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Microscopic model of the timelike electromagnetic form factor of the nucleon

H. C. Donges, M. Schafer, and U. Mosel
Institut fur Theoretische Physik, Universitat Giessen, D 858-92 Giessen, Germany

(Received 7 3uly 1994)

A microscopic model of the electromagnetic form factor of the nucleon is developed in a hadronic
framework, including pions, nucleons, and the E resonance explicitly. The spacelike on-shell form
factors are reproduced and predictions for the half off-shell dependence are made. The impact of
this off-shell dependence in the timelike sector (q ( 1 GeV, thus including the region of vector
meson dominance) is of main interest in this investigation.

PACS number(s): 13.40.Gp, 14.20.Dh

I. INTRODUCTION

Electromagnetic form factors of hadrons contain im-
portant information about the intrinsic structure of these
particles and about their coupling to the external electro-
magnetic field. This electromagnetic structure has been
explored mainly by electron scattering experiments, giv-
ing information on the electromagnetic form factor in the
spacelike momentum region and thus on the spatial dis-
tribution of charges and magnetic moments inside the
hadrons in general, and the nucleon in particular. The
available data cover the momentum range f'rom q = 0
up to about q = 35 GeV and can be well parametrized
by a dipole fit [1]. There exist models that explain the
data by assuming a certain number of poles which all, un-
fortunately, are in the so-called "unphysical" region (not
accessible by experiments on on-shell nucleons) [2,3].

The data are much more sparse for timelike momen-
tum transfers, where the excitation of the nucleon and
its decay are studied. Here the only available data come
from experiments at LEAR, exploiting py annihilation
[4]. These data thus naturally start at momentum trans-
fers larger than twice the mass of the proton. They show
that conventional pole fits, e.g. [3], cannot be applied in
this region any more. It is thus of special interest to ex-
plore the unphysical region and see whether there exists a
rich structure of poles and thus whether the so-called vec-
tor meson dominance (VMD [5]), which underlies these
pole fits, is a universal property of all hadrons or if it
holds only for pions.

The region around momentum transfers corresponding
to the vector meson mass (around 750—800 MeV for p and
io mesons) is so interesting because these pole fits predict
here a very pronounced resonance structure in the form
factors [3]. Since access to this region for on-shell protons
is impossible, the only alternative is to look for half ofF-

shell processes. Indeed, dilepton production in hadronic
collisions (bremsstrahlung dileptons) offers access to the
half ofF-shell electromagnetic form factor in the timelike
region [6].

Experiments of this kind have been performed by the
DLS Collaboration for p+p, p+A, and A+A collisions [7].
Simulations of these processes show for p + p and p + A
a clear window for these bremsstrahlung contributions

where these are not overshadowed by other processes [8];
for A + A a strong io peak is predicted [9].

Under the assumption of VMD the elementary dilepton
production processes NN + NNe+e, mN -+ Ne+e
and pN + Ne+e were studied by the Giessen group
[6,10,11]. It is, however, unclear if the timelike electro-
magnetic form factor is infIuenced by the ofF-shellness of
the intermediate nucleon. The purpose of this paper is
to model the relevant vertex, to study its off-shell depen-
dence, and to investigate if VMD is still visible if this
ofF-shell dependence is properly taken into account. The
calculations are thus meant to stimulate and to provide
some guidance for experimental investigations of this im-
portant hadronic property.

To obtain the general vertex, one needs a dynamical
model that describes the electromagnetic structure of the
nucleon. It would be most desirable to use the quark de-
grees of freedom. Unfortunately, state of the art quark
models of the nucleon do not allow one to study off-shell
efFects and excitations quantitatively, but only in a qual-
itative way. Their success is mainly confined to spacelike
properties of real nucleons at the present time [12]. In
this paper, therefore, all calculations are performed us-
ing hadronic degrees of freedom, following the concept
of Naus and Koch [13] or Tiemeijer and Tjon [14], who
performed similar calculations for the spacelike regime.

From a spectral analysis of form factors [15] one has
learned about two important ingredients: mN scattering
and ~sr scattering. While mm scattering is resonant, and
thus in this channel best described by taking into account
a coupling to the p meson, AN scattering is more difB-
cult to implement, and will be handled only in a very
schematic way in the present model. On the other hand,
semiphenomenological models [16,17] show the success of
a description of the form factors in a cloud/core picture.
This will be discussed later in this paper.

Constrained by gauge invariance of the electromagnetic
interaction, the vertex is constructed from a pion loop ex-
pansion of the nucleon propagator by coupling external
photons to each charged particle in the loop. In this loop
expansion the A resonance is taken into account because,
first of all, it is necessary for the reproduction of aN scat-
tering, and secondly it is the first important resonance
to contribute to the ofF-shell efFects. In addition to that,
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&om an analysis of the Gerasimov-Drell-Hearn sum rule
[18], the 4 is found to be most important to understand
the anomalous magnetic moments of the nucleons.

This paper is organized. as follows. In Sec. II, the gen-
eral structure of form factors for nucleons and pions is
discussed, and gauge invariance and its consequences are
introduced. In Sec. III, the model is presented, and gauge
invariance is proven for a simple case. A discussion of
VMD in this context is given in Sec. IV. Results and
comparison to data are shown in Sec. V. Section VI con-
cludes the paper.

r~(p', p) =.) ) A (p')I; '(w', w;q')o,"A. (p).
i=1 8,8'=+1

(4)
I

The functions E,' ' are linear combinations of the A"; ".
Since for p2 = m2 the operator A'(p) is just the projec-

tion operator to positive (s = +1) or negative (s = —1)
energies, I'"(p', p) taken between on-shell spinors reduces
to

II. GENERAL STRUCTURE OF FORM FACTORS

A. Farxn factor of nucleons

The most general form of the electromagnetic interac-
tion vertex for nucleons can be split into an isoscalar part
and an isovector part:

1 ~ p g/I t

S,V(P P) e ) (Y P 3 +1S,V Y +2s,V

+as, vq"
~ (t (2)

The 24 functions A,"&'v (i = 1, . . . , 3;r, r' = 0, 1) are

scalar functions of the three variables p, p', and q .
Introducing a shorthand notation

io &"q„o" = — " o" = —~~2 2m

The vertices of proton or neutron are then linear com-
binations I'„"(P',P) = rs(P', P) + rv(P', P), I'„"(P',P) =r.,(p, p) —r" (p', p).

The isoscalar or isovector parts can be split up fur-
ther. I et p denote the four-momentum of the incoming
nucleon, p' the four-momentum of the outgoing nucleon,
and q = p —p' the four-momentum of the outgoing pho-
ton. This choice is more convenient for the case of time-
like momentum transfer and for dilepton production, but
is diferent &om what is conventionally used in the litera-
ture, where q is the four-momentum of the incoming pho-
ton; this amounts to some sign changes in the decompo-
sition of the vertex compared to other papers [13,14,19].
According to [19] the isoscalar/isovector vertex can be
expressed as

u(p')I'"(p', p)u(p) = e ) u(p')E++(m, m; q )O(u(p)

It turns out that Pz++(m, m;q ) = 0 (time reversal in-
variance), so the on-shell vertex takes on the well known
form [20]

')r"(p', p) u{p)

PD

(p') &++(q')~" —+.++(q')
2

"
(p)

At q = 0 the form factor E1++ measures the electric
charge and F2++ measures the anomalous magnetic mo-
ment.

