomalous contribution dimensionless (any
mass could be used), and thus it does not change to M'
at finite density.

Here we have renormalized the form factors using
the same renormalization conditions as in Sec. III. A

straightforward numerical evaluation of the preceding in-
tegrals shows that they do not vanish at Q = 0, and
thus the vector charge and scalar couplings are renor-
malized at finite density. This is especially surprising
for the vector term, since the conservation of the baryon
current implies that there is no charge renormalization.
The resolution of this dilemma is simple. In a calculation
that includes the full oK-shell vertex inside the two-loop
diagrams, one should also include the appropriate self-
energy insertions on the baryon lines to maintain the re-
quired Ward identities. Thus, when we "factor out" the
vertex from the loop integrations and renormalize it on
mass shell, using the procedures discussed in Sec. II, we
should also extract the self-energies, which now appear
on external baryon lines. In free space, these self-energy
insertions vanish by construction, due to our choice of
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mass and wave-function counterterms, but when M is
replaced by M' one finds a finite wave-function renormal-
ization. It is straightforward to show [36] that the contri-
bution &om this wave-function renormalization precisely
cancels the shift from E„i (0), so the baryon number+(~)

remains unchanged, and baryon number conservation is
maintained. Thus we will set the vector charge form fac-
tor E„*i(0)= 1 in performing the interpolations discussed
below.

The self-energy insertions also produce a finite correc-
tion to the baryon mass, which is exactly what is needed
to modify the mass in the external spinor to include the
correction &om the exchange self-energy. Since we will
only consider perturbative calculations about the RHA
results, in which we neglect all exchange corrections to
the baryon mass (by definition), we will neglect this mass
shift as well.

In contrast, the scalar vertex is not protected by the
Ward identity. The finite wave-function renormalization
does not cancel exactly against E,*( ) {0),and there is a
finite shift in the strength of the vertex. However, while
we believe that the lowest-order vertex correction gives
a reasonable estimate of the form factor radius (since
it incorporates the intermediate state with the lowest
inass), there is no reason to expect that it is reliable
for the renormalization of the scalar coupling strength.
This renormalization is a completely dynamical effect
that is likely to depend significantly on valence-nucleon
contributions, scalar meson exchange diagrams, vacuum
polarization, etc. , all of which are neglected here. We
will therefore take a conservative approach and leave the
magnitude of the scalar strength unrenormalized at finite
density; we postpone the dificult problem of obtaining
a reasonable estimate for the finite renormalization to a
future investigation.

It is also straightforward to obtain expressions for the
medium-modified rms radii of the nucleon, but we will
not present the formulas here. (These are most easily
obtained by difFerentiating the Feynman parameter inte-
grals with respect to Q, rather than by differentiating
the expressions given above. ) One finds that the vector
charge and scalar mean-square radii scale approximately
as 1/M*. Because of the overall factor of m* in 2ME„'2,
however, the anomalous moment (and its radius) are in-
sensitive to the value of M*, and this form factor is es-
sentially the same as at zero density.

The parametrizations of the vertex functions are per-
formed as described in Sec. III, with a different parameter
set at each value of M*. One finds that the values of r~
[see Eq. (3.11)]are unchanged at finite density, while the
values of r2 suffer a (small) change that is exactly the
same for the scalar and vector vertex. Figure 13 shows
the vector charge form factor at M* = 0.7M, where we
have included the finite wave-function renormalization,
so that E„' (0) = 1.

If one faithfully carries out the renormalization proce-
dure defined in Sec. II using the medium-modified ver-
tices, one discovers that the resulting expressions for the
two-loop energy are no longer finite. This occurs be-
cause the two-loop integrals contain the modified ver-
tices, while the subtraction terms are defined by vacuum

1.0

0.8

~ 0.6

& 0.4

0.2

0.0
0

FIG. 13. The vector charge form factor I"„*z at M' = 0.7M.
Tile solid (daslled) llile ls obtaliled with polyiloiillal (Gaus-
sian) interpolation. The dotted and dot-dashed lines are the
corresponding vacuum form factors with M' = M, which are
the same as those iu Fig. 5(b). The momentum Q is in units
of M.

