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The subbarrier fusion of heavy ions is discussed when one of the nuclei is excited to a resonant
state. The efFect of the width of the resonant state on the barrier penetration is calculated within a
schematic model. It is concluded that the width could either enhance or hinder the fusion probability,
depending on the relative importance of the spreading to escape parts of the width. Application of
the theory to the fusion of Li with Pb at near-barrier energies is made. The resulting fusion
cross section calculated with coupling to the soft giant dipole state in Li was found to be more
than an order of magnitude smaller, in the barrier region, and larger, at subbarrier energies, than
the uncoupled one.
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I. INTRODUCTION

In recent years it has become a common practice to
treat the subbarrier fusion of heavy ions as a multidi-
mensional barrier tunneling problem. When cast into a
reaction theory language one speaks of coupled-channels
(CC) effects. These effects have been widely discussed
in the recent literature as the cause of the enhancement,
over the one-dimensional (one-channel) model prediction,
of the fusion cross section clearly exhibited by a large
body of data [1]. The overall picture that has emerged
from these studies that the enhancement ensues as long as
the coupling is restricted to normal channels. By normal
we are referring to excited and particle transfer channels
[1].

The lifetime of the excited states is always taken to be
infinite. Thus the CC treatment so far developed pre-
cludes the study of the coupling to resonant states [l(g)].
Further, the effect of the coupling to breakup channels
(which could be the final fate of the resonant states) is
also not considered. A few attempts in this direction have
been made recently but have only addressed part of the
problem. A fully consistent way of taking into account
the coupling to a resonance in the presence of breakup
effects has recently been proposed by Hussein and de
Toledo Piza (HP) [2]. The work of HP was published
as a short Letter and accordingly little space was avail-
able to include several important details. The purpose of
the present paper is to supply these details. We mention
here that Balantekin and Takigawa [1(g)] have consid-
ered a model similar to the one we develop in Sec. III,
though they address a different issue.

We should mention here that breakup coupling effects
become important in cases involving low Q values, usu-
ally encountered in loosely bound neutron-rich projectiles
such as ~~Li [3]. In this radioactive nucleus the Q value
for the breakup into Li+2n is only 0.3 MeV. It has been
lately debated whether this breakup proceeds through a
two-step process involving first the excitation of a soft gi-
ant dipole (SGD) state followed by its decay, or through
a direct, one-step process. At energies in the vicinity of
the Coulomb barrier of, say, Li + Pb (26 MeV) one
expects the excitation of the SGD to be relevant to the
fusion process [4,5].

The theory developed by HP [2] has been applied to
the fusion of Li + Pb. It was found that the finite
width of the SGD state, being entirely due to breakup
coupling, results in a reduction of the fusion cross section.
In the general case the resonance width I' is composed
of a damping width I'~ and an escape width I'" [6]. HP
found that I"~ enhances the fusion while I'~ binders it.
Full details of the developments are given in this paper.

The paper is organized as follows. In Sec. II, a short
review of the theory of coupled channels fusion (CCF) is
presented. In Sec. III the exit doorway model [7] (EDM)
of the excitation of a resonant state is described, and its
application to fusion is presented. In Sec. IV, a schematic
calculation within the EDM of the fusion cross section
is presented and applied to Li + Pb. In Sec. V the
effect of the escape width is discussed. Finally, in Sec. VI
a general discussion and conclusions are given.

II. MULTICHANNEL FUSION CROSS SECTION

'Permanent address: Instituto de Fisica, Universidade de
Sao Paulo, CP 20516, Sao Paulo, SP, Brazil.

In this section we present a summary of the most per-
tinent aspects of coupled channels effect on the fusion
cross section. We consider first "normal" channels in the
sense we defined them in the Introduction.
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where hp is the sum of the two intrinsic Hamiltonians, K
is the kinetic energy operator, and U is the optical poten-
tial which contains the complex nuclear plus the Coulomb
parts. The coupling among the channels is represented
by V. The spectrum of hp is represented by

hole o) = Epl~p)
hpl~*) = E'l~') (2)

where yp is the ground state and ((o;) are the excited
states (for simplicity we take one of the partners of the
reaction to be inert).

The full Schrodinger equation of the system reads

[E —(Hp+ V)] 4) = 0,

which upon projection onto the different channels rep-
resented by (2) yields the usual set of coupled channel
equations:

%'e take for the Hamiltonian of the nucleus-nucleus
system H = Hp+ V, where Hp is diagonal in open channel
space. Here

Hp = ho+K+ U

where 0, is the optical Moiler operator:

n, -)' = 1+O,'. +)U, .

