
PHYSICAL REVIE% C VOLUME 51, NUMBER 2 FEBRUARY 1995

Use of the Nambu —Jona-Lasinio model in the calculation of the density dependence
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Recent works concerning +CD sum rules in nuclear matter have provided a new method for the
calculation of the nucleon self-energy in matter. The results of that program depend strongly on
assumptions made concerning the density dependence of four-quark condensates. If a factorization
scheme is used to express the four-quark condensate values in terms of the two-quark condensates,
the (Lorentz) scalar self-energy of the nucleon is small. However, if the four-quark condensates have
only a weak density dependence, the nucleon scalar self-energy is large and attractive, and is in
accordance with Dirac phenomenology. In this paper our goal is to show how the Nambu —Jona-
Lasinio model may be used to calculate the density dependence of four-quark condensates. As an
elementary example we calculate some of the contributions to a four-quark condensate containing
scalar-isoscalar qq pairs. These calculations suggest only a very small modification of the value of
the scalar-isoscalar condensate in matter relative to the value obtained in the factorization scheme.
However, when we continue our study of the correlator of operators with the quantum numbers of
the nucleon, we encounter some new and important terms among the four-quark condensates. These
have their origin in an exchange process between diquarks in the nucleon and diquarks present in
the nucleons of the nuclear medium (nuclear matter). These terms may be taken to represent the
effects of "diquark condensates" that are present in nuclear matter. If we use the interpolating field
advocated by Ioffe we obtain a correction that eliminates the problematic density dependence of
the four-quark condensates described above, if nuclear matter contains a similar amount of scalar
(T = 0) diquarks and axial-vector (T = 1) diquarks. We believe that our paper provides increased
confidence in the use of +CD sum rules in the study of the properties of hadrons in matter.

PACS number(s): 12.39.—x, 11.55.Hx, 21.65.+f

I. INTRODUCTION

Properties of hadrons in vacuum and in matter may
be studied using @CD sum rules. The basic quantity of
interest is a vacuum (or nuclear matter) matrix of the
time-ordered product of two "currents. " In the study
of the nucleon, these currents are interpolating fields,
rl(x) and rl(y), that have the quantum numbers of the
nucleon. For example, rl(x) creates three quarks at the
space-time point x, and rl(y) destroys three quarks at
the point y. The object of interest is the Fourier trans-
form of i(@p~T[rl(0)rl(x)]~Op), where ~4p) is either the
vacuum or the ground state of nuclear matter. For the
moment let us concentrate on quark degrees of &eedom.
The evaluation of the matrix element of the time-ordered
product may be made using Wick's theorem. (Note that
normal-ordered products are taken with respect to the
perturbative vacuum. ) If there were no condensates, we
would only need to calculate the fully contracted ver-
sion of the operator T[rl(0)rl(x)]. However, in the pres-
ence of condensates, doubly contracted terms and singly
contracted terms of T[rl(0)rl(x)] contribute. The doubly
contracted terms contain the product of two quark prop-
agators, S(O, x)S(O, x). The third quark then goes into
the condensate, yielding an expression proportional to
(qq)p in vacuum, or (qq)~ in matter of density p~.

Proceeding in a similar fashion, we see that the

singly contracted terms of the Wick expansion of
the time-ordered product, T[rl (0)rl (x)], contains a
single-quark propagator S(0, x), while the remaining
four-quark operators appear in condensates such as
(ilrp~u;~uspuk~uis~@p). Here, the u's are up-quark fields,
i, j, . . .are color indices, and cr, P = 1, . . . , 4 are Dirac-
matrix indices. The present work is mainly concerned
with the proper evaluation of such four-quark conden-
sates as we pass &om the study of the correlator in vac-
uum to the correlator evaluated in nuclear matter. [Note
that specific forins of the interpolating fields, rl(2:), will
be described in Sec. IV.]

A very extensive study of @CD sum rules in matter has
been carried out by the group associated with the Uni-
versity of Maryland [4,5]. We are particularly interested
in their results for the nucleon self-energy in matter [5].
The results may be expressed in terms of a number of con-
densates. At the two-quark level (dimension-three con-
densates) one has (qq)~ and (qtq)~, where the subscript
denotes the fact that we are forming matrix elements
between states of nuclear matter. [The first condensate
has the value (qq) p = (Gu)p = (dd)p (—250 MeV)s in
vacuum. ] Dealing only with the simplest condensates, it
was found that the nucleon self-energy had a large, repul-
sive (Lorentz) vector part and a large attractive (Lorentz)
scalar part [1],a result in correspondence with Dirac phe-
nomenology [7] and with Dirac-Brueckner-Hartree-Fock
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theory [8]. The Maryland group then went on to study
various quark-gluon condensates, gluon condensates and
four-quark condensates. We are here mainly concerned
with the four-quark condensates, since the results for the
nucleon self-energy are strongly dependent on how these
condensates are treated [5]. The analysis of Refs. [2—6]
makes use of the factorization hypothesis. For calcula-
tions in vacuum, the factorization hypothesis is repre-
sented by the approximation

(q' q pea qib)o —(q' q p)o(qi.,ea)o —(q' es)o(qi q p)o,
(1.1)

I

where i, j = 1, . . . , 3 are color indices and o.,
P = 1, . . . , 4 are Dirac indices. Here q, is
either an up or a down quark. Using this
scheme, values are given in Ref. [4] for the con-
densates (qriqqI'2q), (qI'i% qqI'2A q), (uI'iddI'2u),
(ur, A"ddr, A"u), (ur, udr. d), and (ur, A"udr, A"d),
where I'i and I'2 are Dirac matrices and the A (A
1, . . . , 8) are the Gell-Mann matrices in the color space.
The results for these condensates are expressed in terms
of (qq)~ and (qtq)~. For example, we present Eq. (A12)
of Ref. [4]:

1 1
(qI'iqqI'2q) p

———(qq) Tr(I'i) Tr(I'2) — Tr(I'iI'2)
C

P P P 1
+(qq), (q&„q), T.(r, )T (&~r, ) — T (r,&~r, ) + T.(&~r, )T (r, ) — T (&~r,r, )

[. C C

(1 2)

I et us further consider the much simpler result that per-
tains when I'i ——I'2 ——1. If all the q's represent either up
quarks or down quarks (that is, if (qqqq) p = (uuuu) p, or
(qqqq)o

——(dddd) p), we have

The use of the Gell-Mann —Oakes —Renner relation [10] al-
lows one to rewrite Eq. (1.8) in the (model-independent)
form of Eq. (1.5).