The vertex r~(p', p) contains self energy corrections
in the external legs. For this reason it is often called
a reducible vertex. In this paper it is also called a full
vertex in order to indicate that in experimental measure-
ments these self energy corrections are always included.
To eliminate these corrections, the irreducible vertex is
defined by

s{p')r",.„{p',p)s(p) = s.(p')r (p', p)s. {p) . (5)

For the irreducible vertex a decomposition exists similar
to the one for the full vertex, as will be proven now.
In (5) Se(p) is the free propagator, and S(p) is the full
propagator, including all self energy corrections Z(p) =
So (p) —S (p). Most generally Z(p) is decomposed
into a vector part Ev(w) and a scalar part Zs(w) by
Z(p) = Zv(w)p p —Zs(w)m, so the full propagator
takes on the form

s-'(p) = &.p —m —z(p)
= p. p[1 —Zv(w)] —m[1 —Es(W)]

p m ~

It proves helpful to introduce the positive and negative
energy projections of the self energy and the propagator
Z+(W) and S+(W) by

(m = nucleon mass) z{p) = ) A'{p)z'(w), s{p) = ) A {p)s (w)
e=+1 8=+1

and the projection operator
Using the properties of the projection operators

Aa( )
Y P

p with W = ~p2, s = +1, (3) A+{p) + A (p) = 1, A+(p) —A (p) =

(2) can be written as (dropping S and V for convenience) one finds for the self energy
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Z'(W) = sZv(W)W —Zs(W)m

and for the full propagator

(7)
So(p) = ) A'(p)so(W), So(W) =

s

S (p) = ) A'(p)S (W), S (W) = sW' —m*,

S'(W) =
sW' —m* sW —m —Z'(W) (8) S. (p) = ).A'(p)S, ' (W), S, ' (W) = sW —m .

where W* = W[1 —Zv(W)] and m' = m[1 —Zs(W)].
With this notation one finds further

Now one can easily derive the relation between the re-
ducible vertex (4) and the irreducible vertex (5):

r,."„(p',p) = s-'(p')s. (p')r (p', p)s, (p)s-'(p)

i=1 s's
3

= e) ) A' (p') f,' '(W', W;q )0,". A'(p)
i=1 s's

(12)

Equation (12) represents the desired decomposition of
the irreducible vertex in terms of the irreducible form
factors f,' '(W', W; q ).

The Ward-Takahashi identity (WTI) relates the irre-
ducible vertex to the full propagator [21]:

„I',"„(p',p) = e. Q[S '(p) —S '(p')]

Q is the appropriate charge operator.
Two useful identities will be introduced here:

A' (p')p qA'(p) = A' (p') (sW —s'W')A'(p),
(i4)

—A' (p')io„„q"A'(p) = A' (p') [(sW+ s'W')p„
-(p+ p').]A'(p)

(15) is a general form of the Gordon identity [20]. With
the use of (14) and q~O&

——0 the projection of (13) onto
positive and negative states yields

f; '(sW —s'W') —q fs '

= Q[S ' (W) —S ' (W')]
= Q[(sW* —s'W' ) —(m' —m' )] . (16)

For the case of an outgoing on-shell particle (W' = m)
of positive energy (s' = +1) this reduces to

I

for protons and F1+' ——0 for neutrons. This holds for
the full form factor even if the incoming nucleon is off
shell. Note that (17) implies that fz+'(q = 0) depends
on the nucleon's off-shellness and only reduces to the real
charge for on-shell incoming particles. The latter must be
true because for on-shell particles there is no difference
between the full and the irreducible vertex.

Note that the WTI does not pose any constraint
on the magnetic form factors I"2+'. Note also that
Fs+'(m, m;q ) = fs+'(m, m; q ) have to vanish for all q

in order to obtain finite contributions on the left-hand
side of (17) and (18).

To obtain the full vertex, the knowledge of the full

propagator is needed, which can be obtained from f~+'

using relation (17) taken at q = 0:

S '(W) = sW* —m* = f~+„'(m, W;q = 0)(sW —m)

The index p stands for proton. This allows one to write
the half off-shell full form factor as

E.+'(m W. ') =
f~+„'(m, W; 0)

It is thus sufBcient to calculate the irreducible vertex
only.

From (16) more relations can be derived especially for

q
—0.

2 +74
fg+' — fs+' = QsR' —m 8W —m

or for the full form factor [(17) x ~. .]:
2

y+s F+8 Q8R'* —m*

(17)

(18)

f++(W, m;0) = f++(m, W; 0),
f+ (m, W;0) = f +(Wm;0),
fz (m m 0) = 1, f~ (m m 0) = 0

So the off-shell full form factor is

To get (18) one needs further ~,. .. ——1, i.e. ,w=
the full propagator has a pole of unit residue at the phys-
ical mass m of the nucleon.

For real photons (q2 = 0) one recovers that I"z+' = 1

f +(W, m;o)f+„'(m, W;o)
I

Experiments always measure the full form factor. F3 '
is never accessible by experiments since V3 j~ = 0 for any
conserved current j„.
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B. Form factor of pions

The most general form of the pion-photon vertex is [22]

r."(p', p) = Q.[f (I",p', q')p'"+ y. (p'', p', q')u"]

A more convenient and also better known notation is

I'."(p' p) = eQ [A(p' p'q')P2 +B(p', p'q')Pg]

with PI. = p'+ p, PT = PI. —q(Pr, q/q ), and q = p —p'.
If j„is a conserved current, one measures

i ~I'"(p', p) = eQ. [A(p', p', q') + B(p', I ', q')]i /PI",

i.e., the sum of A and B. The WTI requires

q„l'" (p', p) = eQ q„PI"A(p', p; q )

= eQ-[D. '(p') —D. '(J' )]

well established and several phenomenological models ex-
ist that take it into account [16,17]. For electromagnetic
form factors Naus and Koch [13],Tiemeijer and Tjon [14]
or Bos et aL [25] performed detailed calculations based
on a meson-baryon interaction picture, all giving essen-
tially the same results for the shape and the off-shell de-
pendence of the form factors, but diR'ering somewhat in
their predictions for the anomalous magnetic moments.
However, these authors restricted themselves to space-
like momentum transfer and to off-shell nucleons with
W ( m+ m in order to avoid poles due to decay into
inelastic channels. Since the purpose of this paper is to
compute the form factor in the timelike region, the de-
cay modes have to be included; also, the L resonance
will be considered in the calculation because for off-shell
nucleons with W & m the 4 is no longer kinematically
suppressed.

The model used here is based on the Lagrangian den-
sitiy for pions and nucleons with pseudovector coupling.

Thus only A is constrained by the WTI.
The on-shell form factor of pions is a measurable quan-

tity. It is given to good precision by the vector meson
dominance (VMD) hypothesis [23]. In fact, the VMD hy-
pothesis works so well that one is led to assume that the
bare pion is essentially a structureless particle [24]. It is
therefore safe to neglect effects of the pion's off-shellness
and to assume that A and B depend on q only:

&„r:(&',&) =.Q.I".(q')&„P,"

where F (q2) is the measured form factor. This Axes
B(q2):

B(q ) = P (q ) —A(q )

Given any form of the pion self energy, this allows one to
maintain gauge invariance as well as the measured form
factor. Section IV will explain the VMD hypothesis and
will show how to carry it over to the nucleon.

III. MODEL FOR THE FORM FACTOR

As mentioned in the Introduction, there exists a subtle
interplay of mN and mvr scattering in describing the elec-
tromagnetic properties of nucleons. This section is de-
voted to introducing the part of the model that is suited
to describe the vrN interaction. Subsection IIIA intro-
duces the Lagrangians for nucleons, pions, and L's. In a
naive picture the coupling of photons is introduced. Sub-
section III 8 describes the coupling of the photon to these
fields in the correct way and shows that this is equivalent
to the picture developed in subsection IIIA, which thus
respects the local U(1) symmetry of QED. In Sec. IV
the msgr interaction is modeled in terms of vector meson
dominance.

A. Interaction of mesons, baryons, and photons

Part of the structure of the nucleon is due to the me-
son cloud that dresses the bare nucleon. This idea is

g~ = 4(~ p —m)@+ [(D„k)t—(B"vr) —m'%ter]

4~,p"848„vr (21)
2m

Including the A leads to an additional term in (21):

Z~ = C ~A„C ~ + C ~T@0„%+ H.c.
2m

(22)

with

~,- = (~ J —m~)e~- —(V,p-+ p~~-) + ~,V. p~-
+mAQgsPv (23)

as derived in the Rarita-Schwinger formalism [26,27]; T
is the matrix that couples isospin 3/2 to isospin 1/2 g 1.
The A is here treated as a stable particle; its Rnite de-
cay width must be neglected at the order of diagrams
discussed here. Using a momentum dependent width
would amount to including self energy corrections to the
L propagator; this corresponds to diagrams of higher or-
der in pion lines. Also, a whole set of new diagrams would
be necessary to maintain gauge invariance. On the other
hand, a constant width in the L propagator always yields
complex form factors, even for on-shell nucleons, because
the relevant thresholds are not taken into account.

