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Nucleation of quark-gluon plasma from hadronic matter
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The energy densities achieved during central collisions of large nuclei at Brookhaven's AGS
may be high enough to allow the formation of quark-gluon plasma. Calculations based on rela-
tivistic nucleation theory suggest that rare events, perhaps one in every 10 or 10, undergo the
phase transition. Experimental rami6cations may include an enhancement in the ratio of pions to
baryons, a reduction in the ratio of deuterons to protons, and a larger source size as seen by hadron
interferometry.

PACS number(s): 12.38.Mh, 25.75.+r, 24.60.—k

I. INTRODUCTION

Experiments at Brookhaven's AGS with beams of oxy-
gen, sulphur, and gold at laboratory energies of 10 to 15
GeV per nucleon have indicated a nearly complete stop-
ping of the nuclei during central collisions [I]. This mas-
sive pile-up of nuclear matter is also seen in numerical
simulations which approximate the nuclear collisions as
a sequence of elementary hadron-hadron collisions, such
as relativistic quantum molecular dynamics (RQMD) [2]
and a relativistic cascade (ARC) [3]. Energy densities
of up to 2 GeV/fm may be realized in the laboratory.
One may legitimately ask the question: Is quark-gluon
plasma produced during these collisions? Despite the
fact that most experimental data so far are consistent
with the hadron-based cascade simulations we suggest
that the answer may be yes, at least in rare events.

The basic picture we have in mind is as follows. Dur-
ing the initial stage of the collision the nuclei stop each
other and get heated due to elementary nucleon-nucleon
collisions and the associated production of mesons. Oc-
casionally the local energy density may reach a very high
value due to fIuctuations. In this small region of space
the matter is more readily described as a plasma droplet
of quarks and gluons rather than as a gas of hadrons.
If the average energy density in the space surrounding
this plasma droplet is above a certain critical value then
the plasma droplet will grow, converting more hadrons
to quark-gluon plasma. Since there are no containment
walls the matter, whatever phase it is in, will eventually
expand and cool. In the end all quarks and gluons must
be rehadronized and will be detected as such.

Quantitative questions now arise. Is the energy den-
sity achieved at the AGS high enough? How big must
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a plasma droplet be to grow? What is the time scale
for producing such a critical size droplet? How much of
the total volume is converted to plasma, and how long
does it last? Of course, in order to ask these questions
we must assume the existence of a deconfinement/chiral
symmetry restoring phase transition, or at least a rapid
crossover.

The picture at the AGS is different than that expected
at Brookhaven's RHIC which is now under construction.
At RHIC, where the energy is to be 100 GeV per nu-
cleon per beam, the nuclei are expected to be transpar-
ent to each other. Hard collisions between and among the
quarks and gluons in the nuclear structure functions will
produce a hot, nearly baryon-&ee, plasma in the central
rapidity region, the so-called inside-outside cascade [4,5].
The receding nuclei will be compressed and heated [6]. As
the matter expands and cools it will undergo a hadroniza-
tion phase transition as bubbles of hadronic matter are
nucleated in the preexisting quark-gluon plasma [7]. The
picture is the same for lead on lead collisions at CERN's
anticipated I HC. The situation at CERN's existing SPS
is not clear. At its lower energies it may be like the AGS,
and at its maximum energies of 100 to 200 GeV per nu-
cleon in the laboratory kame it may be more similar to
RHIC.

The approach we follow is analogous to that taken
under the assumption that the transition begins in the
quark-gluon plasma phase, as appropriate for RHIC [7].
First, we describe a very simple model parametrizing the
time evolution of the hadronic matter in a central col-
lision assuming complete stopping. Second, we convert
the baryon and energy densities into temperatures and
chemical potentials via the use of a hadronic equation of
state. We also need an equation of state describing the
quark-gluon plasma phase. Third, we determine the rate
of nucleation of plasma droplets in superheated hadronic
matter and their subsequent growth velocities. Then we
put it all together and solve the resulting equations nu-
merically. Those interested only in the results may turn
directly to Sec. V.
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We discuss and propose some experimental signatures
in the conclusion.

caveat that the matter is not completely thermalized in
the cascade simulation.

II. DYNAMICS OF NUCLEAR COLLISIONS

The dynamics of a central nucleus-nucleus collision at
the AGS is extremely complicated. We shall be satis6ed
with a simple model for an exploratory excursion into
the problem of nucleation of plasma. To first approxi-
mation this model is consistent with the ARC cascade
simulations and with direct experimental measurements.