Now, consider the calculation of (qqqq) ~ in this scheme
[ll). We have

(qqqq), = (qq)', 1— (1.3) (qqqq), = (qqqq)o+ (NlqqqqlN)Ca+ (1.9)

= (qq),
'

I 12 I

, (111
(1 4)

It is useful to write the second term in Eq. (1.9) as two
terms so that we may identify corrections to the factor-
ization approximation,

for N, = 3. Now, there exists a well-known, model-
independent, relation [2], (qqqq) = (qqqq)o + 2(NlqqlN) (qq)oVa

+(N'lqqqqlN) ~~~ + . (1.10)

(qq) p = (qq) o
I

1 —,, S ~
Im.' .' (1.5)

valid to first order in the baryon density p~. Here o.~ is
the pion-nucleon sigma term which has the value 0~ ——

45+8 MeV [9]. Therefore, Eq. (1.5) predicts a reduction
of about 35 percent for (qq)~ relative to (qq) o. If we insert
the relation given in Eq. (1.5) into Eq. (1.4), we find that
(qqqq)~ is reduced by about 70 percent from its vacuum
value, if we only keep terms linear in p~. The vacuum
value, as calculated using the factorization hypothesis, is

(qqqq)p
——(11/12)(qq)o .

There is an alternative way to perform these calcula-
tions. For any operator, 0, we may write [4]

(0) = (0)o+ (NIOIN)p~+ (1.7)

(qq), = (qq)o+ (NlqqlN)~~ +.. . (1.8)

where p~ is the density of symmetric nuclear matter and
(N~O~N) is the spin and isospin-averaged nucleon matrix
element of 0. [Note that the nucleon states are here

normalized such that (P'
~
P) = (2vr) 8(P —P').] For

example,

If we put (qqqq) o
——(qq) o, the first two terms of Eq. (1.10)

are those that would appear in the factorization scheme.
The third term in Eq. (1.10) is a new feature of our anal-
ysis and is defined such that it has its origin in the con-
stituent quarks of the nucleon and does not give rise to
any factors of (qq)p. We suggest that these constituent
quarks, and their associated meson cloud, can give rise
to important condensatelike terms, if the momentum of
the quarks of the nucleon is small compared to large mo-
mentum, Q2, characteristic of the sum rule calculations.

In this work, we will concentrate on the calculation of
terms such as (N~qqqq~N)c and atteinpt to understand
the size of corrections to the factorization scheme. There-
fore, we outline a method for the calculation of nucleon
matrix element of various four-quark operators, making
use of the Nambu —Jona-I asinio model [12,13], general-
ized to include a description of confinement. To this
end, we make use of a quark-diquark model of the nu-
cleon, that is motivated by the dynamics of the NJI
model [14,15]. The organization of our work is as follows.
In Sec. II we calculate the contribution to (N~qqqq~N)c
&om the meson cloud of the nucleon, considering both
sigma and pion fields. In Sec. III we consider the contri-
bution to (N~qqqq~N) ~ from the three constituent quarks
of the nucleon. We calculate only a direct term that has a
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II. THE SCALAR-ISOSCALAR CONDENSATE
IN NUCLEAR MATTER: MESONIC FIELDS

In the previous section, upon use of the factorization
approximation, we found

1
(uuuu) o

——(uu) o 1—
4N

(2.1)

very large statistical factor. The calculation of the corre-
sponding exchange term is quite complicated. In Secs. IV
and V we discuss the correlator for colorless interpolating
fields, il(x) and rti(x), which have the quantum numbers
of a nucleon. Section VI contains some further discus-
sion and conclusions, while various technical details are
given in the appendices. (The reader may wish to pro-
ceed directly to Sec. IV, if he is only interested in our
most significant results. )

In our discussion, a problem arises with respect to no-
tation. In the published work on @CD sum rules in mat-
ter, one has (qq)p = (Gu)p = (dd)p, for example. How-
ever, in discussions of the NJL model, the notation used
is qq = uu+ dd. Rather than adopt still another no-
tation, we attempt to make clear, at each point in our
discussion, which notation is being used.

GQQ CY

()

(c)

p, s
p-k

(d)

p, s p, s
p-k

p, S

FIG. 1. (a) Schematic representation of the operator qqqq,
which annihilates and then creates a qq pair. (b) A nucleon
(heavy line) is composed of three constituent quarks (light
lines). The string of qq "bubbles" may be summed as in the
NJL model. (c) Alternately, a bosonization scheme allows
one to work with meson Gelds that are represented by a wavy
line. (d) The calculation implied by figure (c) may be sim-
plified by considering the contribution of a single quark (see
text). (e) Similar caption to (d), except that we here consider
the contribution of the pion 6eld. That contribution to the
scalar-isoscalar condensate is nonzero only due to exchange
matrix elements.

(dddd) p ——(dd) o 1— (2 2)
the relation

G,
0 = — qq, (2.6)

It is easy to see that (Gudd)o = (dduu)p and that
(Gudd)p = (Gu)p(dd)p. Thus, with (Gu)o —(dd) p,

1
((uu+ dd)(uu+ dd))o ——4(uu)o

~

1 —
~

. (2.3)24N, )
At this point it is useful to change our notation and

introduce

qq = uu+ dd, (2 4)

so that Eq. (2.3) becomes

1
(qqqq)o = (qq)o I

(2.5)

We now write (qqqq)~ = (qqqq)o+2(N~qq~N)(qq)op~+
(N~qqqq~N)cp~ and concentrate on the evaluation of
(N~qqqq]N)c, with the neiv definition of Eq. (2.4). The
form of the operator is such that it is relatively easy to
calculate the contribution arising from the presence of
the sigma meson in the nucleon "meson cloud. "

