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Detection of source granularity through multiparticle Bose correlations
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The multiparticle Bose correlations of bosons emitted from dispersed thermal droplets of quark-
gluon plasma are simulated by a Monte Carlo method. Multiparticle Bose correlations can ofFer more
sensitivity to probe the granularity of the boson-emitting source than two-particle Bose correlations.
A promising signal of the existence of a mixed phase of quark-gluon plasma and hadronic gas can
be obtained from multiparticle observables.
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I. INTRODUCTION

The highest priority in ultrarelativistic heavy ion ex-
periments is the detection of a new phase of nuclear mat-
ter, the quark-gluon plasma (QGP), and the study of its
properties. There are reasons to expect that the phase
transition predicted by @CD is a first-order phase transi-
tion [1—3]. A hallmark of this phase transition is the ex-
istence of a mixed phase of QGP and hadronic gas [3—6],
and an iinportant indicator of a @CD phase transition in
ultrarelativistic heavy ion collisions would be the discov-
ery of a particle-emitting source with a granular struc-
ture [4—6]. In the thermal droplet model [4], particles
are emitted &om dispersed thermal droplets of plasma,
and the spatial distribution of the source is character-
ized by three parameters [5]: the thermal droplet radius
a, the overall radius of the granular source Ro, and the
mean separation d between the droplets. The number
of droplets in the source, n (Bo/d), is also a useful
parameter. Assuming that the distributions of droplets
in the source and the locations of particle emission in a
droplet both have Gaussian forms, the two-particle Bose
correlation function is [5]

C2(q) = 1+ exp( —2q a )/n

+exp[ —iq (a + Ro)](l ——'),
where the superscript of C2g(q) indicates the correlation
function for a granular source, q is the relative momen-
tum of the two particles, and the erst and second expo-
nential terms correspond to the cases of the two particles
emitted &om the same droplet and emitted from different
droplets, respectively. Since the droplet radius a is much
smaller than the radius of the granular source Ro, any
enhancement of the correlation function in the large q re-
gion is mainly the result of correlations between two par-
ticles emitted &om the same droplet, while correlations
of two particles emitted &om different droplets mainly af-

feet the correlation function in the small q region. Pratt
et al. [5] studied the two-tiered structure of the two-
particle Bose correlation function for a granular source,
and pointed out that positive kaons are the best candi-
date among the various kinds of bosons for the purpose
of detecting and studying granularity. However, the two-
particle Bose correlation function for a granular source
may be dificult to distinguish from the two-particle Bose
correlation function for a nongranular source which has a
radius R between a and Ro', to make the distinction, we
need excellent statistics and a thorough understanding
of many effects associated with the physics of the inter-
action [7—12] and the resolution and acceptance of the
detector [13] which complicate the interpretation. On
the other hand, the high multiplicity of identical parti-
cles in ultrarelativistic heavy ion collisions provides the
possibility of analyzing multiparticle correlations which
may reveal very important information about the emit-
ting source [8,14—20]. In this paper, the multiparticle
Bose correlations of kaons emitted &om dispersed ther-
mal droplets are simulated by a Monte Carlo method and
analyzed. We point out that granular and nongranular
sources can be distinguished through studying and com-
paring the multiparticle Bose correlations in subevents
with different multiplicities in an event, and information
about the number of droplets in the emitting source can
be inferred by analyzing pure multiplet Bose correlations.

II. MULTIPARTICLE CORRELATIONS IN A
GRANULAR SOURCE

In the thermal droplet model, particles are emitted
thermally and independently. A particle can be emitted
&om any one of the n droplets. If the ith boson is emitted
from the point r; in the jth droplet, its spatial coordinate
1S
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r;=R~. +r,', i =1,2, . . . , M, jE(1,2, . . . , n), (2)

where Kj is the central coordinate of the jth droplet, and
M is the multiplicity of identical bosons. The probability
of elnitting M bosons of momenta pi, p2, . . . , pM = (p)
from source points ri, r2, . . . , rM = (r) is

&((p); (r)) (x ~y((p); (r)) ~'g(pi, rl). . .g(PM, r~),
(3)

where g(p;, r;) is the probability of emitting a particle of
momentum p, &om point ri. Neglecting the correlations
of the spatial and momentum coordinates [5], g(p;, r;)
can be expressed as the product of the distribution of
density p(r;) and the single-particle-inclusive distribution
of momentum P(p;). In Eq. (3), @((p);(r)) is the
symmetrized final wave function of M identical particles,

neglecting final state interactions [16,12],

0((p) (r)) (x ). exp('p r ( ))
a' j=1

(4)

where (T(j) denotes the jth element of a permutation of
the sequence (1,2, . . . , M), and g denotes the sum over
all M! permutations of this sequence. Integrating Eq. (3)
over (r), one obtains P((p)), the probability to observe
M final-state bosons of momenta (p) in an event.