Taking Vp' aiid V'p to be real, and using Eq. (8), we find
for 0~

o~ = —4 (—ImUp)
k (+)

p

) - f (p(
—) v o(+))

x b E —E; — * dk;/(2m. )

The second term in Eq. (10) which arises &om the second
term of the right-hand side (RHS) of Eq. (8) represents
the total inelastic (direct) cross section. If we assume
that ImUp and ImU, . represent absorption due to fusion
in the elastic and the ith inelastic channel, respectively,
we can identify the first term in Eq. (10) with the total
fusion cross section:

(E —H.)e,"' = ) V.,e!+',

(E —H.)e(" = V;.C,(+' .
(4)

o~ = —4 —(IinUp)(+)
p

v„a!"'~—r v, ~G!+'v„e,'+') .

A conspicuous feature of Eq. (4) is the absence of chan-
nel reorientation; namely, we have ignored the coupling
among the excited channels. This restriction can be eas-
ily removed. In the discussion to follow, however, we
shall use Eq. (4).

Equation (4) can be solved for 4o(, the exact wave
function in the elastic channel (we set Ep ——0 and empha-
size the absence of channel reorientations, V;;I = 0, i, i
0):

E —Ho —) Vo;G, V'o Co = 0,(
(+) (+)

where

E —E; —X; —U;+i~
'We now derive the formula for the fusion cross sec-

tion, o~, as done in Ref. [8). We first write down the
total reaction cross section using unitarity arguments in
Eq. (5):

o.R = —(4p —Im Up +. ) Vp;G, V;p
k (+)

'

(+)

@(+j) G(+)V @(+i)
we can rewrite Eq. (11) in the simple form

(i2)

) (e(.+' -(ImU, ) C,(.") .
j=p, i)2, ...

Equation (12) clearly shows the inHuence of coupled
channels on ~F. The two nuclei fuse in the elastic and
the inelastic channels and the total fusion is just the sum
of these individual channel fusion cross sections. If the
two nuclei remain intact in the inelastic channels (no
breakup), o~ of Eq. (12) is in general larger than the
fusion cross section in the limit of zero channel coupling,
o~ (obtained by setting Vp' = V'p = 0). The enhance-
ment factor

CTF
0
CTF

(i4)

could becoine very large (several orders of magnitude)
at subbarrier energies, where quantum tunneling domi-
nates. This is easily seen if we consider only one inelastic
channel, which we call 1. Then

Since the exact wave function of the ith inelastic channel
is given by [see Eq. (4)]

h A:where E =
2p

We now use the identity

Ima!+) = a,+"Imv;a,'-+)

-~n! 's(E —E, —z;)n! ", (8)

(C(+' —ImU, C(+l) + (e(" —ImU, C(+l)
p

(»)
The coupling matrix in the two coupled equations is

(& &'), where Q is the Q value of the reaction. If
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we take Vpi = Vip = v(R~) = const, where R~ is the
position of the Coulomb barrier, then the tw'o equations
can be diagonalized by a uintarity transformation [9] that
diagonalizes the coupling matrix C,

o + 7t
o'+ ———) (2l + 1) 1+exp 2 k+(r) drk'

= —) (2l + 1)Tt+, (24)

where

and

(0 v ~ (W+ 0 ~ (xt+&

Q I

= (x+x-)
I

0+ ),

X+ = — Q+ g(Q'+4v')1

2

(x+, x++) = (x,x+) = 1,

where the l-dependent turning points ro and r~+ are the
inner and outer solutions of k+ (r) = 0, and k+ (r)

1 2
ReU(r) + "g'+, ~ + A~ —E . It is easy to un-

derstand the physics that T&+ describes. Taking the tun-
e+

neling action I&+ —2 j"~ k~+(r) dr to be large, we can
7 p

write

Ii ~ ~r
1+6 (25)

Calling the eigenchannel wave functions 4+ and @,we
obtain two uncoupled equations:

(E —Kp —Up —A+) 4'+ ——0,

(E —Ki —Ui —A )4 = 0.

The transformation from (@p, 4i) to (@+,4 ) reads

The series, Eq. (25), describes tunneling with an infinite
number of internal reflections (within the barrier) [10]
between the inner and outer turning points.

The interference term in Eq. (23) containing the matrix
element (@+IlmUI@ ) is negligible compared to the first
two terms. This is so since 4+ and 4' contain phases
and the product 4'+(r)@ (r) will have a large overall
phase:

eA+
A ++2

A+
A +v2

MI +

t2
g'+

uA (20)

(21)

(26)

The presence of this phase, absent in the diagonal matrix
elements, renders the integral (@+Iim]@ ) very small.
Thus we neglect the interference term. Accordingly, we
Gnd for the fusion cross section the following simple form:

With (21), the fusion cross section, Eq. (16), can be writ-
ten as, after setting Uo ——Uq, Ko ——Kq,

(22)

OI

oy (E) = A(A+) o/ (E) + A(A ) oy (E),
A(A) =

If the Q value is zero A+ = +v [Eq. (17)] and we obtain
the well-known result

k
o + ——(M+M)++ —(4+ ImU 4+)

+(M+M) —(+ ImU & )

~~(E) = — ~~ (E)+ o~ (E)
2

At very low energies we find

o~(E) A(A ) o~,
E&(V~

(28)

(29)

+2Re —(M+M)+ (4+ ImU 4 ) . (23)

In Eq. (23), —"(@+IimUI4'+) is the fusion cross section

and o&, is the eigenchannel (+), while the third term is
an interference one.