In Fig. 1(a) we represent the operator qqqq acting first
to destroy and thea create a qq pair. In Fig. 1(b) we
show a nucleon composed of three quarks. A string of
"bubbles, " appropriate to the NJL model, is shown. The
black dots again indicate the annihilation and creation
of a qq pair by the operator qqqq. In Fig. 1(c), the string
of quark-antiquark bubbles has been replaced by a sigma
meson via a bosonization procedure [14,16,17]. We re-
mark that these two pictures may be related by noting

which is used in the bosoaization scheme [16,17]. (Recall
that qq = uu + dd here. ) The coupliiig constant, G„
appears in the NJL Lagrangian

~(*) = (*)( P-,) (*)+ '[(-)'+(-' ~ )']

(2.7)

where m~ is the current quark mass. In Eq. (2.6), g is
the sigma-quark (or pion-quark) coupling constant that
arises upon bosonization. For the work reported here, we
use m~ = 0.30 GeV, G, = 8.40 GeV 2, g = 3.05, and
m = 0.50 GeV. Here m~ is the constituent quark mass
and m is an (effective) mass of the sigma meson. (The
sigma meson is a useful degree of freedom if the meson
momentum is spacelike [17].)

For simplicity, we will approximate the calculation im-
plied by Fig. 1(c) by taking the result to be three times
the values obtained for a single (oa-mass-shell) quark,
calculated as indicated in Fig. 1(d). (Since the contri-
bution of the meson cloud to (N~qqqq~N)c is not large,
this approximation is adequate for our purposes. Similar
approximations have been used in Ref. [13] in another
context. ) We consider the single quark to emit a sigma
meson. That meson is annihilated by the factor qq on
the right of qqqq. The factor qq on the left then recreates
the sigma meson which then is absorbed by the quark, as
depicted in Fig. 1(d). With the labeliag as in Fig. 1(d),
we define the contribution to (N~fqqq~N)c as
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A = 3g
l

'l i2 ( g 3 d4k (1/2)Tr[(gf —g+ mq)A&+l(P)]

(G, ) (2vr)4 (k' —m')'[(p —k)' —m'] (2.s)

In this calculation the quark is taken to be on-mass-shell. Here, A~+~(p) = (P + mq)/2mq appears since we have

averaged over the direction of the quark spin. Recall that A~+l (p) = g, u(p, s)u( p, s), where the u( p, s) are positive-
energy spinors for the quark. The factor of (g/G, ) appears when relating the qq operator to the sigma field, as in
Eq. (2.6), and the factor of 3 arises because the nucleon contains 3 quarks. Note that Eq. (2.8) contains two sigma

propagators and a single quark propagator in accordance with Fig. 1(d). We have, for p= 0, p = mq

d4k mq+ p' —k'= S x 2g4a, 'i xdx
(2qr) [xk —xm' + (1 —x)(p —k)2 —(1 —x)m']

mq+ p —k=3x2g G, i xdx
(2qr) ([k —(1 —x)p] —xm —(1 —x)m + x(l —x)p )s

(2')4 [k'2 —B ]s '

(2.9)

(2.io)

(2.11)

with B = xm2 + (1 —x)m2 —x(1 —x)p . Finally

1

A = 6g G i xdx(mq+ xp )Is(B ) (2.12)

where

d4k'
(2.13)

—z 1
32vr2 B (2.i4)

We And A = 0.0317 GeV upon making use of the various parameters listed above. To estimate the contribution
to (qqqq) ~ we put

P'

(qqqq) p = (qq)o l

1 —
N l

1+
SN. &

A. pg

(qq)o (~ sm. )
(2.15)

With p~ = (0.108 GeV) and (qq)o ——(uu+dd)o ———2(0.250 GeV)s, we find that the second term in the large bracket
is equal to 0.0427. That is, we have a four percent increase of (qqqq)~ over its vacuum value due to the sigma mesons
of the nucleon s meson cloud. That is, of course, a quite small correction compared to that arising &om the second
terin of Eq. (1.10).

In order to calculate the contribution of the pion, as shown in Fig. 1(d), it is useful to perform a Fierz rearrangement
of the operator qqqq [See Appen. dix A.] The relevant (rearranged) operator is 24 [pic q q yips q q], where the factor

24 arises from the Fierz rearrangement. With respect to Fig. 1(e), we have for the contribution to (NlqqqqlN)~ of
the pion cloud of the nucleon,

f g ) ( 1 ) d k (1/2) Tr[p5(P —g+ mq)psA + (P)]
qG, ) (24) (27r) (k —m2)2 [(p —k) —m ]

(2.16)

where the new factor of 3 has an origin in the isospin trace and the factor 24 is that arising &om the Fierz rearrange-

ment. Further, with p = mq and p = 0,

d k m+k —p
(2')4 (k2 —m2 )2 [(p —k) 2 —m2]

mq+ k —p
(2qr) 4 ([k —(1 —x)p] —xm —(1 —x)m2 + x (1 —x)p )

1
= ~sg G, i xdx(mq —xp )Is(B ),

0

(2.i7)

(2.is)

(2.19)

where B is the quantity defined after Eq. (2.11) with m replaced by m . We find A = 0.0045 GeV, which is an
order of magnitude smaller than A and may also be neglected.
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III. CALCULATION OF THE SCALAR-
ISOSCALAR CONDENSATE IN NUCLEAR

MATTER: QUARK FIELDS
IN THE NUCLEON

In the last section we have seen how the use of a Fierz
rearrangement simplifies the calculation of processes that
proceed through exchange terms of the scalar-isoscalar
operator qqqq. To study the contribution of the three
(constituent) quarks of the nucleon to the evaluation of
(N[qqqq[N)~, it is useful to perform a Fierz rearrange-
ment. This transformation is then the same as that used
when studying the diquark sector of the NJL model [13].
(See the Appendices for further details. )

In order to evaluate (N]qqqq]N)c, one needs a rel-
ativistic model of the nucleon. One model of nucleon
structure that is relatively easy to use is based upon the
NJL model. In the study of the diquark sector of that
model, one finds a strong attraction in the case of J = 0
and T = 0 (scalar-isoscalar) diquarks [13]. The energy
of the scalar diquark is calculated to be about 400 MeV
in our work. In addition there is a 1 = 1, T = 1 (axial-
vector, isovector) diquark whose energy is about 800—
1000 MeV. While a satisfactory description of nucleon
magnetic moments will require a significant amount of
the axial-vector diquark in the nucleon, in this section
we will study a simple model where the nucleon is com-
posed of a constituent quark bound to a scalar diquark.
For quark masses of about 300 MeV, and a diquark mass
of 400 MeV, one needs to provide a model of confinement.
We have carried out a study of this quark-diquark model
of the nucleon; however, we will not discuss the details
of our calculations here.