Imagine the colliding nuclei as two Lorentz contracted
disks in the center-of-momentum &arne. At time t = 0
they touch. They interpenetrate between 0 & t
where tp = R/p, R is the nuclear radius, and p is the
Lorentz factor in the center-of-momentum &arne. At the
end of this time the nuclei are completely stopped. The
volume of overlap as a function of time is

III. EQUATION OF STATE
FOR BARYON RICH MATTER

In this section we discuss the equation of state for the
quark-gluon plasma and the hadron gas. Despite much
progress in lattice QCD studies there is much uncer-
tainity in the equation-of-state results when dynamical
quarks are included. In addition, current lattice results

0&t &tp) 150—

where Vp = 4?rR3/3. The xnatter within this overlap vol-
ume is assumed to be thermalized with constant baryon
density 2pnp and energy density 2p mN np, where np is
normal nuclear matter density and m~ is the nucleon
mass.

After the time tp the hot fireball expands radially.
At late times we would expect its radius to grow lin-
early with time. Therefore we parametrize the volume
as V(t) = A(t + a) . The constants A and a are deter-
mined by matching the volume and its erst derivative at
tp. This gives for the expansion volume
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Eventually the particles will begin &ee-streaming, but
we shall not be interested in what happens at such low
densities.

The time dependence of the baryon density is
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We assume an entropy-conserving hydrodynamic expan-
sion. Hence the entropy density is 50—
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In other words, the entropy per baryon is constant during
the expansion. The initial entropy density s(tp) must be
determined &om the initial baryon and energy densities
via an equation of state.

To get some typical numbers consider gold on gold col-
lisions at a beam energy of 11.6 GeV per nucleon. Then
B = 7 fm and p = 2.7 resulting in a characteristic time
of 2.6 fm/c, an initial baryon density of 0.78 fm and an
initial energy density of 1.95 GeV/fm3. These numbers
are very similar to those obtained &om ARC with the
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FIG. 1. Phase diagram of strongly interacting matter in the
temperature-baryon chemical potential plane (top panel) and
in the temperature-baryon density plane (bottom panel). The
dashed curve represents phase coexistence between hadronic
and quark-gluon matter. It does not extend to zero temper-
ature because our description is too crude there. The solid
curves represent the trajectories followed by heavy-ion colli-
sions (neglecting nucleation of plasma) for parameter sets 1
and 2 in our simpli6ed model.
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provide little insight into the equation of state for the
large baryon chemical potentials relevant to this work.
We shall therefore (i) assume that the hadron to quark-
gluon phase transition is first order, (ii) use simple mod-
els to describe the equation of state in each of the two
phases, and (iii) perform a Maxwell construction to join
the two phases along their common boundary.

For simplicity we will assume that the quark-gluon
plasma consists of a free gas of quarks and gluons with
a bag constant to represent confinement. For a plasma
with up, down, and strange quarks we choose the inde-
pendent variables to be the temperature T, the chemical
potential for up and down quarks p = pg ——pq un-
der the assuxnption of charge symmetric matter [8], and
the chemical potential for strange quarks p, . Since the
strong interactions conserve strangeness, and there is in-
sufBcient time for the weak interactions to be operative,
the plasma has no net strangeness; this requirement im-
plies that p, = 0. Vile collect below the expressions for
the pressure, the baryon density, the entropy density, and
the energy density in the quark-gluon phase:

32+ 42+ 21fi(m, /T)
qg

1 4+ 2pq
—B)2'

masses are set to zero. The strange quark mass, m„
is somewhere in the range of 150 to 280 MeV. The
functions fi(m, /T) and f2(m, /T) involve a momen-
tum integration over the strange quark Fermi distribu-
tion function. Their limits are fi(0) = f2(0) = 1 and
fi(oo) = f2(oo) = 0. Rather than doing the integrals nu-
merically, we will ignore the strange quark in the plasma
phase altogether. The matter at the AGS is quite baryon
rich, and the chemical potential pq is typically of order
500 MeV. Since the temperature is typically of order 200
MeV, the strange quark contributes very little. As an
example, if the strange quark is included with zero mass
then the critical temperature at zero baryon density is
about 150 MeV. If the strange quark is not included, but
nothing else is changed, then the critical temperature is
161 MeV. A realistic quark mass would give something
in between. For increasing baryon density the di8'erence
gets even smaller.

