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We investigate the total cross section and its target dependence for K+-nucleus scattering using a
relativistic momentum-space optical potential model which incorporates relativistically normalized
wave functions, invariant two-body amplitudes, covariant kinematics, and an exact full-Fermi aver-
aging integral. The definition of the total cross section in the presence of a Coulomb interaction is
reviewed and the total cross section is calculated in a way that is consistent with what is extracted
from experiment. In addition, the total cross sections for a nucleus and for the deuteron are calcu-
lated utilizing the same theory. This minimizes the dependence of the ratio of these cross sections
on the details of the theory. The model dependence of the first-order optical potential calculations
is investigated. The theoretical results are found to be systematically below all existing data.
PACS number(s): 25.80.Nv, 24.10.Eq, 24.10.Jv

I. INTRODUCTION

One of the basic tenets of classical nuclear physics is
that a nucleon does not significantly change its properties
when inside a nucleus. QCD implies that as the nuclear
density increases, the underlying chiral symmetry could
be partially restored. This would lead to the surmise
that partial deconfinement would occur for nuclear mat-
ter of sufFicient density. As such, the question arises as to
whether this phenomenon can be seen at normal nuclear
densities.

The K+ meson has a distinct advantage as a probe to
investigate this question. With a quark content of us, the
K+ cannot in a simple way form an s-channel resonance
with a nucleon. Experimentally, no such resonances are
seen for incident momentum below 800 MeV/c. Of
all the hadrons, this makes the K+ the weakest strongly
interacting particle. This also means that the K+ has
a long mean &ee path and can penetrate into the in-
terior of a nucleus [1, 2], thus probing the nucleus in a
region where the density is high. Moreover, the weak
K+-nucleon interaction implies that the first-order op-
tical potential should dominate [2—6] and conventional
second-order efFects should be small. This makes theo-
retical models more reliable and less dependent on the
details of the theory.

DifFerential and total cross section measurements [7—
12] show a significant discrepancy when compared to the-
ory [2,4—6]. In order to help reduce possible systematic
errors in the data, it was proposed [6] that the ratio of
the total cross section for a nuclear target, ot(A), to that
of the deuteron, ot(D), be measured. This ratio,

o., (A)/A
ot(D)/2 '

would also have the advantage of helping to cancel the-
oretical uncertainties if the numerator and denominator

were calculated consistently.
Since the experiment of Bugg et al. on C [7], several

recent measurements of this ratio, including its target
dependence, have been carried out at Brookhaven Na-
tional Laboratory [9—12]. Theoretical results [2,4—6] are
10—20% smaller than the data. As conventional nuclear
physics mechanisms appear to be unable to account for
this discrepancy, more exotic mechanisms have been pro-
posed. These include partial deconfinement as exhibited
by a larger nucleon in the nuclear medium [6] or partial
restoration of chiral symmetry as exhibited by reduced
meson masses [13] in the medium. Meson exchange cur-
rents [14, 15], meson exchange currents combined with
long range (random phase approximation) correlations
[16],and various other mechanisms [17] have been exam-
ined.

It is important to understand how much of the dis-
crepancy might be due to approximations made in the
theory. The purpose of this work is to apply the first-
order momentum-space optical model approach [2, 18] to
the cross section ratio, including its target dependence,
and to examine the model dependence of the theoretical
predictions for the ratio. There are many reasons to em-
ploy the momentum-space approach here. These include
(1) fully covariant kinematics, normalizations, and phase-
space factors [19], (2) invariant amplitudes [20], (3) the
crossing symmetric Klein-Gordon propagator, and (4) an
exact evaluation of the Fermi-averaging integration. The
model, originally developed for pion-nucleus studies [18],
was extended to the kaon-nucleus problem in [2]. The
first-order potential is the leading term of a formal sys-
tematic expansion of the full optical model developed in
[21].

In addition, we examine the model dependence of
the results by comparing to a very simple semiclassical
eikonal model originally developed for high-energy pion
scattering [22, 23]. This eikonal model is computationally
straightforward, whereas the momentum-space approach
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becomes computationally intensive at high energies, es-
pecially for heavy targets.