In Fig. 2(a) we show the vertex for a nucleon to
go into a quark and a scalar-isoscalar diquark (double
line). In Fig. 2(b) we show the same vertex with the
quark on mass shell (indicated by a cross on the quark
line). In general, for an on-mass-shell nucleon of mo-

mentum P, we may write the vertex as I'(P, Q)u(P, s)

1(»Q)u(» s) = 2E~(Q)

E~(Q) + m~
[(P —Q)' —m„']

x iIr(+) (P, Q)u(P, s), (3 1)

where @(+)(P,Q) is a wave function. Equation (3.1)
is valid in the space defined by the projection operator

A(+)(Q). In Fig. 3 we show the values of ilr(+)([ Q [)
calculated in the nucleon rest frame (P= 0, P = m~).

Now, consider the evaluation of the diagram shown
in Fig. 4(a). Through a generalized Fierz rearrange-
rnent we relate the operator qqqq to the operator

(quest TzCq ) (q C T2+st, q) where t'& ——i z e &, . Here

is the completely antisymmetric symbol, with cy23

1, and C = ip p is the charge conjugation operator
[13]. That operator connects the two quarks in the first
diquark to the vacuum, as in Fig. 4(a), and then creates
the quarks of the second diquark. We are motivated to
study that operator, since we are here using a quark and
scalar-diquark model of the nucleon. Therefore, the ma-
trix element (N~ (qpst~7zCq ) (q C w&&st, q) [N) will be
large. We find upon rearrangement that

200

= [A + Bg]u(p, s), where A and B are functions of two
scalar variables. However, since we consider the quark
to be on-mass-shell in our model, we only need ma-

trix elements of the form A(+)(Q)I'(P, Q) with A(+)(Q)
= (Q+m~)/2m~. With that in mind, we can parametrize
the vertex by a single function. We introduce

Q

P-Q

(a)

Q

P-Q

300

Q P-Q

P-Q P-Q

(c)

Q

FIG. 2. (a) The vertex for a nucleon of momentum P to
decay (virtually) into a quark of momentum Q and a diquark
of momentum P Q (b) The cros-s d. enotes an on-mass-shell

quark with Q = [Q +m ]
~ . (c) An equation to determine

the vertex shown in (b). Here V, is a confining potential and
the last term is the exchange interaction extensively studied
in the literature [15]. (Here the wavy line denotes a photon
and crosses again denote on-mass-shell quarks. )

I

0.50.1

I'0 0.2 0.3 0.4
IQl (Gev)

FIG. 3. The wave function 4' +l([ Q [) that parametrizes
the nucleon-quark-diquark vertex when the quark is
on-mass-shell [see Fig. 2(b)]:
A"'(Q)1'(P, Q) (P, )

- 1/2

A(+)(Q) 2&q(ol
E,(q)+m,

x [(P —Q)' —m~]@~+&(P, Q)u(P, s),
where A~+l(Q) = (Q+ m~)/(2m~). In the nucleon rest fraine

we write @i+ (P, Q) as qr +
(~ Q ~).
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Q that g~ ——7.57 GeV . With m~ = 0.305 GeV, we find

AD ——0.0276 GeV .
We may now generalize Eq. (2.15) to read

, (
(q«q)& = (qq)o I

1 —
8N I

C

Q Q) (3.7)

p-Q P-Q'

FIG. 4. (a) Evaluation of the direct term for the operator
of Eq. (3.2). Here the double line is a scalar-isoscalar diquark
and the heavy line is a nucleon. The filled circles were defined
in the caption to Fig. 1. (b) An exchange term that appears
when evaluating the matrix element (N~qqqq~N).

CsD = (N~[qt, qg»Cq ][q C '»7zt, q]~N)
= 0.662 GeV

(3.8)
(3.9)

(Recall that here qq = uu+ dd. ) The second term in the
large bracket is small and may be neglected.

For future applications, it is useful to introduce CSD ——

24AD, where

(qq)(qq) = —,', (quest. ~2Cq )('q C ~2Yst q)+' ' (32)

Using Eq. (3.2) in the evaluation of the diagram of
Fig. 4(a) yields the expression

d Q J ((P —Q)')
(2~)s i 24

+ & A(+)(Q)~~
Eq (Q) Eq (Q) + mq

(3.3)x[@+ (Q)]

P —mq+ is (—2 )b(Q' —E.(Q))A"'(Q) .
E (Q)

in the nucleon rest kame. Here, the factor of 4 is a sta-
tistical factor and the factor of (1/24) is that appearing
in Eq. (3.2). We have used the fact that the quark of
momentum Q is on-mass-shell so that we may make the
replacement

As we will see, CSDp~ plays the role of scalar-isoscalar
diquark condensate of dimension 6 and is to be classed
with other four-quark condensate terms.

IV. NUCLEON CORRELATORS FOR NUCLEONS
IN NUCLEAR MATTER

")» ") = *fd'*"*)»' lT) (*) (o))~l»' ) (4.1)

A «ur-vector u" is needed if ~il)'o) represents the ground
state of nuclear matter. This vector describes the Bow of
the matter. In this case there are two Lorentz-invariant
quantities, q and q u. If ~4o) denotes the vacuum, only
q appears as a Lorentz-invariant. Note that II(q, u) has
two Dirac indices corresponding to the Dirac indices of
the operators iI(x) and il(0). Various forms for iI(x) may
be used. Some found in the literature include

As usual, we define the Fourier transform of a time-
ordered correlation function of nucleon interpolating
fields, iI(x) and iI(0), to be a nucleon correlator [1—6],

(3.4)

Further, J ((P —Q) ) is a basic quark-loop integral of
the NJL model [13],

ili(x) = e s, [u (x)C»ds(x)]u, (x),
ilg(x) = e s, [u (x)Cdi, (x)]»u. (x),

(4.2)

(4.3)

J-((P —Q)')
d4S= N, NgTri S(P —Q + k)»S(k)» . (3.5)
2ir 4

Here Nf ——2 and N = 3. In the nucleon rest kame, we
have the contribution to (N~qqqq~N)c,

2
2g J ~ 2 2 @(+) 2

~(x) = e-s.[u. (x)C~~u~(x)l»~"d. (x) . (4.4)

Here a, b, c. . . are color indices, u(x) is the up-quark field,
d(x) is the down-quark field, and C = ipse~ is the charge
conjugation operator. We will call q(x) the Ioffe current
[18]. (Note that rl(x) = 2[iI'(x) —)Vi(x)].)