For the hadronic equation of state we consider a gas of
mesons (vr, K, K', il, g', p, u, P, and ai), and baryons
(nucleons, 4, A, and Z), and the corresponding an-
tibaryons. The only interaction we directly account for
is the repulsive mean field in the baryon sector. This is
done in the usual way by adding a term proportional to
the baryon density to the baryon chemical potential [9].

qs 2 (,pqIT + p3

32 + 42 + 21f2(m, /T)
S~g =

45 q

qg = qg+ qg+ I"q B
&M (5)

~B P'B K&B

Here K is the strength of the repulsive mean field. The
chemical potential for a hadron of type i is expressed
in terms of the baryon, electric charge, and strangeness
chemical potentials as

The baryon chemical potential is pB ——3pq) the electric
charge chemical potential is pg ——0, and the strangeness
chemical potential is pg ———pq. The bag constant B
is chosen to be (220 MeV) . The up and down quark

p; = B,v~+ q'vg+ ~'I s,
where B;, Q;, and S; are the corresponding quantum
numbers of the hadron.

The pressure in the hadronic phase is [9]

=1 g 1 +1
&h~a = —It~~ + T) g, ln 1 + e ~l'* "*l + ln 1 + e ~l"+~'l (8)

+ m, and the + refer to fermions or bosons. The baryon density, electric charge density, and
strangeness density are all determined in the usual way by differentiating the pressure with respect to PB PQ and
ps, respectively.

The baryon density must be determined self-consistently by solving the nonlinear equation

AB
d g 1

(2vr)s exp [P(e, —p;)] y 1

1
~ vlP( *+~')l+i) (9)

Since we require the net strangeness of the hadrons to be
zero and the charge to baryon ratio to be 1/2 these addi-
tional constraints must be implemented simultaneously
with the one for the baryon density.

The final step is to perform the Maxwell construc-
tion joining the two phases. This is done by equating
the temperatures, baryon chemical potentials, and pres-

sures in the two phases. In the top panel of Fig. 1 we
plot the coexistence curve in the T-pB plane for a bag
constant B = (220 MeV) and a mean field parameter
K = 1500 MeV fm . For each temperature/chemical
potential point on the coexistence curve, there is a par-
ticular value of the pressure. Since the energy density,
number density, and entropy density are all discontinu-
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ous across the coexistence curve, there is a mixed phase
consisting of different regions of space which are in either
the quark-gluon or the hadron phase. This is illustrated
in the bottom panel of Fig. 1 for the T-n~ plane. To in-
terpolate across the boundary one introduces the quark-
gluon &action q which ranges &om 0 to 1. The hadron
&action is then 1 —q.

~mix = (1 q) shad + q &qg &

ng'" = (1 —q) n~ d + q nqg,

8 ' = (1 —q)8h g+qsqg.

It is worth remarking that without the incorporation of
a bag constant B or a repulsive baryon mean field K one
generally does not get a sensible transition &om hadrons
to quarks and gluons in the whole T-p~ plane.

IV. NUCLEATION RATE
FOR BARYON RICH MATTER

The rate I to nucleate droplets of quark-gluon plasma
in a hadronic gas per unit time per unit volume is given
by [10—12]

I = —f}lo exp( —AE, /T) .
27'

Here v is the dynamical prefactor, 00 is the statistical
prefactor, and LF, is the change in &ee energy of the sys-
tem due to the formation of a single critical size droplet
of plasma. Each of the three factors will be discussed in
turn.

The nucleation process is driven by statistical fluctu-
ations which produce droplets of quark-gluon plasma in
the hadronic phase. The size of these fluctuations is de-
termined by the &ee energy difference of the hadronic
phase with and without the plasma droplet. This energy
difference can be approximated by a liquid-drop expan-
sion [13]

exists for liquid-gas type of phase transitions, but does
not exist in the scenario of the hadron to quark-gluon
phase transition assumed here. Generally ~„;t is slightly
larger than 2. Figure 2 shows a sketch of LF as a
function of R.

The system under discussion is in a superheated state
so that the pressure difference in Eq. (12) is negative.
Minimizing LF with respect to the droplet radius R
yields the critical radius R, (T, p~). Droplets with a ra-
dius larger than R, will expand into the hadronic phase,
while droplets with a radius smaller than R, will collapse.
LF, is the activation energy needed to create a droplet
of critical size R, .