amplitudes and use unmodified vertices; thus, certain di-
vergences no longer cancel. The problems can be traced
to the nested divergences, which require the renormaliza-
tion of the self-energy and vertex functions, as discussed
in the Appendix. (The overlapping subtractions remain
unchanged, and the overall subtractions are always cho-
sen to remove the first four powers of Po.) In principle,
the only way to determine the required new subtractions
is to use the full off-shell vertices inside the loops. Within
the context of the on shell a-pprozimation for the form
factors, the best that can be done is to use inedium-
modified vertices for both the two-loop integrals and the
corresponding subtractions. This is the procedure we
follow here; it involves the same strategy as in Sec. II,
namely, if it is a reasonable approximation to replace the
off-shell vertices with their on-shell forms, it should also
be reasonable to use on-shell, medium-modified vertices
in performing the subtractions in the present case. The
result is that the energy density is calculated by inserting
the density-dependent vertex functions, parametrized as
discussed earlier, into the expressions for the renormal-
ized two-loop contributions given in Sec. II. (If the on-
shell approximation is not a good one, then all of our
calculations will have to be improved. )

In Fig. 14, we show the results of a perturbative cal-
culation {RHA parameters and M') using the medium-
dependent vertices with both the polynomial and Gaus-
sian interpolations. A comparison with Fig. 8 shows that
the two-loop corrections are smaller here, as expected
from the larger radii (and consequent more rapid decay
in momentum space) of the E'i and E; vertices. The
difference between the results with the two different in-
terpolations is again an estimate of the uncertainty in
the form factors at intermediate momenta; these differ-
ences remain significant on the scale of the nuclear matter
binding energy. Moreover, it is clear that including the
density dependence of the vertices also produces effects
that are significant on this scale. This suggests that for
quantitative calculations of nuclear matter saturation, it
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FIG. 14. The perturbative two-loop energy with den-
sity-dependent vertices. The couplings are the same as those
in Fig. 8. The dotted (dashed) curves are obtained with I"„2
excluded (included). The solid curve is the RHA energy.

is necessary to include this density dependence, and one
can question the accuracy of results using vertices that
are simply assumed to be density independent.

VI. SUMMARY

We have calculated the two-loop energy with one
dressed vertex for nuclear matter in the Walecka model,
using form factors determined in the framework of the
model. With an on-shell approximation for the vertex, we
determine the leading behavior at large spacelike momen-
tum transfer &om the sum of an infinite set of ladder and
crossed-ladder diagrams, and we use the lowest-order ver-
tex correction to specify the behavior at small momentum
transfer. Two different interpolation functions are used
to join the two momentum-transfer regimes. Whereas the
resulting vertex functions are not determined uniquely at
intermediate momentum transfers and are known only to
within an error band, they are specified by the underlying
couplings and masses in the model without the introduc-
tion of ad hoc parameters.

We find that the two-loop corrections to the one-loop
energy are considerably smaller than those computed ear-
lier with bare vertices. While these corrections produce
significant changes in the nuclear binding energy, one can
still fit the empirical equilibrium properties of nuclear
matter with a reasonable adjustment of the model pa-
rameters. (The most dramatic adjustment is in the scalar
meson mass, which must be increased by roughly several
hundred MeV. ) Since these results were obtained using
only one dressed vertex in the loop, it is likely that calcu-
lations using two dressed vertices will find even smaller
corrections.

We also included the contributions &om the anomalous
vector vertex for the first time. Although its contribution
is small compared to those of the vector charge vertex or
the scalar vertex, it is not negligible on the scale of the
nuclear matter binding energy. Moreover, the implicit
density dependence in the vertices and the uncertainty
in our interpolations also produce variations that are im-
portant on the scale of the binding energy. These new
eÃects should be present in any realistic model of the
meson-baryon vertex functions and must be included be-

fore a quantitative calculation of nuclear matter satura-
tion can be performed.