Extending the two-particle correlation function of
Pratt et al. [5] to the case of three-particle correla-
tions, the three-particle correlation function for a granu-
lar source in the thermal droplet model can be expressed
as

where

f P3(Pl& P2& P3& rl r2& r3) ~'ljf(Pl P2 P3 rl& r2 r3)
~

drldr2dr3
C3 P»P21P3

J +3(P11P21P3i rl r2 r3)drl(tr2dr3 (5)

P3(Pl, P2) P3, rl, r2, r3) = g(Pl rl)g(P2 r2)g(P3 r3)
n n n

= ) ) ) f dR;P(R;)dR, P(R, )dRrp(Rr)]p(pr, rr —R;)p(pr, rr —R, )p(pr, rr —Rr)]
i j k
n n n=)-) )- f dRP(R)dRP(R)dRP(Rr)]p(p, , r, —R)p(p, , rr —R)p(pr, rr —Rr)]
i jgikgi j

n n

+) ) f dR, P(R;)dRrP(Rr)]p(pr, rr —R;)p(pr, rr —Rr)p(pr, rr —R, )
i j

+p(pi, rl —R~)p(p2, r2 —R;)p(p3, r3 —Rz) + p(pi, ri —R~)p(P2, r2 —R~)p(p3, r3 —R;)]

+) f dR;P(R;)]p(pr, rr —R;)p(pr, rr —R,)p(pr, rr —R;)],

where P(R) is the normalized distribution of the centers of the droplets, and p(p, r) describes the emission from an
individual droplet about its center. Assuming P(R) exp( —~R~ /Bo), and p(p, r) exp( —

~r~ /a ) [5], it can be
shown that

C3 (pi, p2, p3) = 1 + (1 ——) (exp[—
2 ql2 (a + Ro)] + exp[ —

2 q13(a + Bo)] + exp[ —
2 q23 (a + Ro)])

+—(exp( —2ql2a ) + exp( —2qisa ) + exp( —2q23a ))
+—,(n —1)(n —2)(exp[—

4 (qi2 + qi3 + q23) (a + Ro)])
+ ( 1)( p[ 4('q12 + 'q13 + 'q23) 2q12 Ol

+ P[—-'(ql2+ qi3+ q'3)a' ——.'qi3&ol+ P[—-'(ql2+ qi3+ q'3)a' —2q'3&ol)
+ ( P[ 4 (q12 + q13 + q23) ]) (7)

where q;~ = ~p; —p~~. In Eq. (7), the second and third terins express the correlations of two particles exnitted
&om difFerent droplets and emitted &om the same droplet, respectively; the fourth term expresses the pure triplet
correlation of three particles emitted &om difFerent droplets; the fifth term expresses the pure triplet correlation of
three particles where two are emitted &om the same droplet and another emitted from a difFerent droplet; and the
sixth term expresses the pure triplet correlation for three particles emitted &om the same droplet.

In order to analyze the three-particle correlation function and avoid complication caused by the number of variables,
we consider the simpler symmetric configuration [21,22] qi2 ——qi3 ——q23. The three-particle correlation function for a
granular source reduces to

Csg(q) = 1+3(1 ——) exp[ 2q (a +—Ro)] + —exp( —2q a ) + —,(n —1)(n —2) exp[ ——q (a + Ro)]
+—„,(n —1) exp[ ——q a — qR0] + —,ex—p( —4q a ) .
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tions suggest that analyses of multiparticle correlations
may oKer advantages for distinguishing a granular source
&om a nongranular source with a radius between a and
Bo.