This subsection will describe how the corrections to the
electromagnetic interaction vertex can be constructed for
diagrams including one pion loop. The starting point will
be the nucleon propagator, which is up to the one-pion-
loop level given by Fig. 1. In the naive picture the pho-
ton couples to all charged particles individually. That
this indeed fulfills the WTI will be proven in the follow-
ing subsection. The irreducible vertex is given by Fig.

FIG. 1. Expansion of the full nucleon propagator in first
order in pion lines. The nucleon propagator is displayed by
the solid single line, the A propagator by the solid double line,
the full propagator by the solid line with the fat dot, and the
pion propagator by the dashed line.
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2, where the coupling of the photon to the hadrons is
according to the usual Feynman rules. Since the pion
coupling is chosen to be pseudovector, additional contact
terms arise [Figs. 2(d) and 2(e)j.

Since all the loop diagrams diverge, a regularization by
a covariant cutofF of the form

m2 —A2
f, (q ) = = (m —A )D, (q)q2 —A2 (24)

is used. This form of the cutofI'is chosen because it can be
visualized as the propagator D, (q) of a particle of mass
A with the same quantum numbers as the pion; this fic-
titious cutofF particle will be called the COP. The NNvr
vertex is regulated with the monopole form, whereas the
Ne'er vertex needs a dipole cutofI' to yield convergence
because the A propagator is O(p). In the spirit of the
previous paragraph the photon will then also couple to
the COP if the intermediate pion carries charge. The
photon-pion coupling must therefore be replaced by a
sum of vertices given in Fig. 3; the double dashed line
denotes the propagator of the COP. The diagrams with
an internal 4 propagator have two COP propagators be-
cause of the dipole cutoK The pion-photon vertex in this

FIG. 3. Additional diagrams to satisfy the WTI if a cutoff
is introduced in the AN or the vrA vertex. The double dashed
line represents the propagator of the COP.

case must thus be replaced by five diagrams.
The mass of the COP must be chosen large enough

so that unphysical decay modes are avoided. The pos-
sible decay modes and thus contributions to the imagi-
nary part of the form factor can be found by applying
the usual cutting rules. If the incoming nucleon is far
enough off shell (W )m+ m ) it can decay into an on-
shell nucleon and a real pion as depicted in Fig. 4(a). In
principle the ofI'-shell nucleon can also decay into a nu-
cleon and a COP if W )m+ A. This inequality sets the
limit of the model. For the case of this paper R' „will
be restricted to 2 GeV, so A should be somewhat larger
than 1 GeV. This is in good agreement with cutofF values
used in meson exchange potentials. If the cut is taken as
indicated in Fig. 4(b) it becomes clear that there is also
a restriction on the invariant mass M of the photon. If
M = q2 ) 2m, sr+~ production becomes possible.
Pion-COP production is not possible if M is restricted
to M &m„+A=m +R' „—I-1GeV.

B. Ward- Takahashi identity

(b) +

(c) +

(d) +
e@p"Q~C A„——teRtI-

(Bx~
~ Q vrA„

Bx~ )

This subsection is devoted to the proof of correctness of
the picture developed above. First, the appropriate elec-
tromagnetic interaction vertex will be derived from the
I agrangians (21) and (22) by minimal coupling. Then
the "reduced" formalism will be introduced to keep track
of the COP. Finally it will be proven that the WTI is ful-
filled.

Since the photon is the gauge field of local U(1) symme-
try, it is introduced into the Lagrangian by substituting
p„—+ p~ —eQA&, where Q is the charge operator. This
leads to the usual interaction terms for nucleons and pi-
ons:

(e) +
2 2

q &4m&

(f) +

FIG. 2. Loopwise expansion of the irreducible nucleon ver-
tex. (a) is the free vertex, (b) and (c) come from coupling of
photons to charged hadron lines of the propagator in Fig. 1,
(d) and (e) arise from contact terms due to pseudovector cou-
pling of pions to nucleon and A, and (f) is the contribution
of the decay A ~ Np.

(b)

FIG. 4. Possible cuts of the loop diagrams. The cut in (a)
corresponds to the decay of the oG-'shell internal nucleon to
an on-shell nucleon and a pion; the cut in (b) corresponds to
vr+m annihilation if the photon has high enough invariant
mass, or to two-pion production if the incoming nucleon is far
enough off shell.



MICROSCOPIC MODEL OF THE TIMELIKE. . . 955

to a contact term because of the derivative in the pseu-
dovector coupling of pions and nucleons:

outgoing particles, respectively. Note that the vertex so
constructed obviously fulfills the WTI of a &ee particle:

= —e 4'p&p"~@Q ~A„
2m

and to terms &om E~.

e@~(pAggsv + 'Yy9) v + pvgA~
p

Vi y~y )—Qr @~&"
—e 4'~T4 RA& + H.c.

2m

The operators Q iv ~ return the appropriate charge.
Since the L can decay into a p and a nucleon, an ad-
ditional term must be included in the Lagrangian:

„,=i ' {4~q,q"T'4F„„+H.c.)2m

The corresponding vertex is ps(p q~ —p . qg~ )Gi where
the factor g2/3 from T and the coupling constant have
been absorbed in Gi. According to [28] this vertex is
mainly responsible for the Ml multipole which domi-
nates the decay. q is the momentum of the outgoing
photon. Note that the index p of the above vertex con-
tracts with the 4, while the index v contracts with the
photon Geld.

To prove gauge invariance of the model developed in
this paper, three steps need to be done. To obtain a
gauge invariant coupling to the pion, the coupling to the
COP needs to be investigated, as well. So, first, the
COP-photon interaction vertex is constructed, and then,
as a second step, the effective pion-photon vertex is con-
structed to fulfill the WTI locally using the reduced for-
malism of Gross and Riska [22]. The third step is to
actually prove the WTI for the photon-nucleon interac-
tion.

Since the COP is not a fundamental particle, it does
not appear in the Lagrangian. Therefore so far it does
not interact with the electromagnetic field. To obtain
gauge invariance it needs the same interaction vertex as
the pion:

I'.".,(p, p) = I'",(p p) = Q (»+» )"

where p and p' are the momenta of the incoming and
I

(„- ')„r:.,( ', ) =.Q. (

= eQ D, '{p) —D, '(p')] . (25)

Next the reduced formalism is introduced. This part
of the paper follows closely [22], whose authors treat the
cutoff function f, as a contribution to the pion polariza-
tion function, which is possible because f, is a function of
the pion momentum only. The reduced pion propagator
D~(p) is defined as

which defines the polarization function to be

11(p') =(p'- .')[1 —f (p')]

It has the necessary properties II(p2 = m2 ) = 0,
BII/Bp ]~~ ~ = 1 —f, (m ) = 0 because f, (m ) = 1.
Thus DR(p) can be viewed as the fulI propagator in this
model.

The WTI requires a relation between the ful/ propaga-
tor and the irreducible vertex:

(»
—p')~l'";„(&' &) = eQ- DIi'(&) —Dz'(p')

Multiplying by the full propagator on each side gives the
requirement

b' —& ) DIi(& )I,"„(& &)DIi(&)

= eQ- [D~(p') —D~(p)] . (26)

Requirement (26) can be satisfied with the following
choice for the irreducible vertex:

I',"„(p' p) = (m.' —A')'[I'."., (&' &)D (&)D-(»)
+D.(&')r:.,~&', p)D. (p)

+D-(p') D-(p') I'.".,(»' &)]

where I',", (p', »i) and I'& (p', p) are the individual ver-
tices of the &ee particles. This is pictorially represented
in Fig. 3 and can be shown as follows:

(p —p')„D~(p')I,"„(p',p)D~(p) = .(m —A ) eQ (D, (p')[D, (p) —D, (p')]D, (p)D (p)D, (p)

+D.(&')D-(&') [D. '(» ) —D. ' {» ') ]D-(&)D.(p)
+D.{p')D.(»')D. (S')[D (») —D (p')]D. (p))

= (m —A ) eQ [D,(p')D (p')D, (p') —D, (»i)D (p)D, (p)]
= eQ- [D~(p') —DR(p)]

using the definition of D, (p) in (24) and the fact that the
free vertex fulfills the WTI with the free propagator (25).