The dynamical prefactor v determines the exponential
growth rate of critical-size droplets. For the droplets to
grow beyond the critical radius, latent heat must be car-
ried to the surface of the droplet &om the surrounding
hadronic matter. This is achieved through thermal dis-
sipation and/or viscous damping. The general result for
the dynamical prefactor is [14]

AT+ 21 —q+ ~ I

. (13)
2cr (4

Here Lm is the difference in enthalpy densities of the
two phases. A is the thermal conductivity and q and (
are the viscosities of the hadronic phase. Notice that v
is linearly proportional to the dissipative coefBcients, as
expected for linear viscous Quid dynamics.

For the dissipative coeKcients we use the parametriza-
tion of Danielewicz [15], extrapolated to the region of
temperatures and baryon densities we are interested in.

(1700 t tnt '22 ( n )
T ) gno j 1+T2/1000 (no)
5.8T'/'

1+ 160/T2 ' (14)

600

AI' = —R' [Ph s(T, @gal)
—Pqg(T, p~)] + 47rR'rr

3
4'

+7 pjtT ln 1 + —R sag3 (12)

The first term represents the usual volume or pressure
contribution, the second term is the surface contribution
which is proportional to the surface tension o, and the
third term is the so-called shape contribution. Close to
the phase transition the volume contribution approaches
zero. The shape contribution is an entropy term which
takes into account small Quctuations in the shape of the
droplet which conserve both the volume and the surface
area (Fisher's magic carpet efFect). It is proportional to
the logarithm of the entropy of the quark-gluon droplet
3 R sag The 1 under the logarithm is added to ensure

regular behavior at R ~ 0. The critical exponent 7
would determine the behavior of the distribution close
to a critical point where the surface tension vanishes and
the phase transition is second order. Such a critical point
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FIG. 2. The free energy difference KP(R) between a
hadronic phase with and without a quark-gluon plasma
droplet. This corresponds to the starting point for a colli-
sion at the AGS, parameter set 1.
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T qno) 1+T /7 x 10 (no)
0.0225 Ti/ 2

1+ 160/T2 (1s)

Here T is given in MeV, i1 in Mev/fm c, and A in c/fm .
The bulk viscosity ( is neglected since it is a lot smaller
than the shear viscosity g.

The free energy AJ" given in (12) is a functional of
a set of collective variables, chosen here to be the local
temperature T and the chemical potential p~. Using the
equations of state we could have chosen instead the lo-
cal energy density e and baryon density n~. Figure 2
is a one-dimensional projection of this space of collective
variables. The statistical prefactor Op is a measure of the
phase space volume of the saddle point region of the free
energy functional, and LI", is the change in the &ee en-
ergy required to cross the saddle. To first approximation
the statistical prefactor is [10,16,12,14]

2 o. '&'(R, )
3~3 T &(i a) (16)

The correlation length in the hadronic phase, (i, g, is ex-
pected to be on the order of 0.5 to 1.0 fm at the relevant
energy densities. Higher-order corrections to Op, arising
&om fluctuations, are already included phenomenologi-
cally in LF when we evaluate it with the measured val-
ues of the surface tension, equation of state, and shape
contribution. See Langer and Turski [17].

There are several crucial assumptions inherent in this
expression for the nucleation rate. First, it is assumed
that the phase transition is of first order. Second, it is
assumed that the temperature and chemical potentials
are well defined, and vary more or less smoothly and
slowly throughout the system. Third, it is assumed that
when nucleation takes place the critical-size droplet has
a radius which is no smaller than the correlation length,
otherwise the validity of statistical averaging becomes du-
bious. We do not necessarily believe that these assump-
tions are correct in detail; rather, we use them as a basis
to present interesting possibilities.

To be concrete in what follows, we take the surface
tension to be o = 50 MeV/fm2, the correlation length in
the hadronic phase to be (i, g = 0.7 fm, and the critical
coefIicient to be 7„;t ——2.2. In principle 0 cannot be var-
ied completely independently of the equation of state. If
the latent heat goes to zero so that the first-order phase
transition goes over into a second-order one, o must go
to zero also. Conversely, as the latent heat increases, one
might expect 0 to become larger. Lattice gauge theory
calculations so far give us no information on its magni-
tude at large baryon densities.