The multiparticle correlation function for events with
multiplicity M for a granular source is related to the
number of droplets n and the multiplicity M, and in-
volves many variables. Analytic treatments of such cor-
relations are impractical, and it is customary to invoke
Monte Carlo methods in multiparticle correlation analy-
ses [8,16,19].

III. MONTE CARLO SIMULATIONS OF
MULTIPARTICLE CORRELATION EVENTS

IN THE THERMAL DROPLET MODEL

FIG. 1. Panels (a) and (a') show two-particle correlation
functions for a granular source and nongranular source, and
(b) and (b') show three-particle correlation functions in the
case of a symmetric configuration for a granular source and
nongranular source. The solid, dotted, and dashed lines in (a)
and (b) correspond to n = 2, n = 3, and n = 4, respectively.
The solid, dotted, and dashed lines in (a') and (b') correspond
to R = 1.5 fm, R = 2.0 fm, and R = 2.5 fm, respectively.

In the case of a symmetric configuration, the three-
particle correlation function for a nongranular Gaussian
source with a radius R can be expressed as [8,16]

Qss(q) = 1+3exp( —~q R ) + 2exp( —4q a ) . (9)

Figure 1(a) shows the two-particle correlation function,
Eq. (1), and Fig. 1(b) shows the three-particle correla-
tion function, Eq. (8), in the case of a symmetric config-
uration for a granular source. We take a = 1.0 fm and
Ro ——4.0 fm [5] for the granular source. In Figs. 1(a) and
1(b), the solid, dotted, and dashed lines correspond to the
number of droplets n = 2, n = 3, and n = 4, respectively.
Figure 1(a') shows the two-particle correlation function,
1+exp( —q R /2), and Fig. 1(b') shows the three-particle
correlation function, Eq. (9), in the case of a symmetric
configuration for a nongranular Gaussian source. In Figs.
1(a') and 1(b'), the solid, dotted, and dashed lines cor-
respond to nongranular source radii R = 1.5 fm, B = 2.0
fm, and B = 2.5 fm, respectively. From Fig. 1, it can be
seen that the correlation functions for a granular source
descend more rapidly with increasing q in the low q re-
gion, and converge towards unity more slowly in the high
q region. Comparing the average correlation intensities
over the region 0 ( q ( 600 MeV/c in Fig. 1, the dif-
ferences between granular and. nongranular sources tend
to be amplified when we use three-particle correlations
in place of two-particle correlations. Furthermore, the
average correlation intensities are stronger for the non-
granular source than for the granular source in the low

q region, while the opposite pattern is observed in the
high q region. In particular, the average intensities show
this characteristic more clearly for three-particle correla-
tions than for two-particle correlations. These observa-

The Metropolis approach [23] is a standard Monte
Carlo technique which allows one to generate an ensemble
of multibody configurations according to a given proba-
bility density. Using this approach, Monte Carlo events
with multiparticle correlations can be generated [16,19].
The procedure of our Monte Carlo simulations is as fol-
lows.

Step 1: generate the emission-point coordinates (r) of
M particles from Eq. (2) according to the distribution of
droplets in the source and the distribution of the emission
points in a droplet, and generate the momenta (p) of
M particles according to a given single-particle-inclusive
distribution of momentum.

Step 2: generate p' ( j E (1,2, . . . , M) ) according to
the single-particle-inclusive distribution of momentum,
and calculate

2+old = l4((r) pit. . &pj& . ipM)l

~--=l&((rk» . p', . pM)l'

Step 3: accept the substitution of p' for p~ with the
probability min(l, ur„, /tU ~g), and record (p).

Step 4: repeat steps 2 and 3 while incrementing j &om
1 to M, and repeat Nq times. A subset containing MNq
correlated events for a certain (r) is generated.

Step 5: repeat steps 1 through 4 N2 times, generating
N2 subsets of correlated events for different (r). The
total number of correlated events is MNqN2.

In our calculations, both the distribution of droplets
in the source and the distribution of the emission points
in a droplet are of Gaussian form [5], the single-particle-
inclusive distribution of momentum satisfies the Boltz-
mann distribution [4], and the temperature T is taken to
be 180 MeV [2,17]. lg((r}; (p))l is calculated using the
Ryser-Wilf-Nijenhuis (RWN) algorithm [16,19,24]. Be-
cause of the requirement of ergodicity [23], the numbers
Nq and N2 must be large enough. In the simulation of
multiparticle correlated events, we require that the num-
ber of correlated events M&q ) 180 for a given (r) and
we require N2 ) 40.