The naive picture, developed in the previous subsec-
tion, to couple a photon to each of the charged parti-
cles then very naturally emerges &om the requirement
of gauge invariance. This simplifies the numerical treat-

I

ment of such processes considerably because the self en-
ergy of the pion need not be constructed explicitly; only
&ee propagators occur, and, therefore, the pole structure
is much more transparent.

On the other hand, the reduced formalism provides
a simple way to prove gauge invariance of the model.



956 H. C. DONGES, M. SCHAFER, AND U. MOSEL

This is demonstrated for the exemplary case of a nucleon-
pion loop, where, in order to reduce the eII'ort, the pseu-
doscalar coupling is used. The results also hold for the
pseudovector case if the contact terms are taken into ac-
count. For the proof only two diagrams need to be con-
sidered: the photon couples to the internal nucleon [Fig.
2(b)], and the photon couples to the internal pion [Fig.

2(c)]. The pion propagator must be replaced by the re-
duced propagator and the vertex correspondingly by the
irreducible vertex. For the moment the isospin factors
are neglected; at the end they wiH be considered for pro-
tons and neutrons separately. With q„= (p —p')„one
gets for diagram 2(c) using (26)

d4kq„gp So(k)gp, 'D (p' —k)(—)I',".„(p' —k, p —k) D (p —k)

d4I= e gp5i Sp(k)g»iQ (D~(p' —k) —D~(p —k)] . (27)
(27r) 4

Equation (27) is equal to the difference of self energy diagrams, but, since Q is still left in the expression, it is only
that part of the self energy which is due to charged pions. The remaining contribution of the neutral pion comes from
diagram 2(b):

d4Xq„g»isp(p' —k) (—ieQNV")isp(p —k)g»iD~(k)

(28)

d4I
g»Sp(p' —k) QN [S (p k) —S —(p' —a)]S.(p —a)g»D„(k)

(2vr) 4

a4k= e gp5iQN(Sp(p' —a) —S,(p —k)]g»iD„(k)
(2vr) 4

For an incoming proton only the vr+n loop contributes to
(27) and gives an isospin factor 2; the vr p loop contibutes
to (28) with an isospin factor 1. Adding both, one finds
exactly e[Z(p') —Z(p)]. For an incoming neutron the

p loop contributes to both diagrams with a factor of
2; however, since the charge operators are present, there
is a relative minus sign between (27) and (28), such that
they cancel exactly. The vr n loop contributes to neither
diagram.

The WTI requires for the nucleon

4 NNp(P & P)

= eQN[S '(p) —S '(p')1
= eQN[p. p —m —Z(p) —p. p'+ m+ Z(p')]
= Q [~ q+~(p')-&(p)]

Obviously the direct term [Fig. 2(a)] accounts for the
p . q whereas the vertex corrections exactly make up for
the self energy. This proves gauge invariance up to the
desired order in the strong coupling constant. The proof
for pseudovector coupling or for the case of an internal
L follows the same scheme as outlined above.

With the presented method the electromagnetic ver-
tex correction can be constructed &om the self energy
given to the desired order in the strong coupling con-
stant. It is given by just adding external photon lines
to each propagator corresponding to a charged particle.
If a cutoÃ function is needed it can be absorbed in the
reduced formalism, which is powerful enough to allow a

proof of gauge invariance, on one hand, and simple to
implement numerically, on the other hand.

IV. ROLE OF VECTOR MESON DOMINANCE

The idea of vector meson dominance was first intro-
duced by Sakurai [5]. It supposes that the photon couples
to the hadron by first converting to a vector meson (a p
meson specifically), which then couples to the hadron.
The idea was first investigated for the electromagnetic
form factor of the pion, where it turned out to be suc-
cessful. For timelike momentum transfers the structure
of the p-meson propagator shows up clearly. Further-
more, based on the assumption that the p meson is the
"gauge boson" of local isospin rotation, Sakurai intro-
duced the vector meson universality hypothesis, which
states that the p meson couples to all hadrons with the
same universal coupling constant g~, which is equal to
the p-p coupling constant g~~. If this is true, the electro-
magnetic form factor of the proton should have the same
shape as that of the pion.

From electron scattering on nucleons one knows that
the spacelike form factors are well described by the dipole
fit [1]. This is not in agreement with the simple assump-
tion of VMD, which always results in monopole form fac-
tors. For this reason a number of resonances besides the
p meson are introduced. Their coupling constants to the
nucleon are determined by a fit to the data [2,3], in a so-
called pole fit. In the calculations of Ref. [2], furthermore,
information on vrN scattering is included. By constrain-
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ing the coupling constants it is possible to eliminate the
leading monopole term and thus to obtain a dipole shape.

These pole Gts can be analytically continued into the
unphysical region (nucleon on mass shell, timelike mo-
mentum transfer of the photon below the NN thresh-
old). A rich, dominant pole structure shows up, which—if it were observable would contribute a direct proof
of VMD for the nucleon. The pole fits also predict the
behavior of the form factors in the timelike region above
the NN threshold. Recent data taken at LEAR [4] show
disagreement with the fit obtained by [3] on the basis of
the VMD hypothesis.

It was pointed out by Hohler and Pietarinen [15]
that, besides the poles in vr+m annihilation, the pro-
cess NN —+ ~+sr is also important to describe the form
factor of the nucleon. The failure of the pole fit of [3]
most probably is linked to this. It is thus an interesting
question to investigate if AN scattering inQuences the
picture of VMD considerably.

Since the information is hidden in the unphysical re-
gion, the experiments must be performed using ofF-shell
nucleons. It must thus be checked if the off-shell depen-
dence of the form factor interferes with the VMD picture.
In this section a scheme is set up to model VMD for pions
as well as for nucleons, which in Sec. V will be combined
with the off-shell information.

A. Coupling of photons to pions

2

E.( ') =1+
gp~ m2 —im pI'p (q2) —q2

2
gu vr g

g„~ m2 —im I' (q2) —q2
(33)

Complete vector meson dominance (VMD) assumes that
g~ = g~& ——g~ [5] and neglects the coupling to the u
meson completely. Under this assumption (33) reduces to
(29). The constants g~ and g~~, however, can be inferred
&om the decay properties of the p meson, p —+ a+sr and
p ~ p ~ e+e . By converting the measured widths [29]
into coupling constants one finds gp = 5.9 and gpss
5.1. So the universality criterion is almost fulfilled, but
not exactly.

To calculate the ratio g /g ~ one uses

B„A„—O„A&, g~z and g~ are the coupling constants of
the p meson to the photon and the pion respectively, and
g ~ and g are those for the u meson.

Note that with the tensor coupling in the Lagrangian
(31) and (32) the photon —vector-meson vertex turns out
to be proportional to q . In this case the contributions
of the vector mesons to the photon polarization function
vanish for q = 0; the photon thus remains massless very
naturally, whereas in the other case more involved con-
structions are needed to keep the photon mass zero [5].
Also the coupling of the Geld tensors is gauge invariant
by deGnition.

For the form factor one gets

m2
I' (q') =

m' —im pl'p (q') —q' (29)

where mp = 0.77 GeV is the mass of the p meson and

' —4m' '~'
I'~(q ) = 0.2458 O(q ) 4m )

g

describes the decay of the p meson into two pions, which
is with a contribution of more than 99% the dominant
decay channel.

The coupling that leads to such a form factor can be
modeled by the following Lagrangian density. Since the
only processes of interest for this discussion are those
competing with the coupling of a photon to the hadrons,
only the neutral vector mesons p and u will be consid-
ered

The electromagnetic form factor of the pion can be
parametrized as

2 2g,./g„r, .. r. . .
g2 /g2 I ~ . I' ~,+,— 0.0172

This shows that the ~ contribution to the form factor is
much smaller than that of the p. Nevertheless, it shows
up in the form factor because of the rather small u width
which results in the structure on top of the wide bump
stemming from the p meson (see Fig. 5). The picture that
emerges is thus a little different &om complete VMD: the
best agreement with experiment is reached if one relaxes
the assumption of vector meson universality and allows
all particles, the photon and the vector mesons, to couple

xp. Data
MD

10

8 = —([0„~i(gp p„+ eA„)Ts+g (u„]vrj
2
x ([B~ + i(g~ p" + eA")Ts + g (u"] ~)

1 2 1 p g/

2 4
——m orts ——F„„F + Cp~+ 8 ~,

1 v 1 2= ——GP G" + —m p~p"—P'7 4 Pv P 2 P P (31) -0.2 0.0 0.2 0.4 0.6 0.8

q [Gev ]

1.0 1.2 1.4

4~"- F„„G""
2g

(32) FIG. 5. Electromagnetic form factor of the pion. The data
are taken from [23,30,31]; the solid line is obtained using (33)
and adding a similar contribution for the C meson.