In this work we will study the nucleon correlators for
the fields )7i(x) and iI(x). First, we note that in the study
of nucleons in nuclear matter we can write

where Q =
~ Q ~. Here the factors (mq/Eq)[2Eq/(Eq+

mq)] have been canceled by the factor arising Rom the
evaluation of the trace that appears in Eq. (3.3). We note
that for small qz, J (qz) 0.118+0.132qz (GeV ) with
q in units of GeV . Prom our other studies, we found

II(q, u) = II (q, q ~ u) + IIq(q, q ~ u) g+ II (q, q ~ u) yf,
(4.5)

where, as above, u„ is the four-vector describing the fiow
of nuclear matter. Following, Ref. [4], we may also divide



USE OF THE NAMBU —JONA-LASINIO MODEL IN THE. . . 943

(4 9)

(4.10)
I

II(q, u) into parts that are even or odd in q . u:

II.(q', q u) —:II, [q', (q u)2] + (q . u)II. [q , (q . u) ],
(4.6)

IIq(q', q u) —= &q [q' (q u)'] + (q u)llq [q' (q u)']
(4.7)

II„(q', q .u)—:II„[q', (q . u)'] + (q . u) II„[q', (q u)'] .

(4.8)

For ease of reference, we reproduce some results of
Ref. [4] for the even functions of (q u). (We present
only the most important quark condensate terms and a
familiar gluon condensate term. The complete expres-
sions are given in Ref. [4].) We have [4]

2 — 1II, [q, (q u) ] = q ln( —q )(qq)p +

IIB[q', (q u)'] = —,q ln( —q')

, ln(-q')( G') p

—3, (qq)',.—3, (q Nq)',.+ "

IIB[q', (q u)'] =,q'ln( —q')(q gq)» + . (4.11)

Note that here (qq)» ——(uu)~~ = (dd)», etc. Also,
all polynomial terms that vanish under a Borel trans-
formation have been neglected in these expressions. The
four-quark condensates have been obtained using the fac-
torization approximation. The problematic term is the
third term of II@. It is seen that if (qq) in Eq. (4.10)
is replaced by (qq) 20 the satisfactory results of Ref. [1] are
preserved [5]. In this work we will discuss corrections to
Eqs. (4.9)—(4.11) that involve "condensates" that have
not been considered previously.

Let us now consider the evaluation of Eq. (4.1) in the
case that the Ioffe interpolating field of Eq. (4.4) is used.
We now calculate the four-quark condensate terms that
do not appear in Eqs. (4.9)—(4.11). One such term is
obtained if we consider a contraction between the two
down-quark fields, d(0) and d(2:), with all the up-quark
fields appearing in the nucleon matrix element. To carry
out this calculation it is useful to write the Ioffe current
as

)7(x) =—
I q (~)(C~.), '('&-)q(*)

I
h'~"d. (*)] (4.12)

We insert this expression into Eq. (4.1) and consider a single contraction between the down-quark fields to obtain

qq(q, ) = —s(q) (( I
q(o)(q"c') '

( q. )q (o) i I q (o)(c 'q„) '
( s.)q(o) I )

+(qq l~q(o)(q"&) '(~q. )q'(o)
I I

q'(o)(& 'q, ) '('4)q(o)
I qq)~q~)2 )

(4.»)

with S(q) =g/q2. The first term of Eq. (4.13) is evaluated using the factorization approximation and the result is

2 — 2II, (q, u) = ———(uu)) 3 2 Pgy

= ———((uu). + 2(~luul~)(uu). pB+" ) .2 g
3 q

(4.14)

(4.15)

Consideration of other singly-contracted terms does not
change this answer. The expression given in Eq. (4.14)
appears in IIB of Eq. (4.10), where the notation

(qq)o
——(uu)0 ——(dd)o is used.

It is useful to define

1
I12 (q, u) = CvD pB——

18 q2

= 0.0211—pgy .
q2

(4.17)

(4.18)

C» = (&l[q(~t.)(«2)(~"C)q ]

Inclusion of all other singly contracted terms adds a cor-
rection to Eq. (4.17), so that Eq. (4.17) is replaced by

'[q (c 'p~)(» )(i~ )q]l~) . (4.16) 1
112(q, u) = ——CvDpB .

36 q2
(4.19)

In a calculation to be reported elsewhere, we found
CvD = 0.380 GeVs. (Note that CvDpB plays the role
of an axial-vector diquark condensate. )

The evaluation of the second term of Eq. (4.13) yields
a contribution to II(q, u) that we call lI2(q, u). Both
IIi(q, u) and II2(q, u) contribute to II of Eq. (4.10). We
note that the nucleon matrix element in Eq. (4.13) may
be shown to equal CvD/6. Therefore,

Now let us continue to use the Ioffe interpolating Geld,
but allow for the presence of scalar-isoscalar diquarks in
nuclear matter. After some calculation, we Gnd

2 g 2 1
II2(q, u) = — — CsDpB ci + —CvDpB

9q2 36q2

(4.20)
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with o(2 + P = 1. Here, n2 represents the probability
of Gnding a nucleon composed of a scalar diquark and a
quark, while P is the probability that the nucleon con-
tains a quark coupled to an axial-vector (T = 1) diquark.