In this work, we also carefully examine the definition
of the total cross section in the presence of the Coulomb
potential. We note that the definition used in [2] does
not correspond to the way that experimentalists extract
total cross sections &om the data and that the Coulomb-
&ee cross section is significantly different &om the exper-
imentally measured quantity, particularly at low incident
momentum.

The paper is organized as follows. Section II is a brief
review of both the momentum-space optical model and
the eikonal model. In Sec. IIIA we examine in detail
K+ scattering &om C and investigate the model de-
pendence of our results. In Sec. IIIB we compare our re-

suits for the target dependence of the cross section ratio
with the recent data. Summary, conclusions, and future
prospects are presented in Sec. IV.

II. THEORETICAL MODELS

In this section, we discuss very brieQy the models we
use to calculate kaon-nucleus scattering: the covariant
momentum-space optical potential model and the eikonal
model. The details of these models can be found. in Refs.
[18,19] and [23], respectively. We include here only a few
necessary formulas. We also review the meaning of "total
cross section" in the presence of the Coulomb field.

The first-order impulse approximation to the optical
potential for meson-nucleus scattering is given by

&k'Ie ~& I U(E) I
~ee ~&) = ) — -i — (@I"„I

~'Ivk& —i~) (4k'nr
I &(E) I k&~&)(k&k& —i~

I
@I~) (2)

d'k~, d'k~ d'k~
2E~ i 2E~ 2E~

where k~, k~, k~ i, and kN are the momenta of the
kaon, the struck nucleon, the A —1 residual nucleus, and
the target nucleus in an arbitrary frame; E s are the
corresponding energies; E is the asymptotic energy of the
kaon-nucleus system; and o. represents a set of quantum
numbers that specify the state of the struck nucleon.

The optical potential is calculated by changing vari-
ables to appropriately defined covariant relative mo-
menta, utilizing relativistic three-body recoupling coef-
ficients defined in Ref. [24], and performing the integra-
tion over the momentum of the struck nucleon numer-
ically. The scattering of the kaon &om the nucleus is
then calculated by inserting the optical potential into the
partial-wave Lippmann-Schwinger equation

I/2 d II

T~(~;q', q) =U~(~;q', q)+ « „U~(~ q' q")4W"W"

(3)

and solving this equation numerically.
The calculation of the optical potential requires a

model of the target wave functions 4~ and a model of
the kaon-nucleon t matrix t~g. The target wave func-
tions are taken from [25] and the deuteron wave function
is generated &om the Bonn potential [26]. By using an
invariant normalization [27] of these wave functions, we
extend the validity of this approach to light targets and
high energies. This was found to be necessary in order for
us to treat the deuteron at energies approaching 1 GeV.
For the kaon-nucleon t matrix, we use a simple separable
form to continue the amplitude off shell. The angular
momentum decomposed t matrix is then

~&e(~, S&', p) =
I 2 I I 2 I

&~e(~) (4)
(pp' ) '

& v(p') v(p) i
kH ) (v&o ')

where p and p' are momenta in the kaon-nucleon center-
of-mass (c.m. ) &arne, j and I. are the total and orbital an-
gular momentum, and p „is the on-shell momentum cor-
responding to ~. We use a Gaussian. v(p) = exp(p /A )

l

for the form factor with a range given by A = 1000
MeV/c. The on-shell t matrix is taken &om either the
phase shift analysis of Amdt [28] or that of Martin [29].
These two analyses are very similar at low energies but
have small differences at high energies. We include 8, p,
and d waves in the two-body amplitude. The momentum-
space calculations are performed using a modified version
on the computer code ROMPIN [18] called ROMKAN (rel-
ativistic optical model for kaon nucleus).

Particularly for pions in the region of the A33 or lower
energies, care must be taken [30] in choosing the energy
cu at which the two-body t matrix is to be evaluated. We
follow [30] and choose

= (QE2 —P2— q2 + m'„, )' —q', (5)

where P is the momentum of the pion-nucleon pair and
q is the momentum of the recoiling A —1 nucleons. The
mass of the A —1 system, m~ i, is given by m~
m~ —mN —E~, and Ep is the binding energy of the struck
nucleon. In addition, ur is shifted [30] by an amount E
(the mean-spectral energy) to approximately account for
the interaction of the intermediate kaon-nucleon system
with the residual nucleus.