The matrix elements in (23) are evaluated using the
incoming wave boundary condition model to represent
absorption. The full details of ImU are not needed. Only
the penetrabilities of the real eigenbarriers ReU(r) +
~'i(~+~) + A~ are needed (once the flux penetrates the
eigenbarrier, it is fully absorbed). Thus we can write

valid for bath positive and negative Q values.
We can now make an estimate for the enhance-

ment factar E, Eq. (14), by employing the Hill-Wheeler
(parabolic) approximation for T~, which gives the fermion
cross section, according to Wong [ll],

hmR~ 27r
o = + ln 1+ exp fE —V~ —A~]2E hm

where V~ is the height of the Coulomb barrier and R~
its radius, and Sm is related to the barrier curvature,

hip = —""+, with Vj = ReU(r) + 2
'+,' . For

r=Rg
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E (& V~, we obtain

V 2'E =
2 exp

A +V hm

or

2
+4V2 + V2

2'
x exp + Q —QQ2 + 4v2

hm
(32)

states are modulated by a doorway, which could be a
giant resonance. To reach these "one structure" channels
the system has to pass through the doorway Id) [12,13].
This can be formalized by writing the intrinsic states Ip;),
Eq. (2), as

l~') = n" ld)+). &,"Ij)

where the states
Ij) form an orthonormal set which spans

the intrinsic subspace orthogonal to Id) and introducing
the assumption

Clearly the enhancement is largest if Q ( 0, which may
happen in some transfer channels. We may ask now, for a
fixed value of v, what is the optimum Q value that gives
the largest enhancement. For the low energy estimate,
Eq. (31), we find

&p' = (0I&l~') = n'*)(0l&ld) =—n"&p~.

Our next task is to obtain the doorway amplitudes o.('~

associated with the various intrinsic states lp;). For this
purpose we implement the intrinsic Hamiltonian ho in
the form

and, accordingly,

(33)
~p = Iv p)Ep(v pl+ ).Ij)e~(j I

+
I d) Ed(dl

2

+). Ij)&,(dl+ Id)&,*(i
I (38)

27r (hivl '
E exp 1+

I I

—4v
hip q vr ) (34)

o.F = [A(A+)+A(A ))~R~2 1—

In the opposite limit, E ) E~, Eq. (27), with Eq. (30)
yields

where, without loss of generality, it has been assumed
that hp does not couple different states Ij) (i.e., these
states are taken to be eigenstates of the projection of ho
onto the intrinsic subspace orthogonal to ld)). The last
term in Eq. (37) represents the interaction responsible
for the spreading of Id). Note that, while (dl j) = 0, ld)
and the lj) are not eigenstates of hp. Using Eq. (37) in
the second of Eqs. (2) one finds

A+A(A ) + A A(A ) (35) E. —E&+) (39)

which, using the forms of A(A) and A, gives us the fusion
cross section with no channel-coupling efI'ect:

Vgo.p ——xR~ 1— E&Vgy. l&jl'1++ (~ ),
(40)

Equation (36) is a consequence of using two channels.
When many channels are involved, one expects a loss of
energy (friction) that renders rTF smaller.

In this section we have reviewed already known facts of
multichannel fusion. We have used, however, a difFerent
framework, Eq. (12), to discuss the effect. Further, the
two-channel case discussed in Ref. [9] is worked out here
in a way that allows its extension to coupling to resonant
channels which we turn to in the following section.

III. EXIT DOORWAY MODEL OF RESONANT
CHANNELS (GIANT RESONANCES)

We need an expression for ln(')
I

in terms of the eigenval-
ues E; and of the mean doorway energy Ep. This involves
eliminating the ez between Eqs. (39) and (40). The result
will clearly depend on the values of the coupling matrix
elements Lz and on the distribution of energies ez. In fact
any given distribution of the In(')I can be produced by
adjusting these quantities. A well-known special case [7]
is that of a long, uniformly spaced sequence of energies
e~ and state-independent coupling matrix elements L.
This leads eventually to In(')I which are Breit-Wigner
distributed according to

We develop in this section the exit doorway model [7]
to treat first the spreading of an excited, collective state,
on the fusion cross section. The entrance channel @o
couples to the compound nucleus (fusion) either directly,
or, as in the previous section, via a bunch of excited
channels. In this section we assume that these excited