958 H. C. DONGES, M. SCHAFER, AND U. MOSEL 51

to the hadrons with the appropriate coupling constants.
In principle also the phases could be chosen to correctly
describe the p-ur interference [1]. However, for the argu-
ments in Sec. V the current agreement of data and theory
is sufhcient.

B. Coupling of photons to baryons

In this subsection the previously developed method
will be carried over to baryons, and to the proton in
particular. As stated in Sec. II the electromagnetic form

I

factor has an isoscalar and an isovector piece. By the
VMD hypothesis these are related to the isoscalar cu me-
son and to the isovector p meson, respectively. If one
assumes a Lagrangian density

p 1
iB —gp~rs p —gwtv(u ——(1 + ws)eA

2

—m 4+ Zp~+ 8 ~
——E""F„

caP f 4 p 1/

with Zp~ and 1 ~ f'roin (31) and (32), one finds

2
y". ~ (W', W; q') ~ F,'v'(W', W; q') + F,' '(W', W; q')

2

+I", '(W', W;q ) (34)

E,'& and E,'& contain the direct coupling to the photon
I

and E.' ' contains the coupling to the vector mesonsi,cui p
with the appropriate coupling constants. The structure
of this Lagrangian density is guided by a gauge principle
and thus minimal coupling for the vector meson fields.
Additionally there exists a tensor coupling of the form

I

in this crude approximation be assumed to be equal. Also
from [32] one finds gpiv/gp~ = 0.47 which is surprisingly
close to 1/2. It must be emphasized, even though this is
only a qualitative discussion, that the numbers obtained
are close to what is obtained by other authors (Table I).
So as a summary one has for the proton

o.""G„
4m 4m 1 q+i,proton(q ):1 +

2 m2 —im I' jq2j —q2

As a useful example the simplest case with the assump-
tion of no further substructure of the nucleon will now
be discussed. It is defined by the Lagrangian given above
and neglects all couplings to further mesons like pions.
Section V will combine the picture developed in Sec. III
with the ideas given below to complete the scenario.

For this simple example one Snds P,'& (W', W; q ) =
I',"v(W', W) q ) = 1/2, I'," '(W', W| q ) = gwiv/gw~, and

+,'~'(W', W; q ) = g p/ivg ~p. In principle there will be
contributions to E2 by the tensor coupling of the vector
mesons, but these contributions cannot account for the
anomalous magnetic moments of proton or neutron since
they are weighted with q2 and thus do not appear for
real photons. So the anomalous magnetic moments are
genuinely due to the inner structure of the nucleons.

The ratios of the coupling constants can be deter-
mined with the help of meson exchange potentials for
the nucleon-nucleon interaction; if one takes, e.g. , [32]
one finds gpiv/g iv

—0.26. From the ratios of the decay
widths one infers gp~/g ~ = QI' ~,+ —/I'p~, +,— —0.3.
These ratios are remarkably close to each other, and will

1 q+-
2 m2 —im I' (q2) —q2

For spacelike q and under the further assumption m~
m = mv one finds Fi,p»«n(q ) = v/( v —q ), and
Ei „,„t, „(q2) = 0. This establishes the commonly be-
lieved VMD hypothesis. The result falls short of explain-
ing the well established dipole fit to the electromagnetic
form factor [1] since it is only of monopole structure.

Concluding, one can state that the pion is essentially
structureless, and that probably all of its size, if tested
electromagnetically, is due to the p meson. The nucle-
ons obviously have structure besides that due to VMD.
This is very much in the spirit of Iachello, 3ackson, and
Lande [16], who introduce a further function to take into
account the short-range part of the interaction, or of the
two-phase model of Brown, Rho, and Weise [17], who ex-
plicitly introduce contributions of the quark core. Also a
lot of work has been done to model the structure of the
nucleon by taking into account the meson cloud in terms
of the exchange of virtual pions [13,14].

TABLE I.. Comparison of coupling constants in VMD-like pole its.
gw N /gwp gs iv/gc ~

Hohler et al [2].
Dubnicka [3]
Gari and Kriimpelmann [33]

0.52
0.376
0.377

0.98
0.418
0.411

includes vrN phase shifts in p already
remaining strength in higher poles
remaining strength in direct coupling
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C. Gauge invariance and VMD

At first sight VMD spoils gauge invariance, since even
for the &ee vertex and propagator the WTI is no longer
ful6lled in the simple model developed above:

mvqI'"=eV q
mv q

This can be restored by using the same technique as for
the pion in Sec. IIB. Instead of the p~ coupling for the
vector mesons a modification can be used:

„p.ql
~vair = g&~

I &
J

(36)

This vertex changes only the longitudinal part of the
electromagnetic vertex (and thus contributes only to Fs)
since j„I'v~~ ——gvN j„p" and restores the WTI since
now qpI vN~: 0

V. RESULTS

Using dispersion techniques, Hohler and Pietarinen
[15] pointed out the relation between pion scattering
phase shifts and electromagnetic properties of nucleons.
Because of a lack of higher lying resonances, it cannot
be expected that a simple loop expansion like the one
developed here can reproduce the required phase shifts
for mN scattering in the entire energy regime under con-
sideration. However, from the Lagrangians (21) and (22)
the phase shifts in the P11 and P33 channels can be suc-
cessfully calculated close to threshold [34]. On the other
hand, the arm —+ vrvr amplitude in the J = T = 1 channel
can be best described by the p resonance. All important
low energy thresholds are included for W & m by the
inelastic channels in the loop expansion, as well as the
thresholds for q ) 4m by using the correct momentum
dependent p decay width as shown in Fig. 5. So it is
natural, and no double counting is involved, to combine
the loop expansion approach (Sec. III) with the idea of
vector meson dominance (Sec. IV).

The form factors are thus constructed in three steps.
First, all diagrams of Fig. 2 are calculated with the La-
grangians &om Sec. III. These diagrams form the contri-
butions to F,"s (W', W; q ) and F,'v'. (W', W; q ). Next,
these diagrams are calculated for a coupling to the neu-
tral vector mesons instead, using the respective experi-
mentally determined coupling constants for the p and u
mesons to the hadrons and the photons, resulting in the
contributions to F,' '(W', W;q ) and F '(W', W;q ).
Combined as in (34I, these contributions give the com-
plete irreducible vertex. Solving a system of linear equa-
tions (see the Appendix) finally yields the irreducible
form factors. The full form factors are obtained by ap-
plying (19).

The relevant coupling constants are determined by ex-
periment and symmetry considerations and are given in
Table II. The ratios between the couplings of the pion to
nucleons and A's based on the SU(2) xSU(2) considera-

TABLE II. Coupling constants.

g~~~ 13 45) g~~)r 22 86) g~~)r 10 76
g~~ ——8.34) g~~ ——14.18) g~~ ——6.67
gN'~p: 7 26) gN ~p: 12 35) g~~p: 5 81

Gg ——2.5 GeV
w~= —6, e =0

A = 1.2 GeV

tions of [35] are carried over to the p and u meson. The
absolute values of the pNN and uNN vertices are taken
from [32]. The ANp coupling constant Gi is chosen to
lie in between the two values from [28].

So, besides A, no &ee parameter is involved. Because
the cutoff only regularizes the divergent term the results
still need to be renormalized. In this paper the follow-
ing renormalization scheme is employed (quantities with
superscript R denote renormalized quantities):

W* (W) = W*(W) + c~, m* (W) = m*(W) + c

fS S gf 88

The numbers cw, c, and Z are constants, independent
of q or W; they can be determined from Eq. (17). One
finds

f+„+ (m;q = 0) =
WQR gR

W —m (37)

where p stands for proton. For the renormalized theory
one needs

WgR +R
~ '(p)~o(p) = A+(p)

WQR gR
+A (p)

W —+m
1=A++A- (38)

Comparing the coeKcients of the projection operators, it
weR sR

turns out that in this limit w goes to 1, which is
equivalent to the statement that the full propagator has
a pole with unit residue at W = m. Therefore one has
W' (m) = m* (m). It cannot be deduced, however,
that W* (m) = m and m* (m) = m, because for W -+
m the projector A becomes zero itself, and thus there
is no constraint on W* (m) + m* (m).