The eikonal model which we employ has been devel-
oped in Ref. [23] based on the earlier work [22]. The
eikonal model can be derived f'rom the momentum-space
optical potential by factoring the Fermi integration [19],
expanding the meson-nucleon. amplitude about the for-
ward direction (it is naturally on shell in the forward di-
rection if the nucleon binding energy is cancelled againstE,), and utilizing the eikonal approximation for the
propagator (we include the first Wallace [31] correction).
The eikonal model is quite simple and can serve as a the-
oretical tool to understand the qualitative features of the
dynamics of the scattering. At suKciently high energies
it is expected that it will become a quantitative substi-
tute for the much more numerically intensive momentum-
space approach. To calculate kaon-nucleus scattering in
the eikonal approach we require a model of the nuclear



TARGET DEPENDENCE OF E+-NUCLEUS TOTAL CROSS SECTIONS 859

density and the on-shell kaon-nucleon t matrix. 1A'e con-
struct the density &om the wave functions used in the
momentum-space approach and use the on-shell ampli-
tudes &om [28].

In the presence of a Coulomb potential, the definition
of a total cross section is not unique. The problem was
first resolved in [32] and is discussed in detail in [33]. The
main criterion is for the theorist to calculate the same
quantity as is extracted &om the data by the experimen-
talist. Since the r long-range behavior of the Coulomb
potential leads to an infinite difFerential cross section at
zero degrees, one must subtract the point Coulomb cross
section o, (Q) &om a measured cross section o T (0) before
taking the limit as 0 approaches zero. As was pointed
out in [33], this is not a suitable definition. Although the
difFerence is finite, it oscillates rapidly at small angles and
thus cannot be reliably continued to zero degrees. The
oscillations arise &om the Coulomb-nuclear interference
term which comes from taking the square of f

T C CN (7)

where 0'CN is the Coulomb-nuclear interference term [the
integrated cross term which arises &om squaring f; see
Eq. (11) below) taken &om a model. Since a model of the
amplitude f „ is needed, the result is not model indepen-
dent. The reliability of this procedure for nuclei larger
than C has been questioned in [34]. The important
point is that of the three difFerent possible definitions

(6)

with f~ (q) the point Coulomb amplitude and f „(q) the
remainder. The approach adopted experimentally is to
also subtract cr N,

of a total cross section, the Coulomb-&ee cross section
(i.e. , turning the Coulomb interaction off), o~ —cr~, and
qrq of Eq. (7), only bed corresponds to the experimentally
measured quantity. To be consistent with the number
extracted from experiment, the correct theoretical cal-
culation must also correspond to Eq. (7) and is given
explicitly by

7r2
crb

—— ) (2J + 1) Im [Tg S~*],
J

(8)

0 —cr = 4' Re bdb e'~ 1 —e'~"

We need also to subtract 0. , which is given by [33],

where T is the result of the solution of Eq. (3), and S& ——

e ' d with ag = arg[1'(J + 1 + i)7)] (the pure Coulomb
phase shift).

In this respect the eikonal model is very limited. In
the eikonal model the scattering amplitude is given by

f (q) = r'b jbdbde [qb) [1 —e** ],
f „(q) = r'b f bdbd (qb) ee'e" [q —e*'*"],

where g, and y are eikonal phases [22, 23] for the
Coulomb and nuclear potentials, respectively, b is the
impact parameter, A: is the kaon-nucleus c.m. momen-
tum. The momentum transfer q is given by q
2Iq,'sin(0/2) with 0 the scattering angle in the kaon-
nucleus c.m. &arne.

In the eikonal model o —o is given by

o „=2Re dO * = 4vrRe bdb J (qb) eixe(b) (1 —eix. (b)) b'db' Jo(qb') (1 —e 'X ( ))

2k 1
qdq Jo(qb) Jo(qb ) ——b(b —b ) q

0

leads to

(12)

0. „=4vrRe bdb 1 —e'~" ~ e'+ ~ —1 . 13

At sufficiently high energies (][" -+ oo), the approximate
orthogonality of the Bessel functions

teraction, the difFerence between the point Coulomb and
finite-range Coulomb potential will be present in the. cal-
culation of y . The main point is, however, that the
eikonal approximation, because the long range part of the
Coulomb interaction enters as a multiplicative factor in
Eq. (9), it disappears &om oi. As a result, in the eikonal
model, o& is nearly equal to the Coulomb-&ee cross sec-
tion and does not treat correctly the full complexity of
nuclear-Coulomb interference.