Although the present calculations are the first step in
the inclusion of dynamically generated vertex functions
in relativistic nuclear matter calculations, and many im-
provements and refinements must be made, there are sev-
eral features of our analysis that we believe to be under
control. First, the leading logarithmic behavior of the
vertices at large spacelike momentum transfer is included
correctly. Second, the low-momentum-transfer behavior
should be reproduced reasonably well (for a model with
only heavy mesons), since we include the intermediate
state with the smallest mass. Third, our two difFerent
interpolation functions give a realistic "error envelope"
for the uncertainty of the vertex functions at intermedi-
ate momentum transfer and for the resulting uncertainty
in the nuclear matter binding energy. Fourth, the calcu-
lated isoscalar anomalous moment has a magnitude that
is consistent with empirical values, and thus it provides
a meaningful estimate of the size of the isoscalar anoma-
lous contributions to nuclear matter saturation. Finally,
the mean-square radii of the vector charge and scalar ver-
tices increase with density roughly as the inverse of the
baryon efFective mass, which should give sensible results
for the impact of this density dependence on the nuclear
matter calculation.

There are several improvements that must be made in
these calculations before any definitive conclusions can
be drawn. First, one must compute the off-shell vertices
and include them inside the loop integrals; this will also
require a computation of the corresponding self-energies,
which must be included to maintain the conservation of
the baryon current [20]. Second, the contributions &om
the density-dependent (valence) parts of the baryon prop-
agators must be included in the computation of the ver-
tex functions; this will introduce (in principle) new vertex
functions that arise at finite density. Third, pions must
be included to describe the long-range vertex structure
more accurately. Fourth, the description of the vertex
functions at intermediate momentum transfer should be
improved; this may be possible by examining the disper-
sion relations that determine these functions. Finally,
one must investigate the truncation procedure used to
define the present approximation to decide if it is more
accurate to dress one or both of the vertices in the two-
loop terms. All of these improvements can be studied
systematically within the QHD framework and provide
topics for future work on this problem.

In a larger context, regardless of which degrees of free-
dom one believes are the most appropriate, it is neces-
sary to have reliable models of the off-shell and density-
dependent behavior of the meson-baryon vertices before
accurate relativistic calculations of nuclear matter prop-
erties can be made. The construction of such models
presents a formidable challenge to the practitioners of
relativistic nuclear many-body theory.
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APPENDIX: BARYON SELF-ENERGY AND
BARYON-SCALAR VERTEX

Here we derive the renormalized Feynman parts of the
baryon self-energy and baryon-scalar vertex that appear
in Eqs. (2.20) and (2.24). The baryon self-energy is
shown graphically in Fig. 2. The baryon-scalar vertex
is shown in Fig. 15, with the counterterm subtraction
omitted. Here we will be interested only in the case of

Z~(k) = Z~~( —k ) + gZp~( k), — (A1)

with

zero momentum transfer. Our renormalization procedure
is similar to that in Ref. [7].

It follows from Eq. (2.20) that

d4

x 4M'P i(—q') + 3(q —k. q)F ~( q)j }—I('rv——P.Po —M

d4

2~ 4 (k —q)' —M*'+ie
+ 2a.'~'(v)~-~( —q') (&' —".q) —~g.'I'D'(q)~" ( q')& ~}+ (~ .— (A3)

The convergence properties of these integrals depend on the behavior of the form factors; for bare vertices, the integrals
are logarithmically divergent. To renormalize them, we write them in terms of Euclidean momenta and then explicitly
subtract the integrands using counterterms chosen to reproduce the appropriate renormalization conditions. (This
method is discussed in Refs. [7] and [13].) One can verify that, for bare vertices, this procedure reproduces the results
obtained with the more conventional dimensional regularization [5], and it allows us to extend the renormalization to
include our model vertex functions.