The expressions given here for the various components
of the nucleation prefactor are relevant for one dense
phase of matter (quark-gluon plasma) immersed in an-
other (hadronic matter). The basic physics is that initial
droplet (bubble) growth is limited by the ability of vis-
cosity and heat conduction to carry latent heat to (away)
&om the surface. One may consider a different scenario
where a dense droplet of one phase (quark-gluon plasma)

is surrounded by a dilute gas of the other phase (hadronic
matter). The plasma droplet then would grow by accre-
tion of individual hadrons. Although we don't think that
this is the relevant situation, since in the superheated
hadronic phase the mean &ee path and correlation length
are of order 1 fm or less, we include an Appendix outlin-
ing the theoretical expression for the prefactor if it were.

Nucleation begins when the two nuclei first collide with
each other and a superheated overlap region is created.
It ends when the expanding system reaches the phase
coexistence curve. The fraction of space which is con-
verted into quark-gluon matter q is computed &om the
expression [7]

t

q(t) = — dt'l(t')V(t')[I —q(t')]Vq, ~(t, t') . (17)
p

The total volume of the system at time t is V(t). The
volume already occupied by quark-gluon plasma is not
available for nucleation. The volume which is available
for nucleation is V(t) [1—q(t)]. Once a drop has been nu-
cleated, with radius R„(T,p~), it will grow radially with
speed v(T, p~). The volume of the droplet is therefore a
nonlocal function of time. It can be written as

- 3

I, B, and v all depend on time because they depend on
the (time dependent) temperature and chemical poten-
tial.

The speed v(t) with which the droplet expands into the
hadronic matter is relatively unknown. To determine this
speed would require a detailed microscopic study of the
system. Instead we make the plausible assumption that
the expansion into the new phase is driven by the pressure
difference AP(t) = P~s(t) —Ph g(t) between them [18].
The greater the pressure difFerence, the faster the plasma
droplet expands. As the critical curve is approached the
pressure difI'erence goes to zero, and so should the droplet
expansion velocity, since on the critical curve neither of
the phases is thermodynamically preferred over the other.
Thus we write

LP
PV =Vp )

P~s

where p = 1/v 1 —v; vo is a free phenoinenological pa-
rameter which we expect to be on the order of 1.

V. NUMERlCAL RESULTS

We consider two sets of initial conditions. Set 1 cor-
responds to a central gold-gold collision with a lab ki-
netic energy of Ek;„= 11.6 GeV/nucleon and p = 2.68,
as achieved at Brookhaven's AGS. Set 2 corresponds to
a central lead-lead collision with a lab kinetic energy
of Ei,;„=25 GeV/nucleon and p = 3.78, as could be
achieved at CERN's SPS. The average baryon density in
a nucleus is taken as np ——0.145 fm so that the radii
of the nuclei are given by B = rpA ~ with rp ——1.18 fm.
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TABLE I. Initial conditions for the two chosen parameter
sets and some resulting characteristic scales.

Eb, (GeV)
A

y

to (fin/c)
tg (fm/c)
T (MeV)
pn (GeV)

P...(Gev/fm')
P~s (GeV/fm )
ei, s (GeV/fm')
e~s (GeV/fm )

n~~s (fm )
sh s (fm ')
s~s (fm )

Set 1
11.6
197
2.68
2.56,
7.0
173
1.72
0.67
2.19
1.95
7.78
0.78
3.17
7.42

25.93

Set 2i
25.0

~

208
[

3.78
~

1.85
[

6.95
214

~

2.OO
~

1.41
5.07
3.90
16.44
1.10
5.58
14.27
46.94

~

The interpenetration time to ——R/p, defined in (1), is
2.56 fm (1.85 fm), and the initial baryon density in the
overlap region, defined in (3), is 0.78 fm s (1.10 fm s)
for set 1 (2), respectively. The energy density 2p m, ~no
reached in this first stage of the collision is thus 1.95
GeV/fm (3.90 GeV/fm ) for set 1 (2). Table I gives a
summary of the initial conditions for the two parameter
sets. Some of the quantites in this Table, like the tem-
perature and baryon chemical potential, are dependent
on the equation of state, while others are not.

The assumed volume of kinetically equilibrated matter
V(t) is determined by Eqs. (1) and (2). Figure 3 displays
the volume as a function of time for the two parameter
sets. We see the linear increase of the overlap volume
up to the interpenetration time to after which the nuclei
are completely stopped and start to expand spherically,
leading to a cubic increase with time.