A study of nucleon magnetic moments in a quark-diquark
model leads us to believe that n P 0.5. With that
in mind let us write II (q, q . u) of Eq. (4.10) as

11, [q' (q. u)'] = -« .(q')'»(-q') —32, »(-q') &' —,((uu)o+ 2P luul~)(uu)OPB)
Pa

2CsDPB I

~ +
I 36 2CvDPB I / —3, (q A)p (4.21)

Upon using CSD ——0.662 GeV, CyD ——0.380 GeV,
(¹~ulN) = 4.08, (uu) = —(0.25 GeV), and n = P
0.5, we And that about 75 percent of the problematic
term in Eq. (4.21) is canceled. Thus, we can write

and

)7i(x) = —[u (x)C»ds(x)]u (*)' ~.

ryi(x) = —u, (x) [ds (x)»Cu~, (x)]e

(5.1a)

(5.1b)
1

11, [q' (q. u)'] = —64, (q')'»( —q') as a proton interpolating field. (Note that C i = —C =
ip p—here. Further Ct = —C.) With our definition of

(t,) s = i/3/2e s„and noting that C = —C, we may
also write

, (q A),'. (4.22) 1
qi(x) = —— [q (*)C '»~2t. q(x)lu (x) (5 2a)

to a good approximation if the parameters are as we have
indicated.

This is a most satisfactory result, since it implies that,
while (qq)o goes over to (qq)~s in matter, the four-quark
condensates effectively remain at their vacuum value.
This is the situation in which the properties of the nu-
cleon in matter found by QCD sum-rule techniques agree
with the results of Dirac phenomenology. (See the dis-
cussion of Sec. III of Ref. [5].)

V. INTERPOLATING FIELDS CONTAINING
SCALAR-ISOSCALAR DIQUARKS

In this section we will use some of our previous re-
sults to investigate the dynamics of four-quark conden-
sates when we use a different interpolating field. To this
end, let us recall qi(x) of Eq. (4.2) and write

and

1
)7i(x) = —— u, (x) [q(x)t,72 fsCq (x)] . (5.2b)

We see that Eq. (5.2) describes a scalar (T = 0) diquark
coupled to an up quark. Now define the correlator for
the fields qi(x):

&(v, ~) = ~ J d'*~ '(@olT(ni(*)a*i(o)II@0) (5 3)

Again, l4'o) may be either the vacuum or the ground
state of nuclear matter. We will first concentrate on the
term where the large momentum, q", is carried by the up
quark on the far right of Eq. (5.2a) and by the up quark
on the far left of Eq. (5.2b). Thus, we have a contribution
to II(q, u):

1
11(q, u) = ' d'xe"*(Ttu(*)u(0)]) -(e.

l [q(O) C»~.t.q (O)] [q (O)C-'»t. ~,q(0)] le, )

1= ——S(q)(([q(0)Cp gt q (0)][q (0)C 'p t, 2q(0)1)

+P l[q(0)c~», t.q (o)1[q (o)c '»t.~~q(0)ll~)cpB),

(5 4)

(5.5)

where S(q) =(I'/q is the Feyninan propagator. The first
term of Eq. (5.5) will contribute to IIi(q, u), as in Sec. IV.
That term is calculated in terms of (q(0)q(0)) and
(qt(0)q(0))~~ by using the factorization scheme, while
the second term is de6ned such that it does not contain a
factor of (q(0)q(0))(). The second term, which contributes
to II2(q, u), may be easily evaluated, since we have given
a value for the quantity CsD in Eq. (3.8). Thus, with

1
11 (q, u) = CsDpB- ——

6q2
(5.6)

(5.7)

I

II(q, u) = IIi(q, u) + II2(q, u), we have the second term
of Eq. (5.5)
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upon using the value t SD ——0.662 GeV found previ-
ously. As we will see, this term is large compared to
the vacuum value of IIi(q, u) to be given in Eq. (5.13).
[Other singly-contracted terms significantly modify this
result, see Eqs. (5.14) and (5.15).]

Now let us use the factorization scheme to calculate
([d(0)C»t, u (0)][u (0)C»t~d(0)])z . [Ifwe multiply
the result of this calculation by four, we obtain the first
term in the bracket in Eq. (5.5).]

We note that, with qq either uu or dd,

7ll, (q, u) = ———,((uu)o+ 2(uu)o(mluul~) p~) (5.16)

= ———(uu)p + 0.037—p~,24 q2 q2
(5.17)

to first order in p~. The result for IIi(q„u) given in
Eq. (5.16) agrees with the corresponding term that ap-
pears in Eq. (2.18) of Ref. [5]. There the value of the
correlator is presented for the current

by
(q=.es).- =,,'((qq)..~p-+ (qV q), (&")p.) (5.8)

qt, (x) = 2[tgi(x) + g2(x)] . (5.18)

= (C ) (t.) (C 7 ) (t.)

x (d (0)ups(0)u , (0)dpi, (0)), (5.9)

= (C»)-p(t-)-b(C '») ~~(t.)- s [~-~~-~ ~p~~~- ]

1

( )( )
( )PB( )PB (5.10)

1 — 2= -[(uu)o+ 2(uu)p(~luul~)&. +."] (5.ii)

where we have used (dd)p = (uu)p. Thus, to first order
ln pgy

1
H. (q, -) = --—((=-)'. +2(=-).(~l=-lap ~6q2 (5.12)

= ———(uu) p + 0.021—p~ .
q2 q2

(5.i3)

Again, other singly-contracted terms modify this result.
If we include all possible singly-contracted terms in the
calculation of Eq. (5.3), we find that Eq. (5.6) is replaced
by

25 g
II2(q, u) = ———CsDp~96 q2

(5.14)

= —0.172—pgy .
q2

The contribution of an axial-vector condensate is very
sinall if the interpolating field gi(x) is used and we
drop that contribution from consideration. [We found
11,(q, ) = (iy576)C (g/q')p .]

If we include all possible singly-contracted terms we
also find that Eq. (5.12) is replaced by

when N = 3. For simplicity, let us keep only the first
term on the right-hand side of Eq. (5.8). Then

([d(o)C t (o)][ (o)C ' t.d(o)J)

By taking t = —1, one obtains the result for the IofFe
current. One can also obtain the result for the current
gi(x) by isolating the terms of order t2 in Eqs. (2.16)—
(2.21) of Ref. [5].