(41)

where p is the density of states
Ij), I'& —2vrlAI p is the

spreading width of the doorway, and LEg is an energy
shift of the order of I'&. The Breit-Wigner distribution,
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Eq. (41), is normalized as tion disappears and the normalization condition reads
accordingly

n(') ' =
L

2 I'dE,.

mp (E' —e')'+ I'E' ' (42)

reproduces very accurately the observed peak shapes.
Here the sequence of background levels terminates at zero
energy, so that the negative energy tail of the distribu-

I

i 2
Note in particular that o.(') decreases as E, both for
very large and very small values of Ei. This underlines
the need for a long sequence of background states

Ij).
Deviations from the assumptions involved in obtaining

Eq. (41) will imply of course different distributions for the
In(')I . In the case of wide doorway structures such as
one finds notably in the case of dipole giant resonances,
it is well known that a I orentzian distribution

f dEip A(i) = 1.L
0

The parameters ed and I'd are usually adjusted to repro-
duce the position and width of the doorway peak.

In order to proceed with the discussion of the multi-
channel fusion problem under the exit doorway hypoth-
esis, Eq. (37), a realistic strength distribution is given
by Eq. (42). However, since this distribution has a more
complicated analytical structure than the Breit-signer
(BW) distribution, Eq. (41), for the sake of simplicity
we base the following presentation on the latter, and de-
fer a discussion of changes involved when one considers
a Lorentzian line shape to the Appendix. Using Eq. (7)
for the total reaction cross section and approximating
~;+U, by Kd+ Ud in the Green's function G,- we have

@(+) I U +E '
~

- E —E; —K~ —U~+ie (44)

or

@{+) I U + ~ G(+)~ @{+)

where we have introduced the exit doorway propagator
G(+)

)

G(+)(E) =)- (') '
E —E; —Kd —Ud +i~ (46)

Taking for In(')I2 the BW form, Eq. (41), and chang-
ing the sum into integral, the resulting integration yields
immediately

G(+) (E)
E —Ed+ 2 ~d Ud+&&

All reference to the Gne structure states is contained in
the spreading width I'~&. Otherwise, G& (E) describes
the propagation of the two-nucleus system, with one of
the nuclei excited to the doorway state Id). The Q value
associated with this excitation is complex and is given by

G~+ (E) —Gq+ (E) =iI'~ —(U„—Ut) . (49)

Multiplying the above from the left by Gd and from
the right by Gd, we find

I

it is natural to expect the efFect of the coupling on 0~ to
depend on the ratio p = I'&/I'g. If this ratio is close to
1, we expect an enhanced fusion probability, since eR'ec-

tively (through I'~&) there are man@ routes (excited states
in the same nucleus) for fusion to occur. The other limit
p &( 1 should result in a smaller fusion probability, since
the resonance could "break up" before fusion takes place.
Of course, the degree of enhancement in o.~ when p 1 is
dictated by the value of Ed. As seen in the previous sec-
tion, large values of Ed lead to smaller enhancement. We
now proceed to the analysis of Eq. (45) with G& given
by Eq. (47). In order to extract crF from Eq. (45), we

first need to calculate ImGd, just as was done for G;
Eq. (8). We accomplish this by operator manipulation.
First we observe the following simple fact about the in-
verse of Gd+ .

Qz=Ez —i
2

(48)
G(+) —G(+)t = -G(+»~ I», G(+)

d d
——

d Z d d

+Gq (2i ImUd) Gq (50)
Before we proceed further, we mention that so far we
have not considered the escape width of the doorway that
describes its coupling to open channels. The treatment
of the escape will be developed later.

Since the escape width measures the actual fragmen-
tation of the excited nucleus (except for the p-emission
contribution which we do not consider), whereas I ~& mea-
sures the degree of damping of the doorway due to its
coupling to more complicated states in the same nucleus,

Define now the "free" exit doorway propagator Gd as

t
' Il

G~—=
I
E —E~+~—"—K~+ i~

I

Then we may write

G(+) =G(+) 0(+) G(+) 0{-)t
d — d d

— d d
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where we have introduced the exit doorway optical Moiler

operator Od
(+3 C, (+) I U @(+)

„(+),+ U G(+)

Thus we have anally

(53) + c(+) (60)

G(+) ~(—) G(+)t d G(+) ~(—)t
d d d d d27r

+Gd ImUd Gd (54)

The quantity inside the square brackets in the 6rst term
on the right-hand side of Eq. (54) can be written in a
symbolic form as

Equation (60) is the principal result of this section.
It shows that the in8uence of, e.g. , a giant resonance,
treated as an exit doorway, on the fusion of two nuclei
is the same as that of a normal excited state, except
that the Q value is complex, Q~ ——E~ —'zz. Thus the
two-channel model treated in the previous section can be
applied here as well with an appropriate change in the
diagonalization procedure.