For a pole of first order one has Res [f(z); zo]
lim, ~„(z —zo) f(z). With the help of this, one can

++Rread off from (37) that 1/fi+„+ (m;0) is the value of the
residue (Res) of the propagator and must thus be equal
to 1. This residue is adjusted with the wave function
renormalization constant Z. Therefore one must choose
Z = 1/fi+„+(m;0). It turns out that the full form fac-
tors are renormalized automatically since, because of Eq.
(19), the wave function renorrnalization constant drops
out. In the actual calculation Z = 0.37 is found. For the
self energies one gets W'(m) = m'(m) = 0.9m, and thus
Z(m) = (0.1 GeV)(pp —m), which is a reasonable value.



H. C. DONGES, M. SCHAFER, AND U. MOSEL960

A. On-shell form factors

Figure 6 shows the results for the full on-shell form
factors I"i+&+(q ) for the proton (a) and (c) and neutron

(b) and (d). Note that in this case the full form factor
is equal to the irreducible one. The squares are calcu-
lated Rom the dipole fits to G@(q ) and GM(q ), which
describe the data for these momentum transfers up to a
few percent in this energy range [1]. In Fig. 6(b), in ad-
dition to the dipole fit, information about the deuteron
form factor has been taken into account. The two curves
of squares correspond to the extreme parametrizations of
[36] to indicate the theoretical ambiguities in the descrip-
tion of the NN potential for the deuteron.

A severe test of the model, I"i++„~, „(q = 0) = 0,
is well fulfilled. For the proton, furthermore, Ez++ is
reproduced very well. The radius of the proton comes
out to be

g~++( 2)
(r') = 6

Qq2

E&++ for the neutron is comparable with the data; it falls
in between the theoretical uncertainties of the experimen-
tal analysis. As discussed in the toy model of Sec. IV,
the VMD contribution to the form factor accounts for
a monopole shape only. Figure 6 indicates, however,
that in the full model a dipole shape is obtained. There-
fore it is possible to conclude that, in addition to the
explicit treatment of the vector meson pole terms, the
vr-loop corrections are thus necessary to obtain the ex-
perimentally observed dipole shape of the form factors.
This conclusion has been discussed previously by Gari
and Kriimpelmann [33] in a qualitative way, and is in
agreement with the findings of early dispersion theory
treatment of the form factors. These results give some
confidence in the validity of the off-shell results.

Figures 6(c) and 6(d) display the behavior of I z++ (q2).
The shape of the form factor is in agreement with the

I

Proton (b)
I I

Neutron
0.02-

1.0-
~ ~

0.000.8-

0.6-
-0.02-

0.4-
FIG. 6. Ei+~+(m, m; q ) for (a) and (c) pro-

ton and (b) and (d) neutron. The solid line
is the model calculation; the symbols repre-
sent experimental results as explained in the
text. For I"2 the experiment is rescaled to the
anomalous magnetic moment of this calcula-
tion.
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data in the momentum range plotted; however, it does
not show the correct behavior at larger momenta. Fur-
thermore, the model cannot account for the full size
of the anomalous magnetic moment. The values found
in this calculation are Kz

——1.45, K, = —1.65, to be
compared with the experimental values of K„p = 1.79,
v "I' = —1.91. As mentioned in Sec. IVB, in the I.a-
grangian given in (31) and (32), there is no contribution
of the p tensor coupling to E2 for real photons. This is
in contrast to [14], where, by multiplying the bare ver-
tex with K~/2 x m&/(m& —q ), an anomalous magnetic
moment is induced. Such a procedure is highly ques-
tionable because it can be argued that the tensor cou-
pling of the p meson to the nucleon is just due to the
loop corrections discussed here [37]. To avoid any double
counting the tensor coupling must, therefore, not occur
in the direct diagram. In the present calculation, it has
been taken into account only for the diagrams with in-
ternal radiation to simulate the higher order corrections
in a schematic way. This is a crude approximation of
the iteration scheme devised in [38]. The tensor coupling
influences only the q dependence of E2, not its magni-
tude at q = 0. A number comparable to the magnetic
moment calculated here can be obtained by dividing the
result of [14] with a meson cloud by their result for the
bare vertex, giving roughly 2/3. Also [13] gets a number
which is too small (r„=0.5).

Figure 7 shows the irreducible form factors for projec-
tions to negative energy states. fi+ for the proton is
not constrained to 1 by (38). Its value of 0.9 at q2 = 0
is directly related to the scalar and vector self energies.
Neither is fi+ for the neutron constrained to 0. The
magnetic form factors show a change of sign as one goes
to higher q . Their values at q = 0 are drastically differ-
ent &om f2++(q = 0). The full form factors I',+ can be
obtained by rescaling f,+ by 1/0.9. Even though these
form factors never play a role in experiments, they al-
ready indicate that all theoretical calculations that rely
on the asumption E,.++=E,-+ are incorrect.
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FIG. 7. f~+2 (m, m; q ) for (a) and (c) pro-

ton and (b) and (d) neutron.
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The models [13,14,25] all approximately agree with
each other for the electric form factor. Since their mag-
netic moments are off by more than 50% from experi-
ment, an important process must have been missed in
all these calculations. There exists strong experimental
evidence that a large part of the magnetic moment is
due to spin flip transitions, especially to the 4 resonance
[18]. The present calculation shows that about half of
the magnetic moment is carried by the diagram with the
L m Np decay mode, which is dominantly M1, a mode
that was not included in [13,14,25].

It must be stressed that the underestimation of v does
not depend on the cutoff A used in the calculation. Figure
8 displays the A dependence of v„and v . The magnetic
moments are optimal in the 1 GeV region, giving confi-
dence in the combination of the regularization and renor-
malization scheme employed. One clearly finds for the
larger values of A that the magnetic moment decreases.
Also for small A there is the onset of a decrease, which
shows that the choice of the cutoff parameters cannot

solve the disagreement. This is in strong contrast to [37],
where the tensor coupling increases monotonically with
A. The difference can be traced to the renormalization
procedure of [37], where a subtractive renormalization is
used, which is valid only if the wave function renormal-
ization constant is close to 1; this certainly is not the
case in the present calculation (Z = 0.37). Note that the
agreement of state of the art soliton models that include
the 4 resonance [12] with the magnetic moment is of the
same quality as the agreement of the model presented
here.

Bos et al. [25] dress the nucleon with a scalar/isoscalar
cloud. They use a 0. meson with a mass of m = 0.8 GeV.
Since in this case the photon only couples to the nucleon,
this gives a large weight to the core contributions. Still,
the magnetic moment is only around 0.7. If a contribu-
tion like this is included in the present calculation, there
is some effect, which is displayed by the dashed line in
Fig. 8. The parameters chosen here are m = 0.56 GeV,
g = 11. The effect is due to a reduction of the wave
function renormalization Z. This increases the magnetic
moments somewhat; however, without coming anywhere
close to the experimental point.

Prot

I

1.0 1.5
I I I

2.0

A [GeV]

I

2.5
I

3.0

FIG. 8. The anomalous magnetic moment for proton and
neutron as function of the cutoff parameter A. The solid and
dashed lines display the result with and without contributions
of the o meson, respectively.