The result given in Eq. (5.7) is quite large when com-
pared to the second term in Eq. (5.17). If we were to put
n2 = 0.20 and P2 = 0.80 we could eliminate the density-
dependent terms &om II(q, u) = IIi(q, u) + II2(q, u).
However, we have argued that o.2 = 0.5 and P2 = 0.5
is probably close to the actual situation. With the lat-
t;er choice, we would still have a large density-dependent
term of sign opposite to that in Eq. (5.17). It inay be that
the coupling of the interpolating field qi(x) to the scalar
condensate is so large as to preclude the use of that field
in these calculations. For example, II2(q, u) of Eq. (5.15)
is about three times the vacuum value of the four-quark
condensate. [Note that —24(uu) p = 0.71 x 10 GeV,
while froin Eq. (5.15) we have —0.172p~ = 2.17 x 10 .]
Therefore, it is not possible to assume that we are calcu-
lating relatively small corrections to the vacuum value of
the four-quark condensate in this case.

VI. DISCUSSION

Of the various results presented in this work, that of
most interest was given in Sec. IV. There we saw that;,
if we use g(x) of Eq. (4.4) as the interpolating field, and
we also use a model of the nucleon in which a quark is
coupled to both a scalar and an axial-vector diquark with
equal probability, we obtained a density-dependent term
that canceled the density dependence of the four-quark
condensate that arose in the factorization (or mean-field)
approximation. This was a particularly satisfactory re-
sult in that it corresponded to the situation where the
@CD sum rule studies reproduced the results of Dirac
phenomenology [5].

In this work we have stressed the importance of the
proper calculation of four-quark condensates in studies
of the nucleon self-energy in matter. Another example
where one can see the importance of the four-quark con-
densates is in the calculation of the properties of the rho
meson in nuclear matter [19]. Jin has recently provided
an expression for the change in the longitudinal part of
the rho polarization operator in matter [20]. If one in-
cludes condensates up to dimension six, the terms linear
in p~ are (with Q = —q ),
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XIII (Q )—:III (Q, PII ) —III (Q, P~ = 0)

(N~qq~N)pp + pq —'G„G" x) pp

mN qq+(g 224
N

5mN gu+cg
3

p~ — urn, (qq)o(Niqq~N) p~ —
8 &4 pa .

4Q4 81

(6.1)

(6.2)

In Eq. (6.2) and in Ref. [20], the notation (qq)o
(su)o ——(dd)o is used, as well as (N]qq)N) = (N~uu +
dd~N)/2. In Eq. (6.2) 22+" and A4+" are moments
of structure functions that may be obtained in the
study of deep-inelastic scattering, and mq is the cur-
rent quark mass. The fourth term in the above ex-
pression arises from the approximation (qq) —(qq)o
2(qq)o(N~qqiN)p~. The values for the various quanti-
ties appearing in Eq. (6.2) are given in Ref. [20]. One
has (N~qq~N) = O' N/(2m&) with crN 45 MeV and
m~ = 5.5 MeV. Further (N~(n, /vr)G„„G""~N) —0.650
GeV, A2+" 0.938, and A4+ 0.121 (at a scale p2 = 1
GeV ). The value (qq)o ——(—0.245 GeV) is used, as well
as o., 0.3.

If we evaluate the right-hand side of Eq. (6.2) using
the numbers given above, one Ands that the fourth term,
which is calculated in the factorization approximation,
is at least Ave times larger than any other term, if we
take Q2 = 1 GeV . This observation again points to
the need for a proper calculation of the four-quark con-
densate terms. Some discussion of four-quark conden-
sates and their importance in the calculation of a vector-
isovector current correlator is given in Appendix C.
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APPENDIX A

In this Appendix we indicate how the Fierz rearrange-
ment of various operators of the form qI'~qql ~q may be
made. Here we adopt the notation of Ref. [21] and define

We also need the relation for SU(2) isospin:

1 1
fg' gf' g ff' qg' + 2 ff' ge' ~

and the relations for SU(3) color:

8

+ —).(& )ff (& )

(A.10)

(A11)

8 8

).(A )fg'(A )8f' =
g 1ff'lgg' 8 ).(A )ff'(A )88

+ 0 ~ ~

1= —(qi»»~ q) . (q~vs & q) +
24

(A13)

' (A14)

where a minus sign appears due to the change in order
of the fields.

Now consider the rearrangement of the operator
(qq)(qq) into a diquark-diquark structure. Keeping only
the term proportional to (q~2t »Cq )(q C est, r2q)
we Gnd

1
(Nl(qq)(qq) IN) = —CsD +."

24
= 0.023 GeV

(A15)

(A16)

using the value CHD ——0.662 GeV given previously.

(A12)

As an example, we now consider the operator qqqq and
obtain the part of the Fierz rearranged form that is pro-

portional to qips r q. qi» w q. Using Eqs. (A6), (A10),
and (All)

F R f 1) /1) t'1)
qqqq = —

I

——
i I

—
I I

—
(
(qi» ~ q) (qi» ~ q)

E 4& E2) E3r

Sap.a'p'

Pap;a'p'
&ap.cx' p'

g~P.~iPI

&~p;~ p

—1crp 1''p'
= (i»)-p(i»)- p
= (~~)-p(~")- p»
= (~p»)-p(~"»)- p
= (~"")-p(&~-)-p .

(A1)
(A2)

(A3)
(A4)

(A5)

APPENDIX B

The interaction Lagrangian,

~I(*) = 2'[(qq)'+ (q'» «)'] (B1)

One has [21]

[8l-p;- p =
[pl-p', - p =
l~l-p', - p =
[al-p;- p =

4 [8 + V + 2 t —a —P]~p qqipr

—
4 [8 —v + 2t + a —P]~p ~~p~

4 [48 2v 2a + 4P]qqP ~&PI

—4[48+ 2v+ 2a+ 4p] p p

(A6)

(A7)

(A8)

(A9)

may be rearranged to exhibit the interaction in the scalar
diquark and axial-vector diquark channels. (Here qq =
uu+ dd. ) One finds [22,23]

G,
~I,s(~) = — ' [q((»C)~2t. )q ][q ((C '»)~2t )q]

(B2)
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and

2 [q((&~&)(«~)t-)q ]

[q ((& &")(» ~)t.)q( )] .

The T matrix in the scalar diquark channel is [22]

T(q) = K& &)»~.1&(q) [(|-" 7 )»&.] (B4)

with

and

t(q) = 2
1 —G,J (q2)

(B5)

d4aJ (q ) = 6i — tr[psS(k —q)AS(k)] .