~(+)t (~g/2 )
~(+) ,„.. (55)

(z —z, —z,)*+ (~)
IV. SCHEMATIC MODEL FOR A GIANT

RESONANCE EFFECT ON o.g

Equation (55) represents a finite width version of the
usual delta function, which describes on-shell processes.
Accordingly, the first term in (54) accounts for the di-
rect excitation of the doorway state. When Eq. (54) is
inserted into Eq. (45), we find

In this section we analyze Eq. (60) following the pro-
cedure used in Sec. II. We take Vod ——Vdo ——v = const.
We also take Kg = Kp and Ug = Up in Eq. (58) which
can be rewritten as

(Z —K. —U.)C,"' = ~e(+),

(E —Kp —Up)4& = v@p + Ed, — 4'~(+) (+) ZI d (+)
2

+~—C' Vod~d
k (+) ( )

0

xOd Vod C'o(+)

(z —zg —z~)' + (~)
{56)

(0
(v Ed —

~ )
(62)

The coupling matrix t that has to be diagonalized is now
non-Hermitian,

where we have used

C, (+)
)

G(+)~ @(+)) (57)

We can perform the diagonalization by using a biorthog-
onal basis [14) which is a generalized version of the
(X+, X ) basis employed in Eq. (16). Thus

Equation (57) follows immediately Rom the recognition
that (45) represents the total reaction cross section of a
two-coupled-channels set of equations:

{&—Ko —Uo)C'p( ) = &o~C'g~ ),'
(58)

E —Ed + i ——Kd —Ud 4 d
——Vod@o

. r'd (+) (+)
2

with

and

(~, 0 i ~xt+~Q„=(x+x-) I

(x+ x+) =1= (x-, x'),
(x., x') = 0= (x,x'.),

k (+) ( ) I'q/ vr2
o;„(E)= ~—Op VpgQ~xn

(E —Eg —Kg) 2+ (I'"„/2)

x Od Vod
(—)t (+) (59)

while the first term of that equation is identi6ed with the
total fusion cross section which includes the coupling to
the exit doorway:

where we have set Eo ——0.
Clearly, the second term on the right-hand side of

Eq. (56) represents the total angle-integrated inelastic
cross section, o;„, where

1
A+ = — Qg+ Q~+4e2

2

r4
Qg = Eg —i—.d2'

(65)

1I = 2Re k~(r) dr .
0

The rest of the discussion is exactly the same as in Sec. II;
the matrix M, Eq. (21), has exactly the same structure,
with A+ given now by Eq. (65). The tunneling action
that enters in the definition of the eigentransmission co-
eKcient is now given by
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10 V. EFFECT OF THE ESCAPE WIDTH

10

10

= 4MeV(

MeV (----)

In our discussion so far we have considered only the
spreading width of the doorway. The approximation

I'GR is quite reasonable in heavy nuclei such
as Pb. For light nuclei the opposite limit is usually

10

10

10

10
30

E, (MeV)

1.10

1.05—

E,= 16MeV

d
= OMeV

FIG. 1. Fusion cross section vs E' for Li + Pb for
Eq = 16 MeV and I'z ——4 MeV (solid curve) and I'~ = 0 MeV
(dashed curve).

1.00—
UJ

0.95—

The Anal formula for 0~ becomes
p+ p

op = A(A+) rr~ +A(A ) o~,
A~)=

)P2 + v2)2 (P2 + v2(2

(67)

0.90
10

2.0

1

20 30

E, (IVleV)

40

The eigenchannel fusion cross sections, in the Wong ap-
proximation, are given by [ll]

p+ RuA~ 27r-
o' = ln 1 + exp E —ReA~ —V~(RIt)-= 2E Lu-

(68)

Equation (67) is the generalization of Eq. (27) to the case
of coupling to a resonant state. The Gnite width of the
resonance effectively reduces the Q value effect and thus
the ratio

'l.5—

~~ 1.0—
LLj

0.5—

E,= 2 MeV

t d'=QIVleV

~(1') E(~~)
o p (I'"„=0)

should be larger than unity, for a fixed value of the po-
sition of the resonance, Eg, and the strength of the cou-
pling, v. To be specific, we consider the system Li +

Pb, which has been recently discussed in several pa-
pers [4,5], the barrier height and curvature were taken to
be 26.0 MeV and 3.0 MeV, respectively [4]. We consider
the doorway to be the normal giant dipole resonance of
the core ( Li), whose excitation energy is Ed 16 MeV.
We take for v = 3 MeV [4]. Because of the very high Q
value, the effect of the coupling on ca~ is expected to be
very small, and accordingly the effect of I'& to be negli-
gible. In Fig. 1 we show o'y, Eq. (67), calculated with
I'& ——0 and I'& ——4 MeV. Both results almost coincide
with each other and with the no-coupling case (not shown
in the figure). To exhibit the effect of I't& more clearly we

show in Fig. 2 the ratio E(I'&) for these cases plotted ver-

sus E, . As Eg is lowered 0.~ is increased when I'& is
taken into account. This is expected on physical grounds
since the resonance is reached even if the energy transfer
is smaller than Ep. As we see clearly in the figure, the
effect is basically restricted to E, ( V~.