Adapting the analyses of high-order collective Qow cor-
relations in Ref. [25], we use the following variable for
analyzing the multiparticle Bose correlations:
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h

i&j(m
m = 2)3). . . )M,

K = m(m —1)/2, (10)

where q;~ is the relative momentum of the ith and jth
particles in a subevent of m particles selected randomly
&om an event, and the product runs over all K relative
momenta formed &om the subevent. The multiparticle
correlation function is defined as

respectively. From Fig. 2 it can be seen that the enhance-
ment in C(Q ) increases with m, and the difference be-
tween the multiparticle correlation functions for granular
and nongranular sources in comparison with the statis-
tical errors increases with m also. Moreover, the num-
ber of combinations CM or CM sampling three or four
particles &om a multiparticle event (M ) 6) is higher
than the number of combinations CM sampling two par-
ticles. Thus, the multiparticle correlation functions in
multiparticle events reHect the differences between gran-
ular and nongranular sources with better sensitivity than
two-particle correlations.

C(Q ) = Cor(Q )/Uncor(Q ),
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FIG. 2. C(Q ) of multiparticle events (M = 9, m = 2 —4)

for a granular source (a)—(c) and nongranular source (a')—(c').
The symbols o, A, and in (a)—(c) represent n = 2, n = 3,
and n = 4, respectively; the corresponding solid symbols in
(a') —(c') represent R = 1.5 fm, R = 2.0 fm, and R = 2.5 fm,
respectively.

where Cor(Q ) is the distribution of Q obtained &om
the correlated events, and Uncor(Q ) is the distribution
of Q obtained from the events which do not contain any
Bose correlations.

Figures 2(a), 2(b), and 2(c) show results for
C(Q ) (m = 2, 3, 4), based on 7.2 x 10s Monte Carlo
correlated events with multiplicity M = 9 for granular
sources (a = 1.0 fm, Bo ——4.0 fm). The open circle,
open triangle, and open square symbols correspond to
n = 2, n = 3, and n = 4, respectively; the correspond-
ing results for nongranular sources (n = 1, a = B) are
shown on the right, in Figs. 2(a'), 2(b'), and 2(c'), where
the solid circle, solid triangle, and solid square symbols
correspond to R = 1.5 fm, R = 2.0 fm, and R = 2.5 fm,

IV. PROBING SOURCE GRANULARITY WITH
MULTIPARTICLE CORRELATIONS

In order to elucidate the information contained in the
multiparticle correlation functions C(Q ) in Fig. 2, we
define

S
Nb;„ g(~) &g &g(2)

C(Q )

where Nb;„ is the number of bins used over the interval

[Q,Q ], and the sum denotes the sum of the values
of C(Q ) in those bins.

Figures 3(a) and (a') show the values of S for mul-

tiparticle events (M = 9) with granular and nongranu-
lar sources, respectively, calculated for the multiparticle
correlation functions C(Q ) plotted in Fig. 2. Since the
statistics for the multiparticle correlation functions ob-
tained &om the region Q ( 120 MeV/c are poor, we
study the Q region between 120 MeV/c and 600 MeV/c.
In Figs. 3(a) and 3(a'), the open square, solid circle, and
open triangle symbols correspond to m = 2, m = 3, and
m = 4, respectively. Comparing Figs. 3(a) and 3(a'), it
can be seen that although the value of S2 for the gran-
ular source with a given number n of droplets may be
close to a value of S2 for a nongranular source with some
radius R = R' between a and Ro, the value of S for
the granular source with the given n becomes smaller
than the value of S for the nongranular source with
radius R when m increases. The probability of emit-
ting m particles &om the same droplet decreases rapidly,
and the probability of emitting m particles &om difI'er-

ent droplets increases with increasing m. Furthermore,
when the values of S2 for both kinds of source are close
to each other, the radius R' of the nongranular source is
smaller than the radius Ro of the granular source, and
the average correlation between particles emitted &om
difI'erent droplets in the granular source is much weaker
than the average correlation between the particles emit-
ted &om the nongranular source. Thus, by comparing
the values of S for difI'erent m, , including the pattern
of increase of S with m, we can distinguish a granu-
lar source &om a nongranular source. The correlation
among particles emitted &om diferent droplets mainly
afFects the multiparticle correlation function for a gran-
ular source in the small Q region. The multiparticle
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V. THE NUMBER OF DROPLETS IN THE
EMITTING SOURCE