[See Eq. (3.5).]

FIG. 5. (a) Two diagrams that contribute to the rho po-
larization tensor in vacuum. (See Ref. [24], page 177.) There
are two additional diagrams with the fermion lines reversed,
(b) a mixed condensate term that contributes to the rho po-
larization tensor. (See page 184 of Ref. [24].)

APPENDIX C

II~(")(q) = (q"q —q g"")II(p)(q ) (C1)

and consider the calculation of II(~)(q2). The contri-

As an example of the modification in the calculation of
four-quark condensates implied by our formalism, let us
consider some contributions to the vector-isovector po-
larization tensor defined in Ref. [24]. In this case the
current is J&(2:) = q(x)p„wsq(x) We als. o put

bution of the two diagrams of Fig. 5(a) (and the ones

with the fermion lines reversed) is denoted as II (q ) in
(~)

Ref. [24]. For ease of reference, we use the notation of
Ref. [24] in this Appendix. There, A, B, . . . , are flavor
indices, n, P, . . . , are color indices, and i, j, . . . , are
Dirac indices.

Central to the calculation of Ref. [24] is the factoriza-
tion of the matrix element of a general four-quark op-
erator. The vacuum matrix elements are approximated
as

1(q".qBbq,.qp~)0 = [4D~BC'4b~pp~ad~bc 4C~BD'4p~pb'4c'4d](q q )0(q q )0144

where (q+q+) contains an implicit sum on color indices.
With the approximation of Eq. (C2), it is found that

(C2)

11(i)(q2) (C3)

(C4)

On the other hand, our analysis requires that we expand the operator on the left-hand side of Eq. (C2) in such a
manner that one can sum over the color, Havor, and Dirac indices. In that general expansion, let us pick up only the
term proportional to the operator qqqq. We write

1
qpbq~ qsd = y~~D~Bc4b~p~4d~b (qqqq) +.. . .—A —H C D (C5)

To obtain the factor I/N, we put A = D, B = C, n = 8, P = p, a = d, '6 = c, and sum over A, B, n, P, a, b. Thus,
we find that 2V = 4(144). In Eq. (C5) the dots indicate that there are a large number of operators in the expansion
that are not shown.

Now we use Eq. (C5) in Eq. VI.52 of Ref. [24], with the result that

2

II(,')(q') =—,(qqqq) p(16T [V" 4~"V~ k~~] —16T [~~ de~~" 4~"l)+ . .

16m 1
(qqqq) +

(C6)

(C7)
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We write, for nuclear matter,

&qqqq&~ = &qqqq&o+ 2&NIqqlN&&qq&ops+ &NIqqqqlN&cp~+ . .

so that, keeping the term linear in the density, we find

(C8)

11"(q') = —,'
I

&~~&'. + 2&uu&o&Nlu~lN&p~+ &N-lqqqqlN&cp~
I

. (C9)

The expression given in Eq. (C9) is to be compared to the result for nuclear matter based upon the factorization
scheme,

(P) 9 q6

16 era,'
(&uu&o+ 2&uu&o&NluulN&p~+ . )9 6 0

(C10)

(c»)

[Equation (C10) follows &om Eq. (C4) upon replacing
&uu&o by &uu&~. ] We note that for a complete calculation
one should estimate the contribution of the various oper-
ators (other than qqqq) that contribute to the expansion
indicated in Eq. (C5).

As another example, consider the result for the mixed
condensate shown in Fig. 5(b). The result given in
Ref. [24] is

1= —-C'» + ." (C13)
2 "2 9

C

where CsD was defined in Eq. (3.8). Upon making use
of our previous result given in Eq. (3.9), CsD = 0.662
GeV, we have

H{2)
( z)

32zl et@
& )

2 (C12)
~ ~

A A
N qp" qqp —q—N = —0.074 GeV . (C14)

2 "2

for a calculation made in vacuum. This result arises &om
the evaluation of &qp" "2 qqp~ "2 q)o using the factoriza-
tion scheme.

We now consider the matrix element of that opera-
tor taken between states of the nucleon. Upon use of
Eq. (A15), we may obtain the value of that matrix ele-
ment as

This result may be used in the evaluation of the mixed
condensate term of Fig. 5(b). (See pages 184—185 of
Ref. [24].)

As another example, we discuss another contribution
to the polarization II (q ). Consider the term in the

(~)
expansion of the general four-quark operator of Eq. (C5)
that is of the form

—A —I3 C' D
q qpbq qP~ = —( $5z)da( 75)cb(Tj )DA(7k)cBb bbp~(qzps~~q)(qi 7s~bq) + (C15)

with N = 4(144).
We use this term in Eq. (VI.52) of Ref. [24]. Since the calculation of Ref. [24] is made for the polarization tensor

of the p meson, we need to evaluate

Tr[zs7~~s~b] = —28,b + 4bs, 6sb .

Further, in the case of symmetric nuclear matter we can write

1
(Nl (qzps~sq) (qips~sq) IN) c = —(Nl(qzps q) (qzps 7 q) IN)c .

3

Then using Eqs. (C16) and (C17) we have

(C16)

(C17)

11, (q ) = —,„,~T [& g& ('&,)~, g&„('&.)] —T [~. g~, ( &.)& y&. ('&.)])

x&NI(qzps ~ q) (qzps ~ q)IN&cpa . (C18)

Here the factor (—2/3) is an isospin factor and 8 is a color factor. Now use

T [Vi fV"V" de~] = 16q' (C19)
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to obtain

T [~. d»~" d~"] = 64q',

II (q ) = —— C pti
(y) 2 4'7t 0,'g
(P) 27 q6

4~ os=
27qs

(C20)

(C21)

(C22)

where C = (N[(qips 7 q) (qips w q)[N)c. From our
previous work, we had found C = 0.108 GeV . Then,
we see that the contribution of Eq. (C21) is quite small
compared to the fourth term on the right-hand side of
Eq. (6.2) and, therefore, may be dropped from consider-
ation.

A more complete discussion of @CD sum rules for
the vector-isovector current correlator, II~&"), will be pre-

sented in Ref. [25].
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