0.0
10.0 20.0 30.0

E, (MeV)

40.0

(c) E,=O.2 MeV
a~= 2 MeV

I

30

E, (MeV)

I

20

(r&)FIG. 2. Ratio E(I'&)—: &~ vs E, for the system
F (r„=o)

Li + Pb, for I'~ = 0 and for different values of Eq. See
text for details.
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attained, I'GR I'GR. In fact the soft giant dipole res-
onance in iiLi has a 100'Fo escape width since complex
excited states in the vicinity of the resonance do not ex-
ist. It is of importance therefore to consider the efFect of
rGR on the fusion cross section. For simplicity we assume
the giant resonance escapes by coupling to one channel
which we call "breakup" channel. The wave function of
this three-body channel (e.g. , 9Li+2n+zosPb) is denoted

by e,(+).
We assume that this channel is reached directly &om

the ground state and indirectly via the doorway. The set
of equations (9), is now modified to read

[E —Ko —Uo —V '(b)]e~+l = Voge~+l, (69)

[E —Kd —U& V,"—(b)]4„'+'

= V.,e~+~ +
l
E.- ' '

~

e~+l, (70)

where we have introduced the usual dynamic polariza-
tion potential that accounts for the coupling of 40(+) to

and 4& to 4'& . In deriving Eq. (24) we have(+) (+) (+)

employed the approximation Vo (b):—VosG& Vso and

V& (b) = VdqG& Vgg, where G& represents the propa-po& (+) (+)

gation in the breakup channel. The polarization poten-
tial VOP (b) has been calculated in Refs. [3,15] for Li
+ 20sPb. It was concluded that ReV&~ (b) is repulsive
and ImV~~ (b) is absorptive and of long-range nature for
a Q value of 0.2 MeV. Both of these properties would

tend to reduce the amplitude in 40 and accordingly the
fusion cross section. Similar conclusions may be reached
concerning V~~ (b) except for the Q value. If the breakup
channels are in the vicinity of E~, the Q value that enters
in VJ (b) would be roughly related to I'~z alone. In con-

trast, Vo~ (b) would contain a hindrance due to a large
Q value roughly equal to Ed, itself. Therefore, depending
on the value of E~ = Eb, the roles of Vo~ (b) and V&~ (b)
will be different.

In cases involving large Q values, such as those related
to the normal giant resonance excitation and its subse-
quent fragmentation, the polarization potential Vo~ (b)
at subbarrier energies and for the dipole case at hand,
and ignoring nuclear excitation, can be written in closed
form [16]

z ~1/3 g ~1/3 P T

[MeV), (71)

where p and T refer to projectile and target, respectively.
Thus Vo (b) contributes very little attraction due to the
virtual excitation of the isovector giant dipole resonance
in both target and projectile. In contrast V& (b), with
the doorway state sitting close to the b channel, the re-
sult of Ref. [15] is applicable and one finds a repulsive,
absorptive polarization potential. This implies that, ef-

OO

x exp ImV& ~ dt
0

(72)

It should be easy to convince oneself that the breakup
survival probability exp & fo ImV~ ~ dt involves an

appropriate energy scale 1 d and an appropriate time
scale, the efFective collision time w, . Thus we write
2 fo 1m'~" dt = I'~q7;(E)

The treatment of Vo~ (b) follows exactly similar steps
as above (the Q values in both cases are roughly equal),
the difference residing in higher-order efFects in V& (b).
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FIG. 3. Ratio "' " for the system ' Li+ Pb,
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I'~ = 2 MeV, I"~ = 1 MeV, and Eg ——0.2 MeV. See text for
details.

fectively, there is a very small increase in the fusion &om
the entrance channel and a more significant decrease in
the fusion from the doorway. However, since the Q value
is large, these details will be hardly detected.

In the other extreme of very small Q value such as the
case encountered in the breakup of i Li, both Vo~ (b)
and V& (b) should be repulsive, absorptive, and long
ranged. In principle, 1m' (b) is related to I'~& and,
naively speaking, this latter should be added to I'& to
obtain the total width of the doorway resonance that ap-
pears in Eq. (69). However, this is completely misleading
since Imvd~ (b) and thus I'& describe the actual loss of
the projectile (or target), whereas I ~& describes its sur-
vival. In the fusion process the efFect of the breakup of
one of the partners naturally leads to a reduction of the
cross section [4]. This is so, since, as said above, the
breakup couplings lead to a repulsive real part and an
absorptive imaging part of V&~ (b). Both of these lead
to lower penetrabilities at energies in the vicinity of the
Coulomb barrier.