Knowledge of the time evolution of the volume allows
us to evaluate the time dependence of the baryon and
entropy densites, as given in Eqs. (3) and (4). With
the help of the equations of state discussed in Sec. III
we can then evaluate the chemical potential p~(t) and
the temperature T(t) of the hadronic phase as functions
of time. Figure 4 shows them, as well as the baryon
density and the energy density for both parameter sets.
The ordinates are normalized to their initial values as
displayed in Table I.

Next we plot the path of the collision in the pI3-T
plane of Fig. 1. The system starts out as an extremely
superheated hadron gas deep within what ought to be
the quark-gluon phase at a temperature of 173 MeV (214
MeV) and a chemical potential of 1724 MeV (2064 MeV).
It stays at this point up to the interpenetration time to,
then expands and cools, reaching the phase coexistence
curve at a time tf = 7 fm (6.95 fm) later.

It is important to recognize that we are neglecting the
feedback of quark-gluon plasma nucleation on the tempo-
ral evolution of the temperature and chemical potential.
We shall return to this point later.

In Fig. 5 we plot the nucleation rate I(t) along the

3000
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0 3 4 5
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FIG. 3. Time evolution of the volume V(t) of the collision
region.

Ts/2 (Am) 2 3

The dissipation coeKcients are relatively slowly vary-
ing functions, and increase by only 20 or 30%%uo. But B,

path in the T-p~ plane for the two parameter sets. Dur-
ing interpenetration both temperature and chemical po-
tential are constant; the nucleation rate is therefore also
constant. After to the rate first increases, reaches a max-
imum, then decreases to zero as the coexistence curve is
approached. We would expect the rate of nucleation of
plasma to increase as the initial state of the system gets
further &om the phase coexistence curve, and therefore
the rate should be a monotonically decreasing function
of time after to. Why isn't it? The reason is rather
fundamental. The usual analytic expression for the nu-
cleation rate, Eq. (11), is derived under the assumption
that the system has been either superheated or super-
cooled just a small amount from the phase coexistence
curve. This means that the trajectory in phase space
which goes from a metastable point to a stable point is
dominated by a saddle, and the saddle configuration is a
spherical droplet or bubble. All other configurations have
a AI" /T which is significantly larger, and therefore ex-
ponentially suppressed in comparison. When the system
is superheated as dramatically as it is in our examples,
AI", /T = 2. Then the dominant contribution to AF, is
&om the shape term. More extreme configurations with
shapes like lasagna and spaghetti ought to be contribut-
ing too. However, these are diFicult to take into account
in any simple manner, especially concerning the preex-
ponential factors.

Mathematically, the reason the rate turns over in this
6gure can be explained this way: Going away &om the
phase coexistence curve, the Boltzmann exponential in-
creases. The preexponential factor is proportional to
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FIG. 4. Upper row: Time
evolution of the baryon chem-
ical potential p~ and the tem-
perature T for parameter set 1

(2) on the left (right). Lower
rom: Time evolution of the
baryon number density n&
and the energy density ch, & for
parameter set 1 (2) on the left
(right).
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gets smaller, T gets bigger, and the enthalpy di6'erence
squared increases by about an order of magnitude. Over-
all, the preexponential factor decreases. Multiplication of
a decreasing function by an increasing function results,
in this case, in a product with a maximum, as seen in
Fig. 5. Actually, the dominant e8'ect comes from Lm,
and this arises &om the extreme superheating of hadronic
matter in the collisions. It is quite likely that we are un-
derestimating the initial nucleation rate by an order of
magnitude. In reality, for small droplets o. electively de-
pends on B [19,20]. With increasing superheating one
eventually reaches a point where spinodal decomposition
sets in, and the phase transition will be extremely rapid
[19]. This situation is not very well understood. Still, an
uncertainty even this large is acceptable in a first study
of this nature.

In Fig. 6 we plot the average droplet density, defined
by

is on the order of 2 x 10 fm~, see Fig. 3. The aver-
age number of droplets nucleated is rather small, roughly
1/50 and 1/100 at the AGS and SPS, respectively. The
reason for the smaller number for set 2, SPS, is that
the superheating is even more extreme, and contribu-

V
CO

CD
1

t
n„.,(t) = dt' I(t'),

0
(20)

as a function of time. The average droplet density is in-
dependent of the droplet growth speed as long as q(t)
remains small, which it does in these examples. The
maximum possible value reached by the droplet density
is ng, ~(tt) = 2 (1) x10 s fm s for parameter set 1 (2).
The volume of the expanding system, on the other hand,

0
0 3 4 5

t (fm/c}

FIG. 5. Time evolution of the nucleation rate I(t) along
the dynamical trajectories for both parameter sets.
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FIG. 6. Time evolution of the average plasma droplet num-
ber density np, p for both parameter sets.