The total cross section in the eikonal model is thus III. B.ESULTS

rer = w —e' —re = qe'Re
] j bdb [q —e'e"

]

(14)

This implies that o.
q in the eikonal model is nearly equal

to dri, the Coulomb-&ee (nuclear only) total cross sec-
tion. Because we have used a finite-range Coulomb in-

A. Model dependence of theoretical results

The final ingredient required to calculate kaon-nucleus
total cross sections is E,. For pion-nucleus scattering
in the resonance region, the mean spectral energy is cal-
culated assuming the delta-nucleus shell model poten-
tial is equal to the nucleon shell model potential. We
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do not have values of E, for the high-energy kaons
and these would be diKcult to estimate, especially for
the deuteron target. The mean-spectral energy accounts
approximately for the interaction of the projectile and
the struck nucleon with the remaining nucleons. Since
the kaon-nucleon interaction is weaker than the nucleon-
nucleon interaction, we would expect E, to be domi-
nated by the nucleon-nucleon interaction. As such we
know that E, should be negative (an attractive inter-
action) and must be less than the nucleon shell model
potential at the center of the nucleus. We would expect
it to be of the order of —20 MeV, to —30 MeV, as was
calculated for resonance-energy pions.

In the absence of a microscopic calculation for E „we
have chosen to adjust E, at each incident momentum
so that the calculated total cross section for scattering
&om the deuteron is equal to the experimentally mea-
sured cross section. This phenomenological adjustment
has the advantage that, when we take the ratio of a total
cross section to that of the deuteron, we make no er-
ror in the result for the deuteron, while we calculate the
numerator and the denominator utilizing the same the-
ory. The values for E, and the total cross section for
scattering &om the deuteron are given in Table I. The
adjusted values are negative and of the order one would
expect. In calculating the scattering &om the deuteron,
we ignore the spin of the deuteron and treat the deuteron
as a spinless target. This is a reasonable approximation
as rescattering is very small; utilizing the optical poten-
tial in the Born approximation makes only a &action of
a percent error for the deuteron. The correct treatment
of the spin would produce a correction that involves two
spin Hips and would be negligibly small. One would ex-
pect similarly small corrections for the double isospin Hip
contribution. The more serious error made in treating the
deuteron with an optical potential is in the neglect of the
second-order correlation term in the optical potential. In
Table I, we also present results for C in which we use
Em, as determined &om deuteron scattering. This im-
plies that E, is target independent. For nuclei other
than the deuteron this was approximately true for the

values [30] calculated for resonance-energy pions. We
would expect similar behavior here. The deuteron, how-
ever, is not a typical nucleus so that this approximation
should be investigated further.

The results for the deuteron, for ~2C, and the ratio are
pictured in Fig. 1. The discrepancy with the data is sim-
ilar to that found in previous work [2, 4, 6]. The theory
is of the order of 10—

20%%up below the data. However, our
results show a diferent energy dependence. We And a
stronger dependence than Ref. [2] but weaker than that
of Ref. [6]. We may trace this difference to the definition
of the total cross section. We show in Fig. 2 the three
de6nitions of the total cross section, the Coulomb free
cross section, cr —0, and the experimental cross sec-
tion oq. In Ref. [2] cr~ —o'o was calculated. We see that
this result is about 15'%%uo smaller than the others. Since
that cross section does not correspond to the measured
quantity, the results presented there should be replaced
with the results presented here. The results from [6] ap-
pear to be the Coulomb-&ee results, which because of the
larger cross section near 400 MeV/c, give a larger upturn
to the ratio at the lower energies and lead to a stronger
energy dependence.

The results pictured in Fig. 1 are thus typical of any
calculation if the same quantity is calculated. An impor-
tant question is just how sensitive these results are to the

220
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100/40

30

Rb E at.(D).