Since VP is generally small compared to other po-
tentials in the problem and is of longer range, its eKect
can be expressed as a damping factor. In Refs. [4,5] it
was shown that cr~ can be written as (after approximat-
ing VP ~ by its local equivalent version; see Ref. [15] for
details)

oy = —) (28+1)Tg (Vp i = 0)
e
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Thus we also write 2 fz ImVp~ dt—:I pt~ (/), where I'~p

may be called the "channel escape width. " For simplic-
ity we set I"o = I'&. We now introduce the mixing pa-
rameter considered earlier in the study of the decay o';

r~
giant resonances [17], p:— z

~ z. Thus for a fixed I'g,rt+r4
I'& ——(1 —p)Fg, I'& ——pl'd, we have for the fusion cross
section

A() )
-~'- l ~ -~'l

o~(p) = —,) (2E+ 1) &

e=o

( -)+
1+ exp —Vjy+ ReA p + (+, ) —E

The collision time w, (l) can be calculated using the
result of Ref. [16]; namely, if we write for the equiv-
alent l-independent ImVi' i(r) = Wpe 2'~, where n
is related to the Q value of breakup and expand r(+)
around the classical turning point r(0), we find r(t)
r~(0) + 2a~(0)t, where a~(0) is the radial acceleration at
rt(0). We then find

The simplest version of the WEB approximation (as-
sume a predominance of Coulomb repulsion) would give,
asymptotically,

OO

Cp ——exp —— Vp~ '(r(t)) dt

(78)

and therefore

7l A 2( (p) (o))/
ai(0)

—2~&=0(o)jn

(74)

(75)

OO

Cg = exp —— V~ '(r(t)) dt

Thus one first diagonalizes Eq. (77) and then inserts (76)
with (78) in the formula for o~ to obtain the desired rela-
tion. Clearly, a lot of room is available for improvements.

@o = &o+o,
4g = Cg4g )

(76)

one has the keedom in choosing the functions Co and |g
to be such that the following equations are satisfied [see
Eq. (58)]:

(E —Kp —Up) 4'p ——Vpg@g,
t'

(E —Kg —Ug)4'a = Veo@o+
~

&e —& 2)
(77)

In deriving Eqs. (74) and (75) we have assumed a pure
Rutherford trajectory for the relative motion of the col-

z z ' ~(~+iliding nuclei. Then ri(0) = 'zg' 1+ ~ +, l and

ai(0) = — '
&pl

+ 2
~ &~ll, where g is the Sommerfeld

z z 2
parameter, g = '2E

In Fig. 3, we show the ratio ~
"

~ for I i +
Pb taking for Eg ——0.2 MeV. We took I'& ——2 MeV

and I'& ——1 MeV. It is clear that now the fusion is
strongly hindered, by a factor of 100 in the barrier re-
gion. Thus the eKect of I'& is much more important than
that of I'&. Considering now the realistic version of the
soft dipole mode in iiLi, its width is totally escape (to the
2n + oLi channel) and thus the fusion of iiLi is hindered
[4,18]. Finally, we mention that the formal manipula-
tion used on Eq. (69) to reach the final general result,
Eq. (73), is based on the observation that by defining the
reduced wave functions

VI. CONCLUSION

In conclusion, we have developed in this paper a reac-
tion theory that enables one to study the inBuence of the
coupling to a resonant channel on the heavy-ion fusion
cross section 0~. In particular, the eKect of the Rnite
width of the resonance, which is excited in one of the
partners, on the Coulomb barrier penetrability is com-
prehensively investigated. It is found that the damping
width only mildly enhances 0.~ at subbarrier energies,
whereas the escape width strongly hinders it, when the
Q value is small. Applications were made to the system

I,i + Pb. The hindrance in o ~ of this system was
found to be as large as a factor of 100 at E V~. It
would be of great interest to verify this 6nding experi-
mentally. Further, a more detailed numerical calculation
that solves Eq. (69), without the approximations used in
our schematic model, is called for. Work in this direction
is in progress.
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APPENDIX A: DOOR%AY PROPAGATOR FOR
LORENTZIAN LINE SHAPE

When a Lorentzian line shape, Eq (42), is used to de-
fine the doorway propagator G& [see Eq. (46)], one has(+}
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to evaluate the convolution integral 2i, .e't . e t
AC(t) = — Im e'ci sin

7rEd
, .e*t e*t—e*si cos

G,'+'(E) = dE'
E —E' —Kd —Up+i~ m

rgE'2
X (EI2 e2)2 +. I 2E12 (A1)

where e' = Ed —i~2, and ci(si)(2:) are the cosine and
sine integrals:

The Lorentzian weight factor in the integral has in gen-
eral four simple poles in the complex E' plane. In the
case of "narrow" Lorentzians, in the sense that I'd & 2eg,

~g
- 1/2

the poles are located at ReE' = +Eg ——+ e& —~4

ImE' = +~; when rp ——2eg, they coalesce to one pair
of double poles on the imaginary axis; and for "wide"
Lorentzians, rg ) 2eg, there are again four simple poles
but now on the imaginary axis. Two of these poles coa-
lesce at the origin when e~ —+ O.