After making a Wick rotation to Euclidean space (pp -+ ip4 ) and performing the angular integrals, we can write
Eqs. (A2) and (A3) as

Zp~(s) = — dt 12[M*A (t) + tB(t)]8 (s, t; M* )64vr2s 0
—B(t)C i(s, t; M* )) —M(~ —p, Pp —M, ,

1
Z~~(s) = —,, dt (2sAz(t)Oi(s, t; M') —[Az(t) + M*B(t)]4, (s, t; M*') ) + (N,

0

(A4)

(A5)

where Ai(t), A2(t), and B(t) are defined in Eqs. (2.26), (2.27), and (2.28), and

Oi(s, t;m ) = s+ t+ m —[(s+ t+ m ) —4st]

4 (s, t;m ) = (s+ t+ m ) —2st —(s+ t+ m ) [(s+ t+ m ) —4st]

(A6)

(A7)

Here we have set 8 = k&2 and t = q&, with the subscript "E" denoting Euclidean.
Similarly, Rom Eq. (2.24), we have

with
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Ag t
A~(s) = — dt Og(s, t;M ) + 2M 02(s, t;M )32vr s-

dt t02(s, t; M ) —412(s, t; M )
MB(t)

0 16~2s g8
(A9)

A~(s) = — dt
2 2 s02(s, t;M ) —O2(s, t;M )

p MA2(t) .
2

0

where

+ dt 2 C'g(s, t; M ) + 4M C 22( ,st; M2)
64vr282- (A10)

8+ t+m2
O,(., t;m') =1-

[(s+t+m')' —4st]' '
(s + t + m')' —2st

42(s, t;m') = s+t+m'—
[(s+ t+ m')' —4st]'~'

The counterterm contributions in Eqs. (A4), (A5), and (A9) are defined by imposing the usual conditions

~ (p)l,= = ~ =o,

(A11)

(A12)

(A13)
0—~F(p)

t9 /=M=M*
=0, (A14)

A'(» p=M =' ~ (A15)

A ~(t) m*

327r 8
8q(s, t; m* ) + (2 + m')t + 2m' ——[(2 + m*)t + 2(2+ 3m*)]

1

v7t

A, t 1-2t + (2+ m*)t+ m' ——t + (4+ m*)t+ 2+ 3m*
16m 2 'gt

B(t) 2t, 1

(
—0] (s, t; m* ) ——4] (s, t; m* ) + t[(6 + m*)t + 6m*]

64vr2 s ' ' s

Z~~(s) = — dt
0fdt-

After inserting the expressions for the self-energy and vertex [Eqs. (Al) and (A8)] into Eqs. (A13)—(A15), it is
straightforward to Gnd the counterterm contributions and to make the necessary subtractions. After some tedious
algebra, the final results are

——((6+ m')t+ 8(2+ m'))),
rlt

Zp~(s) = dt t+1 ——(t+3)A, (t)
0 16+2 rlt

dt —
O(

sts;m' ) —— 6( sts;m* ) —(8t +8t+4)+ —(8t +14t+12))A, (t) 1 2

0 647r2 s ' ' s2 71t

dt B(t) m*
( Ots; s)m+ 5t + 6t ——(5t+ 16))64vr2 s2 rlt

(A16)

(A17)

A~(s) = — dt
0

j'"dt

jdt"
g (t) 1 2 1
32& 8 8

—0 ( ts;1s)+ —es(s, t;1)+t+2 ——(t+6))
rlt

A, (t) t+ 1 ——(t+ 3)
167r2 'l7t

B(t) st 1
16~28 ~

tO, (s, t; 1) —4 s(s, t; 1) + —t + 6 ——(t + 8) )) ) ) 7 4 gt
(A18)

A~(s) = — dt [s02(s, t; 1) —C2(s, t; 1)] + dt [42 (s, t; 1) + 442(s, t; 1)],a, (t) B(t)
16+2s2 0 64m2s2 (A19)
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where we have scaled all dimensional variables with the nucleon mass M and defined ri&
= gl + 4/t and m*—:M'/M.

All of the preceding integrals can be evaluated using Gaussian quadrature, although care must be used due to
cancellations at large t. It is easily verified that the integrals that contain F, and F q are all finite even after setting
F, = 1 and F„~ ——1, while the integrals that contain F„2 are also finite when one realizes that, in any realistic
calculation, F„2(s)/F„i(s) is suppressed by at least a factor of I/s at large s. We have verified numerically that our
results with F, = F„i ——1 and F 2 ——0 are the same as those of Ref. [5].
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