TABLE I. The mean spectral energy E „as adjusted to
reproduce the experimental total cross section on the deuteron
and the total cross sections of K+-deuteron scattering for in-
cident momentum P~ b from 400 MeV to 1 GeV. The deuteron
total cross sections are calculated with the momentum-space
optical potential code RQMKAN. Also given are the momen-
tum-space results for K+ scattering from C and the Born
approximation to these results.

a

0
II

CC

20

10/1.2

~ Bugg et al. (1968)
~ Krauss et al. (1992)
& Sawafta et al. (1993)

(MeV/c)
400
500
600
700
800
900
1000

(MeV)
—10.0
—20.0
—30.0
—34.0
—36.5
—38.0
—39.5

(mb)
23.84
26.28
27.96
28.46
29.48
31.82
34.66

Pull
(mb)
134.2
138.4
145.3
148.2
153.0
162.5
172.2

Born
(mb)
120.3
131.1
140.6
145.1
150.9
160.7
170.3

0.8
400 600 800 1000

lab (Me V)

1200

FIG. 1. Total cross sections for K+ scattering on C, the
deuteron, and the ratio of these cross sections as a function of
the kaon laboratory momentum Q b. The calculations use the
momentum-space optical model with E, adjusted as given
in Table I. The data are from [7, 10, 11].
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details of the theory. We first ask the question of how im-
portant is the exact calculation of the multiple scattering
of the kaon. We can answer this by considering the use of
the optical potential in Born approximation. The results
of the Born approximation are also given in Table I [35].
We see that the rescattering is ten percent at the low
energies and decreases to only one percent at 1 GeV/c.
It is principally the difference between the exact answer
and the Born approximation that the theorists are calcu-
lating. Since this difference is small, it is not surprising
there is reasonable agreement among theoretical models.

A comparison between the momentum-space and
eikonal results is shown in the bottom diagram of Fig. 3.
We see that at low energies there are significant differ-
ences but that the two approaches appear to be converg-
ing as the energy is increased. The origin of the difference
lies in the inadequate treatment of the Coulomb-nuclear
interference in the eikonal model. This can be seen by
noting that the two models give nearly the same results
for the Coulomb-&ee total cross section. The similar-
ity of the two models in the absence of the Coulomb
potential strengthens the argument that the total cross
sections are fairly independent of the theoretical model,
but this statement can only be used for models which do
not approximate the treatment of the Coulomb nuclear
interference. The eikonal model can be used for qualita-
tive studies, but we find that it should not be considered
quantitative for the calculation of total cross sections, in
particular, in the low incident momentum region.

The principal model dependences which enter the

momentum-space calculations of the first-order optical
potential are related to the kaon-nucleon t matrix used.
These would include uncertainties in the on-sheH two-
body amplitude, the off-shell extrapolation of the ampli-
tude, and in the choice of the mean spectral energy. We
examine here the dependence of the calculated total cross
sections on the features of the model of the two-body am-
plitude.

We first examine the importance of the choice of the
on-shell two-body amplitude. In the top diagram of
Fig. 3, we show the total cross sections which result Rom
using the Amdt [28] and the Martin [29] phase shift anal-
ysis. The difference is small and is increasing with energy.
In taking the ratio of the nuclear total cross section to
that of the deuteron, the difference almost totally cancels
out demonstrating that working with the ratio can cancel
uncertainties in the theory as well as in the experiment.
The difference in the ratio of cross sections using the two
different on-shell amplitudes is less than one percent and
would not be visible in Fig. 1.

We also vary the range parameter A in the off-shell
extrapolation of the two-body amplitude. Results for A
equal to 800—1200 MeV/c are given in Fig. 3. As was
found in [4, 6], we find very little dependence on the off-
shell behavior of the two-body amplitude.

The remaining parameter in the calculation is the
mean spectral energy E „which we have determined

180

180 160

140

160 120/180

160

A=1000 MeV
—-- A=800 MeV

A=1200 MeV

140 140

120/180

120 ———romkan (oT-ac)
romkan (a,)
romkan (Coulomb free)

160

140

100
400

I

600
P~,(MeV)

I

800 1000
120

400 600 800 1000

FIG. 2. Results for three possible definitions of the total
cross section for K+ scattering from C as a function of the
kaon laboratory momentum Pj b. The solid curve is o.

~ of
Eq. (7); the dash-dotted is Coulomb-free cross section; and the
dashed is o~ —o.~. All are calculated using the momentum-
space theory.