From Eq. (1), it is clear that the effect of source gran-
ularity on the two-particle correlation functions in two-
particle events is related to the number of droplets n.
In multiparticle events, the effect of source granularity
on multiparticle correlation functions is not only related
to n, but also related to the multiplicity M of identical
bosons. We de6ne the average number of bosons emitted
&om a droplet as

(N) = M/n.

l .46
1.32
l. 'l8—

(c')

FIG. 3. S results for a granular source (a)—(c) and nou-
granular source (a') —(c') for multiparticle events (M = 9); (a)
and (a') for Q = 120 MeV/c, Q = 600 MeV/c, (b) and
(b') for Q = 120 MeV/c, Q = 360 MeV/c, (c) and (c')
for Q~ l = 360 MeV/c, Q = 600 MeV/c. The symbols, ~,
and E correspond to m = 2, m = 3, and m = 4, respectively.

When (N) becomes larger, the effect of source granularity
on multiparticle correlation functions becomes stronger.

Because the radius Bo of a granular source is much
larger than the radius of a droplet, the correlations be-
tween the particles emitted &om different droplets are
much weaker than the correlations between the particles
emitted from the same droplet, especially in the large Q
region, and the contribution of the correlations between
the particles emitted &om difFerent droplets to the mul-
tiparticle correlation function can be neglected. There-
fore, in the large Q region, there will not be a contri-
bution &om pure m-multiplet correlations in the multi-
particle correlation function, as long as (N) ( m. When
(N) ) m, the sample of correlated particles will contain
I, particles emitted &om the same droplet, and the mul-
tiparticle correlation function will contain contributions
from pure m-multiplet correlations. We de6.ne

E =S —S (14)

correlation function for a granular source in the large
Q region gets its main contribution from the correlation
among particles emitted &om the same droplet, which is
stronger than the correlation between particles emitted
&om a nongranular source with radius R between a and
Bo. Therefore, the differences between the multiparticle
correlation functions of a granular source and a nongran-
ular source with radius B between a and Bo in the small
and large Q regions may be different. Figures 3(b) and
3(c) show the granular source results for S in the small

Q region (between 120 and 360 MeV/c) and in the large
Q region (between 360 and 600 MeV/c), respectively,
based on multiparticle events with multiplicity M = 9.
Again, Figs. 3(b') and 3(c') show the corresponding re-
sults for the nongranular source, and we have used the
same values of m and the same symbols as in Figs. 3(a)
and (a'). It can be seen from Figs. 3(b) and 3(b') that
in the small Q region, the Ss, and S4 results for granu-
lar sources corresponding to n = 2, 3, and 4 are smaller
than the S3 and S4 results for nongranular sources corre-
sponding to B = 1.5 fm, 2.0 fm, and 2.5 fm, respectively.
These, in turn, are opposite to the results in Figs. 3(c)
and 3(c ) for the large Q region. This is a promising sig-
nal for distinguishing granular and nongranular sources,
and we conclude that S is an important observable to
probe the granularity of the source.