(21)

tions &om configurations other than spherical are even
more likely to be significant.

In Fig. 7 we plot the volume &action converted to
quark-gluon plasma, q(t), and the average droplet radius,
B(t), defined as

Results for several values of the parameter vo are shown.
For vo ) 10 we are in an asymptotic regime where both
q(t) and R(t) hardly change anymore from their values
obtained vrith vo ——10. The maximum value for q(tf)
is 9.2 x 10 and 3.2 x 10 for parameter set 1 and 2,
respectively. These values are somewhat disappointingly
small. On the other hand, the corresponding maximum
average bubble radii are 5.0 (4.3) fm for set 1 (2), which
are interestingly large.

How are we to interpret these results? If we were
dealing with an expansion chamber with a volume of 1
m the answer would be clear. Droplets of quark-gluon
plasma would be nucleated randomly throughout the sys-
tem. Since the droplet density is so small they would be
widely separated. They would grow to a size of perhaps 3
to 5 fm and therefore would hardly ever touch each other.
They would be scattered like stars in the night sky. Only
about 10 to 10 of the volume would be occupied by
plasma before the system cooled below the phase coexis-
tence curve. The interpretation for heavy-ion collisions at
the AGS, we claim, is different. By the end of the cooling
period, at tJ', the distribution of plasma droplets should
be a Poisson function in the variable N~ p QAQ p.
The likelihood that more than one droplet nucleates in a
given collision is very small. Therefore, either one droplet
nucleates or none. If one nucleates, it will have eaten a
good fraction of the hadronic matter, converting it to
plasma. Although we have neglected feedback of plasma
formation on the dynamical evolution of the system, we
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FIG 7 Upper row: Time
evolution of the quark-gluon
fraction q for different values of
vo for parameter set 1 (2) on the
left (right). Lower row: Time
evolution of the average droplet
radius B for different values of
vo for parameter set 1 (2) on the
left (right).
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can confidently say that plasma formation would sloto the
expansion of the system. This is due to the fact that the
pressure is much reduced when compared at the same en-
ergy density; that is, the equation of state is softened by
the phase transition, and it is the pressure which drives
the expansion. Therefore, the plasma has Inore time to
eat the rest of the hadronic matter. Taking into account
also the fact that we have probably underestimated the
nucleation rate, we conclude that perhaps one in every
100 or 1000 central collisions at the AGS will have un-
dergone an almost complete phase transition by the time
the matter has expanded to the phase coexistence curve.

softening in the matter, that is, a reduction in pressure
for the same energy density. Together, these would im-
ply a larger source size and a longer lifetime as seen by
hadron interferometry [22]. Of course, these and other
signals would have to be investigated experimentally on
an event by event basis. It should be straightforward to
develop models of the probability distributions of the en-
tropy to baryon ratio, source size and lifetime, and so on.
Parameters could be adjusted to learn about the proba-
bility of phase conversion in a given central collision, the
latent heat release, and so forth.

VI. DISCUSSION AND CONCLUSIONS

In this paper we have applied relativistic nucleation
theory to address the issue of quark-gluon plasma forma-
tion at the AGS and at the lower end of the SPS energy
range. Our simple modeling of the magnitude and time
dependence of the baryon and energy densities seem to be
in reasonable agreement with those obtained in hadronic
cascade simulations. The numerical results suggest that
perhaps one out of every 100 or 1000 central collisions
will exhibit a significant phase conversion &om hadronic
matter to quark-gluon plasma.

Standard homogeneous nucleation theory assumes that
the matter undergoing the phase transition is not su-
perheated or supercooled too much &om phase coexis-
tence. Central collisions of the most massive nuclei at
the AGS and the SPS apparently lead to very super-
heated hadronic matter. As a consequence, the criti-
cal size plasma droplets have radii which are comparable
to or even smaller than the expected correlation length.
Standard homogeneous nucleation theory also underesti-
mates the nucleation rate because configurations which
are far &om spherical become important. It may be that
the superheating is so extreme that one is approaching
spinodal decomposition.