Consider first the "narrow" case. Here a contour encir-
cling the pole at Eg —i~& clockwise can be deformed so
as to include the positive real axis [as required for (Al)],
in addition to the negative imaginary axis and a quarter
circle at infinity. The latter part of the deformed con-
tour does not contribute to the integral, so that (Al) can
be expressed in terms of the pole contribution and of an
integral along the negative imaginary axis. The result is

cos(sin)(u)
V

When t ~ 0 the quantity AC(t) approaches the limit

i2@ as it should. Furthermore, a simple formal rela-2Ed
tionship exists between Eqs. (A2) and (A4). It can be
expressed as

(3O

G,"'(E) = «"' "'(d(O)ld(t))e —"' ' "'
0

(A6)

showing in particular that (A6) is in fact related to
AC(t), Eq. (A5).

The case of "wide" (i.e. , Fg ) 2eq) Lorentzians is best
handled in terms of an extension of Eq. (A6) to this case.
Equation (A4) is now replaced by

with

(E)= 11-
2Ea ) E —Kg —Ug —Eg + i ~~

+~G„'+'(E), (A2)
i-ie ' li(e " )), (A7)

2

(d(0)~~d(t)) „&2., —' ) ""(e: '
z - iii(e'"')

=1

AG~~+l (E)= — dy
vr o y+ e —i(E —Kg —Ug)

(9'+ eq} —&„y
(A3)

ld(t)) =):e" "I')~'.

For the case of a Breit-Wigner line shape this gives the
usual exponential decay law

The quantitative importance of (A3) grows with the
proximity of the poles to the imaginary axis. Qualita-
tively, this term accounts for a nonexponential correc-
tion to the time decay of the doorway. This can be seen
by evaluating the time correlation amplitude (d(0) ~d(t))
with

where

I„= ——(—1)" ——e
2

A2"-= ' " r.gr„4.„
(A8)

and li(x) is the logarithmic integral J &" . Now there
are two exponential decay constants A which correspond
to the distances of the poles (which lie on the imaginary
axis) to the real axis in addition to nonexponential terms
involving the logarithmic integral.

We turn next to the consequences of the above changes
for the fusion calculation of Secs. III and IV. The situa-
tion considered there corresponds to the "narrow" case,
so that the relevant Green's function is that given by

Eq. (A2). First write AG& as(+)

(d(o)ld(t))

while for the Lorentzian line shape a procedure analogous
to that leading to (A2) gives

&Gl" (E)= f.(E)E —E&+ i~ —K~ —U~

= f (E)G'+' (E)

where the operator fg(E) is

(AS)

(d(o)ld(t))

with

~~ e '~"- - +&C(t),2E, )
'

(A4)
X

(y2 + e2)2 I 2y2
(A10)

21'~ Ed —'2' —(E —Kg —Ud, )
fd(E) = dy

y + e —i(E —Kd —Ud, )
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This operator commutes with G&B~(E), since both ob-
jects are functions of Kd+ Ud. We are allowed to express
G„l+l(E) as

'rd
Vod = Vo~ I — + f~(E)

2Ed

G + (E) = 1 — + fg(E)
2

Vzo = 1 — + fv(E)
2Ed

- X/2

Vdo (A12)

—Im[Uo + VO~GdBw(E) V&o) l@o+ ) (A11)

where we have introduced the modified couplings

- X/2

dBw( ) + f&( )2Ed

so that Eq. (48) becomes, in the case of a "narrow"
Lorentzian doorway,

Equation (All) may now be recognized as the total reac-
tion cross section of the two-coupled-channels equations
(58) with the coupling potentials replaced by Eqs. (A12).
Note that Vo+& g Vdo in this case, on account of the non-
Hermitean character of the square root factor.

A numerical evaluation of Eq. (A4) for Eq = 16 MeV,
I'd ——4 MeV shows that the time scale for the decay of
AC(t) is 0.0275 MeV (( 25/I'd. This suggests that
fd(E) may in this case be ignored as an approximation, so
that the non-Hermitean character of the coupling reduces
essentially to the c-number factor [1 —iI'q/2E~) 1—1/2

0.0625i.
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