compared with S, E gives additional prominence to
the contribution of the pure m-multiplet correlations in
the m-particle correlation function. Figure 4 gives re-
sults for I"s (solid circle symbol), I"4 (open triangle sym-
bol), and Fs (open circle symbol) for multiparticle events
with a granular source (a = 1.0 fm, Ro ——4.0 fm) in the
Q region between 300 and 600 MeV/c. Figures 4(a),
4(b), and 4(c) show results for events with multiplicities
M = 6, M = 9, and M = 12, respectively. In Fig. 4(a),
when n increases from 2 to 3, the value of (N) decreases
from 3 to 2, and I"s is also seen to decrease. Since (N) is
always smaller than 4 in this case (for n = 2, 3, 4), there
is no contribution from pure quadruplet correlations in
S4, and the increments of S3 to S4 and S2 to S3 only
contain contributions &om triplet and pair correlations;
accordingly, I"s and E4 almost overlap. In Fig. 4(b),
when n = 2 and (N) = 4.5, I'4 is higher than I"s, while
there is not much difFerence between E5 and E4, when
n = 3, 4, (N) ( 4, and I"4 decreases from its value at
n = 2 while E5, E4, and E3 almost overlap since there
are no contributions &om pure quintuplet and quadru-
plet correlations. In Fig. 4(c), when n = 2, (N) ) 5
and there are differences both between E5 and E4 and
between E4 and E3 because of contributions &om pure
quintuplet and quadruplet correlations. When n = 3,
E5 and E4 begin to overlap, and likewise when n = 4,
E4 and E3 begin to overlap. Therefore, by analyzing the
contributions of pure multiplet correlations in multipar-
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obscure information about the source granularity con-
tained in the two-particle correlation function. However,
two-particle correlations among the components of rela-
tive momentum transverse to their total momentum is
not affected by the source lifetime [3,26,5]. By choos-
ing particles with the same magnitude of momentum so
that each pair among the analyzed particles has its rel-
ative momentum perpendicular to the total momentum
of the pair, any smearing resulting &om the finite source
lifetime can be circumvented.

VI. CONCLUSIONS

0.58—
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0.34—
0.22—

. 1

(c)

FIG. 4. I' results for multiparticle events with a granular
source in the Q region between 300 and 600 MeV/c; (a) for
M = 6, (b) for M = 9, and (c) for M = 12. The symbols ~, A,
and o correspond to m = 3, m = 4, and m, = 5, respectively.

ticle correlation functions, we can determine the average
number (N) of bosons emitted from a droplet. If F
and E i begin to overlap as the multiplicity I of the
subevent increases to mo, then there are no contributions
&om pure m-multiplet correlations in S, and it can be
inferred that the average number of bosons (N) emitted
from a droplet lies between (mo —1) and mo. In that
case, information about the number of droplets in the
emitting source can be inferred from Eq. (13).

Final-state Coulomb interactions for kaons can be ne-
glected in the present context. Coulomb repulsion be-
tween charged kaons mainly affects particles with relative
momentum smaller than (mien ~2) 42 MeV/c [7,26],
but is much less important at the higher relative mo-
menta where spatial structures with dimensions of 5 fm
or less are probed. In our simulations, the number of
correlated kaon pairs below 42 MeV/c in relative mo-
mentum is very low only about 0.04%%uo of all correlated
kaon pairs. Results with a cut q;z ) (mien~~2) in the re-
gion Q )120 MeV/c are indistinguishable from results
without the cut, so the influence of final-state Coulomb
interactions on analyses of source granularity with the
expected dimensions can be neglected.

If the source lifetime is not negligibly short, averag-
ing over all directions of relative momentum q might

Interferometry analyses for identical bosons produced
in ultrarelativistic heavy ion collisions is an important
tool to probe possible granularity in the spatial structure
of the source and so shed light on the existence of the
phase of quark-gluon plasma [5,6,27]. Because of lim-
ited statistics and the many complex factors that can
inhuence the interpretation of interferometry measure-
ments, probing the granularity of the emission source us-
ing only two-particle Bose correlation may be very difIi-
cult. Compared to two-particle Bose correlations, mul-
tiparticle Bose correlations can refiect the difference be-
tween granular and nongranular sources with better sen-
sitivity. Granular sources can be detected by compar-
ing and analyzing the multiparticle Bose correlations in
subevents with different multiplicities in different rela-
tive momentum regions, and a possible signal of the exis-
tence of a mixed phase of QGP and hadronic gas can be
sought. In multiparticle events, the effect of source gran-
ularity on multiparticle Bose correlation functions relates
to the average number of bosons (N) emitted from a
droplet, and contributions &om pure m-multiplet corre-
lations in multiparticle correlation functions in the large
relative momentum region for the cases of (N) ) m and
(N) ( m show distinct differences. This can be used to
determine the average number of bosons emitted &om a
droplet by analyzing the pure multiplet Bose correlations
in the large relative momentum region. Pratt et al. [5]
have enumerated several advantages of kaons for detect-
ing source granularity through interferometry, including
copious emission, less distortion arising &om the decay
of long-lived resonances, and well-understood final state
interactions. We argue that multikaon correlations may
offer a promising signal to probe the @CD phase transi-
tion.
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