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High energy single particle states in the continuum
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This paper contains new developments of the Bonaccorso-Brink reaction model for neutron trans-
fer to continuum states in heavy-ion collisions. The spectral distributions, escape, and spreading
widths of the neutron 6nal continuum states are calculated and studied by introducing a semiclas-

sical S matrix describing the rescattering of the neutron on the target. By comparing to previous

calculations done with an optical model S matrix we suggest a method to estimate the damping of
single particle states in the continuum. Our calculations for the transfer cross sections and for the
single particle widths are compared to available experimental data. The results of the comparison

support the interpretation of the structures in the experimental spectra up to an excitation energy
as high as E 20 MeV in Pb and E 30 MeV in Zr as due to the population of single

particle states of high spin.

PACS number(s): 25.70.Hi, 24.30.Gd

I. INTRODUCTION

One-neutron transfer to the continuum reactions have
been used for many years to study the spectroscopy of
low-lying single-particle resonance states in the contin-
uum. Data taken up to 1988 were discussed in [1]. More
recent data are published in [2—8, 10]. Many experiments
have targets in the region of lead but also other nuclei as

Ca, Zr, Sn, and Ni have been studied.
One characteristic common to almost all inclusive spec-

tra is that there are structures up to an excitation
energy of about E 10 MeV. At higher excitation
energies some spectra show a structureless continuum.
This happens for light projectiles like n particles and/or
when the incident energy is less than about E;„, = 30
MeV/nucleon. However, there is a group of reactions in
which the situation is rather different because the spec-
tra show also structures at E 20—40 MeV superim-
posed to a large continuum. This happens in reactions
in which both the projectile and the target are heavy ions
and when the incident energy is of the order of E;„, 40
MeV/nucleon. This rather unexpected feature originated
a number of speculations, namely, that the high-energy
bump could be the signature of a giant collective reso-
nance or it could simply represent the maximum of the
physical background due to the breakup. Then in Ref. [9]
it was shown that the transfer spectra were dominated

by noncollective high-spin states. The calculations were

done by describing the transfer within the distorted wave

Born approximation and the collective states by the ran-
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dom phase approximation. On the other hand, in Ref.
[10] it was shown that the background due to breakup
could account only for about one-third of the cross sec-
tion, the rest being due to neutron resonant absorption
on the target. Some typical reactions showing high-
energy structures are 2o7Pb(2oNe, ~sNe)2MPb at E;„, =
48 MeV/nucleon [6, 10], and Pb( Ar, Ar) Pb at
E;„,= 41 MeV/nucleon [6, 10], and soZr(2oNe, ~sNe)s~Zr

at E;„,= 40 MeV/nucleon [3].
Recently two new experiments have been per-

formed to clarify the nature of both low-energy and
high-energy structures. The reactions studied were
2osPb(a, sHe)2osPb at E;„, = 30 MeV/nucleon [7] and

Ca( Ne, Ne) Ca at E~„, = 48 MeV/nucleon [8]. In
these experiments the neutrons emitted during the re-
action have been detected at backward angles in coinci-
dence with the ejectile in order to obtain information on
the decay properties of the target resonance states popu-
lated by transfer. The analysis of the angular correlation
in those data has shown that the reaction on Pb is
dominated by the absorption of the transferred neutron
on the high-spin continuum states of the target, while the
reaction on Ca is dominated by the breakup. Further-
more, the inclusive spectrum of the Ca( Ne, Ne) Ca
reaction shows only a structureless continuum.

It is timely and appropriate to examine if such a
rich variety of reactions having different combinations of
projectile-target nuclei and incident energy, giving rise
to inclusive spectra containing rather different propor-
tions of transfer vs breakup components, can all be ex-
plained in the &amework of the Bonaccorso-Brink model
of tranfer to the continuum. Our previous interpreta-
tion of the inclusive experimental spectra [10—14] was
dedicated to limited aspects of the physics contained in
the nuclear reaction continuum and only recent develop-
ments of our model and the availability of exclusive mea-
surements make this global review possible. The model
treats indeed in a coherent way the processes of trans-
fer to resonant states of the target [11], elastic breakup
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[12], and inelastic breakup [14]. Furthermore, numerical
problems related to a proper use of the model have been
carefully analyzed in Ref. [13], while preliminary com-
parisons with experimental data [10] have shown that the
model is able to reproduce the main characteristics of the
spectra.

One interesting aspect of the Bonaccorso-Brink model
is that it allows decomposition of the cross section into
the contributions of the various final angular momenta.
Decomposition in terms of the final jy is used explicitly
in the present paper for the first time to study the single-
particle properties of the continuum states populated by
transfer. In fact each of these individual terms due to a
final state of definite angular momentum is normalized by
the transmission coefficient, Eq. (2.2) of the next section,
describing absorption of the neutron on the target. Thus
it contains the same physical information as the strength
function or structure function of the state as defined in
[1] and in [15], respectively.