B. Spacelike half-ofF-shell form factors

Figures 9 and 10 show the off-shell dependence of
E~++(W; q ) and E2++(W; q2) for the proton. In order
to see the effects of the pure loop corrections all con-
tributions due to VMD were switched off in the upper
panels. Part of the purpose of the following discussion
is to show that not only in the timelike electromagnetic
form factor can one see the inHuence of the NN ~ urer

scattering [15], but also in the half off-shell form factors.
The left column of Fig. 9 shows Fi++. For W ( 1.2

GeV the slope of the real part of Ez++ increases with W,
corresponding to an increasing charge radius, which is
in agreement with [13,14]. The figure shows that for W
above 1.4 GeV the radius stays more or less constant; the



962 H. C. DONGES, M. SCHAFER, AND U. MOSEL

real part falls rather linearly with —q . The imaginary
part reBects the possibility that the incoming nucleon is
far enough off shell to decay into final states of one or
two pions plus a nucleon or a L d.uring the electromag-
netic scattering process. Because of the various inelastic
thresholds, the imaginary part is expected to depend on
the phase space of the decay products. This phase space
dependence, however, is mixed with self energy correc-
tions due to the WTI, which themselves have imaginary
parts. Thus the imaginary part of Ez++ does not show a
clear behavior as q and TV increase. The absolute value
of the form factor including VMD shows only slight de-
pendence on the off-shellness of the incoming proton for
y++

For F~+ (right column of Fig. 9) the situation is dif-
ferent; above W = 1.4 GeV it rises fast. Even after in-
cluding VMD, the changes due to off-shellness are clearly
visible. Calculations of cross sections for electromag-
netic processes including off-shell nucleons and the cor-
rect form factors must be performed in order to show the
importance of the negative energy components.

For the magnetic form factor Pz++ (Fig. 10) there is a
dramatic change in shape for the larger values of W in
the real part, whereas the imaginary part mainly seems
to grow with phase space. At q = 0 the real part of
F2++ develops a maximum as a function of TV between
R' = 1.4 GeV and TV = 2 GeV; the absolute value,
on the other hand, increases rather smoothly.

A detailed analysis of the contributions of specific dia-
grams to the full form factor reveals that the above effects
are caused by the meson cloud. Figure 11 shows the de-
composition for R' = 0.939 GeV and W = 1.4 GeV in
comparison. The full symbols show contributions of ra-
diating pions [Figs. 2(c)—2(e)], i.e. , the meson cloud; the
open symbols correspond to radiating baryons [Fig. 2(b)],
i.e., the core. Squares describe diagrams with an internal
nucleon and circles represent diagrams with a propagat-
ing L. The solid line is the contribution of the direct
diagram [Fig. 2(a)] and is counted as a core contribu-
tion. Contributions from the diagram of Fig. 2(f) are
indicated by dashed lines.

It is quite important to notice that for I"z for both
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values of W the cloud contributions appear with different
sign, leaving a more dominant core, whereas for E2 the
core contributions, at least for W = m, tend to cancel.
So while E~ is core dominated, E2 is more influenced by
the Ineson cloud. The most important contribution to E2
is the transition of the 4, in agreement with the analysis
of the Gerasimov-Drell-Hearn sum rule [18].

An obvious change in Fz++, if one goes off shell, is the
increased importance of the meson cloud from 15% to
35%. This is clearly an important sign that the mesonic
excitations must be carefully treated in all models for
off-shell form factors. Already in the on-shell case the
contributions with a propagating 4 are of some impor-
tance.

Prom the slopes one can deduce that the contributions
of radiating pions (cloud) reach further out than those
of radiating baryons (core). Since the different contribu-
tions show different slopes at q = 0, which is especially
true for the off-shell case, it is not possible to give an ad-
equate parametrization of the q dependence of the form
factor using a single parameter, if one wants to maintain
a cloud/core picture to describe the extension of the nu-
cleon, as in the semiphenomenological models of [16,17].
This is even more clearly visible for the magnetic form
factor.

In going &om the on-shell point to 1.4 GeV, the ma-
jor changes come &om the diagrams 2(c)—2(e), which all
contribute to the cloud. For Ez++ these fall off faster at
1.4 GeV; for E2++ the shape is completely determined by
these diagrams and all other contributions stay rather
constant. A further analysis of the cloud contribution
shows that the diagrams containing the contact term do
not show drastic changes in shape. So the responsible
diagram is 2(c). This diagram is the only one that allows
for the 2' decay. Since this decay mode is not incor-
porated in the self energy diagrams at the present level
of the loop expansion, its threshold behavior cannot be
changed by the WTI. This leads to the assumption that
this effect is caused by the 2' threshold. Including a more
realistic treatment of the 4 decay width is not expected
to change this picture, because once again the WTI will
diminish the threshold effects.

C. Timelike form factors
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FIG. 12. Ii~++ for the proton in the full range of applicabil-
ity of the model. The contour lines are steps of 0.1 in logos lEl.
Various thresholds are indicated by dashed lines. The white
region is experimentally inaccessible.

1.0

butions are suppressed because the pions are in a rela-
tive p-wave state, the influence of this channel increases
smoothly with momentum, as can be seen in Fig. 13.

It is due to the WTI that Fz does not change very
much when going off shell. Each off-shell effect in the
vertex is nearly canceled by the self energy corrections
(19), which have the same thresholds. Interestingly, this
cancellation seems to be independent of q . This is not
entirely true (see the last subsection); however, the q
dependence is so much dominated by VMD that other
effects, which depend on q, are hardly visible. This is
a very important result. If VMD exists for nucleons as
well as for pions, it will clearly be observable, since it is
not reduced for off-shell nucleons in the case of Eq, and
is still dominant for F2.

For TV = 2 GeV Fig. 14 displays the scalar and vector
contributions of the direct coupling graphs and of vector
meson graphs to the form factors. Prom this information
the proton or neutron form factor can be constructed.
For Fqsy~ it shows a smooth behavior; the minimum in
the vector imaginary part is due to the sr+sr channel.

Figures 12 and 13 show the electric and magnetic form
factors for the proton, respectively, in the entire range
covered by this calculation. The contour lines show
logzo ~E&+2+ (W; q ) ~. Various thresholds are indicated by
dotted lines. The region which is not accessible by ex-
periments (unphysical region) is indicated by the white
area; all dispersion relation approaches rely on analytical
continuation into this region.

It must be emphasized that at this level all inelastici-
ties up to the 2m channel are included in the vertex either
by the p ~ em decay, or by ¹ ~ A + n7r (n = 1, 2).
While Fq shows almost no changes as one goes off shell,
for E2 the influence of inelastic channels remains visible.
The behavior of the meson cloud contributions influences
the form factor. A change of E2 at the various thresholds
can be observed. Since at the 2' threshold the contri-
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FIG. 13. Same as Fig. 12, but for I'"~++.
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The pure photon channels are clearly least important as
compared to the vector meson channels. The figure shows
the broad p and the narrow u resonance. Since both
mesons couple to the nucleon with about equal strength,
the cu contribution is an order of magnitude larger than
the p contribution at peak level because of the ~'s small
width. Note that in the case of E2 for the vector meson
contributions the role of the imaginary and real parts has
changed, indicating that the imaginary part of the loop
expansion without VMD is significantly larger than its
real part. This is consistent with the situation in the
spacelike sector (Fig. 10) and gives rise to interference.
For E~ the contribution of the p meson is of larger im-
portance than for E~.

To show once again that VMD can be observed even
in an experiment involving a half off-shell vertex, a cut of
Fig. 12 is plotted in Fig. 15. The absolute magnitudes of
the single contributions in the photon, ~, and p channels
as well as the absolute magnitude of the coherent sum are
displayed for timelike momentum transfers for the proton
and the neutron at W = 2 GeV. Despite the small width
of the u resonance it is not possible to resolve the p con-
tribution in Eq. The sum is almost exclusively exhausted
by the ~ contribution, while the p on the other hand is
only visible as a broad background. On the other hand,
for E2 the p component is not much smaller than the ~

component; therefore subtle interference effects show up
between the p and u channels, which might be accessible
in experiments on both protons and neutrons.

Experiments on dilepton production in p+ A reactions,
where the m+vr annihilation channel is suppressed, may
thus offer a chance to study medium modifications of the
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FIG. 15. Decomposition of ~P~+~+
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for the proton (left) and
neutron (right) at W = 2 GeV into components coming from
the direct photon vertex, the p meson vertex, and the u meson
vertex. The sum is the result of a coherent superposition of
the single contributions.
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u meson &om the electromagnetic properties of the nu-
cleon in the same way as medium modifications of the p
meson from electromagnetic properties of the pion. Be-
cause the nucleon's form factors are larger than that of
the pion (at peak position ~F

~

= 7), they are visible even
in heavy ion collisions above the background &om sr+sr
annihilation [9]; however, a very good resolution of the
experimental apparatus is required to resolve them.

assumption that E++ = Ei+ must be rechecked.
The model for the vertex used here certainly leaves

room for improvements. Taking into account higher res-
onances, especially of spin 3/2, as well as heavier mesons
will help to improve the magnetic moments. The Rnite
decay width of the L also needs to be incorporated. Since
it has an effect on the self energy as well as on the vertex,
it is expected that due to the WTI the off-shell behavior
of the form factors will not change appreciably.