P,~ (Me V)

FIG. 3. Dependencies of the total cross section for the
K+ scattering from C calculated with the momentum-space
model: (a) using the two-body KN interaction of Amdt [28]
(solid) and Martin [29] (dashed), (b) using various range pa-
rarneters A, and (c) momentum-space and eikonal models.
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by fitting to the deuteron data. In Fig. 4 we show
two results, one &om our full model and the other withE, = 0. Setting E, = 0 is an extreme and unphysical
limit. A better approximation might be to cancel E
against the nuclear binding energy. From Fig. 4, we see
that there is a dependence on the value of the energy
at which the two-body amplitude is evaluated. However,
the deuteron and C total cross sections are a8'ected in
the same way, so that the ratio of the cross sections is
stable.

B. Target dependence of
K+ nucleus total cross sections

We examine here the target dependence of the dis-
crepancy between theory and experiment. Total cross
sections are calculated for He, Li, C, 0, Si, and

Ca, using the momentum-space model. We neglect the
spin of the Li target and treat it as a spinless parti-
cle, as we have done for the deuteron. The theoretical
cross sections are given in Table II, and a comparison
between theory and experiment of the total cross sec-
tion ratio is presented in Figs. 5 and 6. The data are
&om [7, 10, ll]. We see a universal discrepancy between
the theory and the data with the discrepancy becom-

TABLE II. The total cross section for K+ scattering from
He, Li, C, 0, Si, and Ca for incident momentum R~b

from 400 MeV/c to 1 GeV/c. The results are calculated using
the momentum-space model with mean spectral energies E
from Table I.

(MeV/c)
400
500
600
700
800
900
1000

4He

(mb)
44.96
47.63
50.20
51.11
52.50
55.62
59.42

Ll
(mb)
68.57
74.14
79.37
81.32
84.33
90.19
97.09

o, (A)
12C

(mb)
134.2
138.4
145.3
148.2
153.0
162.5
172.2

16()
(mb)
179.3
185.2
194.7
198.7
204.8
217.7
231.7

28S.

(mb)
301.1
306.5
320.2
326.6
337.4
357.4
377.3

40C

(mb)
420.3
425.3
444.4
453.4
467.2
494.6
522.2

ing larger for the heavier nuclei. The energy depen-
dence of the predicted cross section ratios is very sim-
ilar to that of the data. The eikonal result is consis-
tently larger than the momentum-space result and thus
exhibits a smaller discrepancy. This is reminiscent of
the results found in [4], where momentum-space results
(with a factorization of the fermi integration) were com-
pared with earlier coordinate-space [36] results. There
it was found that the momentum-space results were al-
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100/40

rom kan———Eset

0

0
II

1.0

0.8/1.2

(a)

30

20

'a
0

CV)

0
II

1.0

romkan-full---- eikonal

"a
0

V)

V

0
II

CL

10/1.2

1.0

Bugg et al. (1968)
~ Krauss et al. (1992)
+ Sa~afta et al. (1993)

'a
0

0
II

0.8/1.2

1.0-

(b)

& Bugg etal. (1968)
~ Krauss et al. (1992)
~ Sawafta et al. (1993)

400 600 800 1000
P~~ (AfeV)

1200

FIG. 4. Dependence of the total cross section on the mean
spectral energy E, for K+ scattering on C, the deuteron,
and the ratio of these cross sections. The solid curves are
results of the momentum-space model with E, adjusted as
given in Table I while the dashed curves are those with E
0. The data are from [7, 10, 11].

0.8
400 600 800 1000

PI~ (Me V)

(c)

1200

FIG. 5. Target dependence of the total cross section ratio
defined in Eq. (1) for the R+-nucleus scattering. Results from
the romkan (solid) and eikonal (dashed) models are shown for
He (a), Li (b), and C (c), respectively. The experimental

data are from [7, 10, 11].
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1.2
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0
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1.0-

0.8/1.2

(a)

0

C/)

0
II

~ i

1.0

0.8/1. 1

ea

I m~~~ ~

(b)

C&

II

0.9

o ~ Sa~afta et al. (1993)
romkan-full

———— eikonal

(c)

0.7
400 600 800 1000

Pi,b (Me V)

1200

FIG. 6. Same as Fig. 5 except the targets are 0 (a), Si
(b), and Ca (c), respectively.