It is interesting to think about the transition from nu-
cleation of plasma at these relatively modest beam en-
ergies to the almost instantaneous formation of plasma
expected at RHIC and LHC energies. In &ee space, hard
nucleon-nucleon collisions produce a significant number
of secondary mesons. It takes a finite time for the pro-
duced quarks and gluons actually to hadronize as asymp-
totic meson states. In a central nucleus-nucleus collisions
these little star bursts may overlap before hadronization
can occur, thereby providing seeds or nucleation sites for
quark-gluon plasma.

Neither of the effects discussed above are taken into
account in our calculations. Therefore, we have most
likely underestimated the formation of plasma at AGS
and lower SPS energies, perhaps significantly so.

What about experimental implications? Since the
phase transition is occurring so far out of equilibrium
we would expect a significant increase in the entropy of
the final state. This could be seen in the ratio of pions
to baryons, for example, or in the ratio of deuterons to
protons [21]. Along with the increased entropy should
come a slowing down of the radial expansion due to a
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APPENDIX

The classical theory of nucleation culminated in the
work of Becker and Doring [23]. It is nicely reviewed by
McDonald [24]. It was developed to describe the nucle-
ation of a liquid droplet in a dilute yet supersaturated va-
por. Langer's formalism, as used in this paper, is meant
to apply when neither phase may be considered dilute.
We do not believe that the superheated hadronic matter
is dilute enough to apply the classical theory. Never-
theless, for comparison we would like to summarize the
nucleation rate in the classical regime.

The classical expression for the nucleation of a droplet
of dense liquid in a dilute gas is

&I&&"(i*) I
&

'
I = a(i, ) ~

*
)

n] exp( —AE(i, )/T),
2vr T

where AE(i, ) is the formation energy of a critical sized
droplet consisting of i, molecules, prime denotes differ-
entiation with respect to the number of molecules i, T
is the temperature, nq is the density of single molecules,
and a(i, ) is the accretion rate of single molecules on a
critical droplet. Usually the accretion rate is taken to be

1a(i. ) = n, e4m. R.'s, —

which is the flux of particles (6 is the mean speed of
gas molecules) striking the surface of the critical droplet
times a "sticking f'raction" s less than one. The first term
in the nucleation rate is a dynamical factor in8uencing
the growth rate, the second term characterizes Buctua-
tions about the critical droplet, and the product of the
third and fourth terms gives the quasiequilibrium number
density of critical sized droplets. The energy is measured
with respect to the gas molecules so that AE(1) = 0.

To attempt to apply the classical expression to the
nucleation of a plasma droplet, the first thing we do is to
multiply the Boltzmann factor by the number of states
available to the hot droplet,
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—DE/T —AE/T AS

Due to the thermodynamic identities 9 = dF—/dT and
E = E —TS this modifies the Boltzmann factor to
~
—AI /T

We prefer to characterize the size of the droplet not by
the number of molecules it contains, but by its radius.
Then integration over quadratic fluctuations about the
mean size will give the prefactor

1/z
bR =

Putting everything together we arrive at

I = 27rsoR, ni
I I

exp( b,F,—/T) .zz( Pi
(nj mT )

Generalizing to different species of molecules (hadrons)
we write

The accretion rate must be multiplied by the increase
in radius per particle absorbed to compensate for this
change of variable. Upon absorption of one more particle
the droplet &ee energy changes by

bAF = AF'(R, )bR+ AF" (R—, ) (hR)
2

The derivatives are evaluated at B, whereupon the first
derivative vanishes. The (Gibbs) free energy added by
one gas molecule is just minus the pressure of the gas
molecules divided by their number density. Therefore
the accretion rate is multiplied by the factor

(I = 2mR, no exp ( AF,—/T) Z, s, v, n,
I(n~7IT j

where P~ is the partial pressure of the jth species, n~ is
their density, etc. The quasiequilibrium density of crit-
ical droplets is normalized to the density of the lightest
species of hadrons, no.

Note especially the appearance of B, in the prefac-
tor. This arises Rom the fact that the absorption rate is
proportional to the surface area. In contrast, when the
growth rate is dominated by dissipation the prefactor has
only one power of B,. Over most of the cooling curve it
turns out that the prefactor estimated in this classical
approach is about the same order of magnitude as the
prefactor used in the text.
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