VI. SUMMARY

To study the production of dileptons in high energy
nuclear reactions one needs information about the half
off-shell timelike electromagnetic form factors, which are
unknown until now. We have, therefore, constructed a
dynamical model based on a hadronic 6..amework to cal-
culate the electromagnetic form factors for momentum
transfers of the photon of —1 GeV & q & 1 GeV and
for nucleons with —1 GeV & p & 4 GeV .

Starting &om an expansion of the nucleon propagator
in pion loops, the electromagnetic vertex is constructed
by inserting external photons to each charged particle
line, thus obeying the constraints due to the WTI. To-
gether with the concept of VMD, this approach includes
at least schematically all endings of the spectral anal-
ysis of the late 1960s [15]. It is possible to maintain
the cloud/core picture that proved successful in semiphe-
nomenological models [16,17]. It is important to include
the L resonance to reproduce the magnetic properties,
which is in accord with an analysis of the Gerasimov-
Drell-Hearn sum rule [18]. The coupling constants and
the cutoff are chosen in agreement with meson exchange
models and symmetry considerations [35].

The momentum dependence of the spacelike on-shell
form factors is reproduced. The charge radius of the pro-
ton is found to be r = 0.81 fm. The electric form factor
of the neutron falls in between the uncertainties of the
data analysis. The magnetic moments are e„=1.45 and

= —1.65, which are much closer to the experimental
values than in comparable calculations [13,14], but still
too small. The better agreement can be traced to the
L ~ Np decay process, which occurs in neither of the
above cited works. A decomposition of the form factors
shows that for E1 the core contributions dominate, while
for E2 the cloud is more important. It also shows that
inelastic thresholds inQuence the form factors. However,
for E1 the dependence is only weak because it is com-
pensated by self energy corrections required by gauge in-
variance. For E2 threshold effects remain visible. The
change of the contributions of the meson cloud is larger
than that of the core contributions.

The weak off-shell effects enable one to study VMD in
the experimentally accessible region of the (W, q2) plane.
It turns out that only the signal of the w meson can
clearly be extracted; the p meson contributions only re-
sult in a broad background. As an effect one has the
possibility to study medium effects on the u very clearly
by measuring the electromagnetic form factor in p+ A
and even in heavy ion collisions.

It is found that calculations which are based on the
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APPENDIX: NUMERICAL DETAILS

The sum of all Feynman diagrams in Fig. 2 results
in the irreducible vertex. To obtain the form factors
from the most general vertex (4) the projection on posi-
tive/negative energy must be performed for in- and out-
going nucleons:

r (p

= A' (J')).f '(~', ~;q'), "A'(p) (A1)

(A2)

The same procedure is performed with the sum S„of
all contributing Feynman diagrams:

T, = Tr v,". A' (p')S„A'(p) (A3)

To obtain the form factors one must equate (A2) and
(A3):

(A4)

While the expressions Ti can be obtained analytically,
the quantities Ti must be calculated numerically. They
can be decomposed into integrals of the following form:

Performing traces over contractions of the vertex with
three linear independent four-vectors v1 ——P" = p' +p
v2 ——q" = p'" —pi", v3 ——p" gives
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T' = ) .):c".;.; (p",»', g')
'll~V )tO

d4I
x (p'k)" (pk)" (k ) /Ng(p', p, k) Res(k, ) =

(~; —1)' dko" -'

1(p', p) =e/, ) Ree(k,'. )
i=1

(A5)

The index d labels the difFerent diagrams contributing to
S„. Ns(p', p, k) contains the denominator of the propa-
gators in diagram 2(d).

d '
The coefficients c„'„' (p', p, (» ) as well as the a;~ in

Eq. (A2) are calculated using the high energy package of
REDUCE [39].

All integrals are of the form

(p'k)"(pk)"(k')a4S
(p tp)

( )4
(a„ —k)2 —m2 + ie

p=1

where ap and mp are the specific momenta and masses
of the propagators in the diagrams. The number N
of factors in the denominator depends on the choice of
monopole or dipole cutofI' and ranges &om 4 to 7. The
integrals are performed numerically.

I(p', p) is solved in the rest frame of the outgoing nu-
cleon, which always exists in the case of half oH-'shell
kinematics. The integration of k is done by contour in-
tegration around the poles of Q„z[(a~ —k) —m„+is]
Let k, denote the poles in the upper half plane. Since
not all poles are of first order, for each k the residue must
be calculated by taking numerical derivatives:

1(p', p) = f def dk with x = cos0 .

Let k;(x) be defined by g(k;(x), x) = 0 (i = 1,2). The
k;(z) are complex functions of x. For z ) xo the imagi-
nary part becomes +~. Below zo an ordinary integration
can be used. Above xo the integral I(p', p) splits into a
principal value integral and an imaginary part

(p'k)" (pk)" (k') (ko —ko)"*
N

(a„—k) 2 —m2 + ie]
p=1

where n; is the order of the pole at A:; . For spacelike mo-
mentum transfer the sum of the residues is a well behaved
function of k. However, in the timelike region it still has
poles because of the physical inelasticities for q2 & 4m„
and p2 & (m+ m )2. These poles are treated with a sub-
traction technique, which will be described below. Since
the momenta p' and p can be chosen such that I is invari-
ant under rotations about the z axis, the P integration
is trivial. The remaining integration is two dimensional.
From now on k denotes ~k~

i i

f(k, x) f(k, z)

Q [k,(, = 0) —k + R (dk /d )]
i=1

f(k, x)
() g~(k, x) [kg(x, e = 0) —k][k2(x, & = 0) —k]

f (kg (x), x) sgndkg/de
) )g~(k, (z), z) k2(x) —k) (z)

f (k2 (x), x) sgndk2/de—G7t O(k2(x
gR(k2(z), z) ky(z) —k2(z)

(A6)

Since P J'o 1/(k —ko)dk = 0, the principal value integral is treated as follows:

f (k, x) f(k, x)
g(k, x) o g(k, x) ).f(k, (x), x) k —k; (x) Q(k ( ))k2 —k2(x) g(k, x)

The integrand is now finite for all k.
If p & (m + 2m )2, then in some diagrams both

functions k, (x) contribute to the imaginary part. In
this case there is a remaining singularity of the type
1/gl —(x/xo)2 at x = zo. The integral is thus con-
verging, but numerically unstable. It can be treated by
a trick similar to the one used above:

~(z) ~*' ~(z) —
V (*o)dx = dx+ ~(p(xo) .

zo zo

After having calculated all integrals in T, , Eqs. (A4) are
solved for the invariant form factors.

Numerical inaccuracies can occur at various points.
For example, in (A5) only the sum of all residues falls
ofI' fast enough in A: so that the integral converges. There
is a delicate cancellation of the summands, which can be
shown analytically, that is hard to reproduce by taking
numerical derivatives. Furthermore, for large k the poles
come near to each other, sometimes too close to take the
numerical derivative with good enough accuracy. This
is worked around by not evaluating the integrand at too
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large values of k. A cutoK is chosen dynamically if the
integrand is small enough. For higher values of k asymp-
totic behavior is assumed and the integral is solved ana-
lytically. Unfortunately, under this assumption the WTI
suffer. They are only fulfilled at the 1% level.

In (A6) problems arise when [xo[ is close to 1. Then
too few grid points of the integration mesh contribute to
the imaginary part. In these cases additional grid points

are created and integration weights are redistributed such
that the integral is performed over at least 10 grid points
in the cos 0 direction.

The numerical difBculties are best under control for a
very simple integration with equally spaced grid points
of equal weights. To obtain an acceptable accuracy up to
400 points in the radial direction and 100 points in the
cos0 direction are used.
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