IV. SUMMARY, CONCLUSIONS,
AND FUTURE PROSPECTS

The theoretical results &om the first-order momentum-
space optical potential lie consistently and significantly

ways lower than the coordinate-space results. The rea-
son given was the lack of a correct &arne transforma-
tion of the two-body amplitude in the coordinate-space
approaches. Our eikonal model, however, incorporates
the transformation correctly [23] in the forward direction
and is thus closer to the momentum-space results than
are the earlier coordinate-space results. The remaining
difference between the momentum-space calculation and
the eikonal calculation is produced largely by the incor-
rect treatment of the Coulomb-nuclear interference in the
eikonal model. The difference between the two calcula-
tions gives an indication of the importance of utilizing a
theoretical approach that is capable of correctly treating
this interference and emphasizes the possible model de-
pendence [34] that is present in experimentally extracting
total cross sections &om data.

below the data. This is qualitatively similar to previ-
ous work. The energy dependence of the ratios of cross
sections calculated here is less than was found in previ-
ous work [10—12] and generally follows more closely the
energy dependence observed in the data. This could be
due to the way that the cross sections are calculated.
The Coulomb-&ee cross section ratios show a stronger
dependence on energy at the lower energies. The cor-
rect treatment of the Coulomb-nuclear interference term
which corresponds to the method used by experimental-
ists to extract these cross sections lessens this depen-
dence.

The results here support models [6, 13] which increase
the in-medium kaon-nucleon amplitude as these mod-
els provide an approximately energy independent in-
crease in the nuclear total cross sections. Pion exchange-
current contributions would produce [15] a strong in-
crease with energy as the energy goes above the pion
production threshold. The conclusion that the pion
exchange-current contributions are small and are not ca-
pable of resolving the discrepancy [15] utilizing a reason-
able number of excess pions in the nucleus is thus sup-
ported by the near energy independence of the difference
between the theory and the data.

Future work should include a more careful theoretical
treatment of conventional second order effects. These
would include Pauli and short range correlations; these
have been investigated in [5], but an independent check
is probably merited. Data with smaller errors and partic-
ularly elastic differential cross sections with good abso-
lute normalization would provide additional information.
Data in the forward direction which would emphasize the
Coulomb-nuclear interference term would be especially
useful. These would provide information on both the
phase and the amplitude of the strong interaction in addi-
tion to constraining any ambiguities which might remain
in how the theorists and experimentalists are extracting
total cross sections. Inelastic cross sections to speci6c fi-
nal states, scattering &om polarized targets, and charge-
exchange scattering could also be used to learn the spin
and isospin dependence of the missing piece of physics.

ACKNOW'LED GMENTS

This work was supported, in part, by the U.S. De-
partment of Energy under Contract No. DE-FG05-
87ER40376. The authors would like to thank the Los
Alamos National Laboratory for their kind hospitality
during part of the work. They also like to thank B. C.
Clark, M. B. Johnson, D. S. Koltun, L. Kurth, and R.
Machleidt for helpful discussions.

[1] C. B. Dover and G. E. Walker, Phys. Rev. C 19, 1393
(1979).

[2] C. M. Chen and D. J. Ernst, Phys. Rev. C 45, 2011
(1992).

[3] D. J. Ernst, J. T. Londergan, G. A. Miller, and R. M.
Thaler, Phys. Rev. C 16, 537 (1977).

[4] M. J. Paez and R. H. Landau, Phys. Rev. C 24, 1120
(1981).



864 M. F. JIANG, D. J. ERNST, AND C. M. CHEN

[5] P. B. Siegel, W. B. Kaufmann, and W. R. Gibbs, Phys.
Rev. C 30, 1256 (1984).

[6] P. B. Siegel, W. B. Kaufmann, and W. R. Gibbs, Phys.
Rev. C 31, 2184 (1985).

[7] D. Bugg et al. , Phys. Rev. 168, 1466 (1968).
[8] Y. Marlow et al. , Phys. Rev. C 25, 2619 (1982).
[9] E. Mardor et aL, Phys. Rev. Lett. 65, 2110 (1990).

[10] R.A. Krauss et al. , Phys. Rev. C 46, 655 (1992).
[ll] R. Sawafta et al. , Phys. Lett. B 307, 293 (1993).
[12] R. Weiss et al. , Phys. Rev. C 49, 2569 (1994).
[13] G. E. Brown, C. B. Dover, P. B. Siegel, and W. Weise,

Phys. Rev. Lett. 26, 2723 (1988).
[14] S. V. Akulinichev, Phys. Rev. Lett. 68, 290 (1992).
[15] M. F. Jiang and D. S. Koltun, Phys. Rev. C 46, 2462

(1992).
[16] C. Garcia-Recio, J. Nieves, and E. Oset, in Proceedings

of the International Conference on Meson Nucleu-s Inter
action, Cracow, 1993 [Acta. Phys. Polonica (to be pub-
lished)]; Phys. Rev. C (submitted).

[17] J. C. Caillon and J. Labarsouque, Phys. Rev. C 45, 2503
(1992); Phys. Lett. B 295, 21 (1992); J. Phys. G 19,
L117 (1993); Phys. Lett. B 311, 19 (1993).

[18] D. R. Giebink and D. J. Ernst, Comput. Phys. Commun.
48, 407 (1988).

[19] D. J. Ernst and G. A. Miller, Phys. Rev. C 21, 1472
(1980); D. L. Weiss and D. J. Ernst, ibid. 26, 605 (1982);
D. R. Giebink, ibid. 25, 2133 (1982).

[20] D. J. Ernst, G. E. Parnell, and C. Assad, Nucl. Phys.
A518, 658 (1990).

[21] M. B. Johnson and D. J. Ernst, Phys. Rev. C 27, 709
(1983); Ann. Phys. (N.Y.) 219, 266 (1992); C. M. Chen,
D. 3. Ernst, and M. B. 3ohnson, Phys. Rev. C 47, R9
(1993).

[22] J. Germond and M. B. Johnson, Phys. Rev. C 22, 1622
(1980); J. Germond, M. B. Johnson, and J. A. Johnstone,
ibid. 32, 983 (1985).

[23]

[24]
[25]

[26]

[27]

[28]

[29]
[30]

[32]

[33]

[34]

[35]

[36]

C. M. Chen, D. 3. Ernst, and M. B. Johnson, Phys. Rev.
C 48, 841 (1993).
D. R. Giebink, Phys. Rev. C 32, 502 (1985).
J. W. Negele, Phys. Rev. C 1, 1260 (1970); M. Beiner, H.
Flocard, N. Van Gai, and P. Quintin, Nucl. Phys. A238,
29 (1975).
R. Machleidt, K. Holinde, and Ch. Elster, Phys. Rep.
140, 1 (1987).
M. F. Jiang and D. J. Ernst, this issue, Phys. Rev. C 51,
1037 (1995).
R. Amdt, computer code sAID, Phys. Rev. D 28, 97
(1983).
B. R. Martin, Nucl. Phys. B94, 413 (1975).
D. J. Ernst and M. B. 3ohnson, Phys. Rev. C 32, 940
(1985).
S. J. Wallace, Ann. Phys. (N.Y.) 78, 190 (1973); S. J.
Wallace, Phys. Rev. D 8, 1846 (1973); S. J. Wallace,
Phys. Rev. C 8, 2043 (1973).
3. T. Holdeman and R. M. Thaler, Phys. Rev. 139, 1186B
(1965).
W. B. Kaufmann and W. R. Gibbs, Phys. Rev. C 40,
1729 (1989).
M. Arima and K. Masutani, Phys. Rev. C 47, 1325
(1993).
The results for the Born approximation shown in Table
I are calculated by approximating the reaction matrix A
by the optical potential. The exact Coulomb amplitude
is used and the T matrix, generated from the R matrix,
is used in Eq. (8).
C. B. Dover and P. J. Moffa, Phys. Rev. C 16, 1087
(1977); C. B. Dover and G. E. Walker, ibid. 19, 1393
(1979); S. R. Cotanch and F. Tabakin, ibid. 15, 1379
(1977); S. R. Cotanch, ibid 18, 1941 (.1978); Nucl. Phys.
A308, 253 (1978); Phys. Rev. C 21, 2115 (1980); 23,
807 (1981).