In the present work we make new developments of the
model which will allow us to extract, &om the exper-
imental spectra, information on the microscopic struc-
ture of the target resonant states populated in the reac-
tion. The developments consist of the introduction of a
semiclassical S matrix for the description of the neutron
rescattering on the target. The semiclassical S matrix
contains a Lorentzian shape for the resonance with an
explicit dependence on the width. We will show that the
decomposition of the width into a part due to direct de-
cay and. a part due to d.amping is a natural consequence
of the semiclassical prescription. Then both the direct
and spreading widths will be calculated. In particular,
the spreading width will be calculated in three different
ways because it gives the main contribution to the to-
tal width and we wanted to check the sensitivity of the
results on the method used.

Finally the comparison with previous cross section cal-
culations [10],where an optical model S matrix was used,
will allow us to establish the origin of the structures in the
experimental spectra as due to the population of single-
particle states not only in the low-energy part of the spec-
tra, but also at excitation energy E~ 20 MeV in Pb
and E 30 MeV in Zr.

This paper is organized as it follows. In Sec. II, after a
brief reminder of the basic formulas of the transfer to the
continuum model, we introduce the semiclassical method.
to calculate the S matrix. The evaluation of the widths is
discussed in Sec. III. Section IV contains a discussion of
both the experimental and theoretical results and finally
in Sec. V we give our conclusions.

XI. SEMICLASSICAL S MATR. IX.

In the Bonaccorso-Brink model the neutron transfer
probability &om a definite single-particle state of energy
c;, angular momentum /;, and spin j; in the projectile to
a final continuum state of energy ey within an interval
dry in the target is given by an incoherent sum of the
transfer probabilities to each possible final jy state in
the energy bin dry.

(2.1)

where

(2.2)

(S~~) is an energy averaged S inatrix which describes the
rescattering of the neutron on the target. The sum in
Eq. (2.1) is over all possible final angular momenta corre-
sponding to the given final energy. B(jy, j;) is an elemen-
tary transfer probability which depends on the details of
the initial and final states, on the energy of relative mo-
tion, and on the distance of closest approach between the
two nuclei [11].

In Ref. [12] it was shown that the first term in
Eq. (2.1), proportional to ~1 —(S~ )~, gives the elastic
breakup spectrum while the second term proportional to
the transmission coefFicient T~z gives the absorption spec-
trum. The elastic breakup gives some part of the physical
background of the spectra . The way of calculating it has
been described in Refs. [13, 10). The inelastic breakup
comes &om the absorption term Rom which it can be ex-
tracted according to the method described in Ref. [14].
It contributes also to the background.

In previous works and in some of the calculations
shown in this paper the energy averaged S matrix ap-
pearing in Eq. (2.1) is calculated within the optical inodel
with an energy-dependent optical potential. In this way
we have been able to reproduce the experimental spectra
to explain the structure of the bumps in terms of the in-
dividual jy states contributing and also to estimate the
resonance energy for each jy state. On the other hand, as
it will be shown in the following, the resonant behavior
of the cross section for transfer to an individual jy term
might be due, in some cases, only to an optimum Q value
effect. It is therefore important to establish a criterium
to disentangle the single-particle properties of the final
states &om the resonant behavior of the cross section
and in particular to check if the widths of the individual

jy terms appearing in Eq. (2.1) can give information on
the single-particle state widths . To this purpose we start
now to discuss the semiclassical S matrix.

Transfer to high-angular-momentum resonances is a
peripheral process dominated by barrier penetration ef-
fects. These effects are important for potentials which
are weakly absorbing at the barrier, the so-called surface
transparent potentials. When the two nuclei are at the
distance of closest approach there is an effective barrier
between them such that the neutron can tunnel to a final
continuum state in the target;. Resonance states like the
1k]7/2 in lead have positive energy, which is, however,
below the barrier formed by the real plus centrifugal po-
tential plus spin-orbit potential as shown in Fig. 1. In
such a situation one can try to calculate the S matrix
which appears in Eq. (2.1) by using a semiclassical ap-
proximation based on a WEB evaluation of the barrier
penetration probability.

Some of the formulas used in the following are due to
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N = 1 + exp( —2Q). (2 4)

Brink and Takigawa [16] and they are also discussed in
Ref. [17]. The S matrix is given by

1 + N exp(2iss2)
N + exp(2iSs2)

(2.3)

The quantity 8I in Eq. (2.3) is the external phase shift
which could be complex if there were direct reactions
%'e take it as zero since we are interested in discussing
only the absorptive part of the scattering. Also

Q = kR +f In (~f + Qf —1) —Qf —1 (2.9)

if f ) 1 (below the barrier) and Q = 0 if f ( 1 f bi ~a ove
e arrier~, with the penetration factor given b P =cn

exp( —2Q) which is appropriate for a sharp cutoff barrier.
A more accurate calculation of P would require the

evaluation of the barrier penetration integral [17]

A simple form for P would be to take a centrifugal
barrier with a sharp cutoff at a radius R. We put f =
t(t+1)/(ka)'. Th.n

q. ~ . ~ ~ is a WKB barrier penetration integral and C

l~(r) I« (2.10)

P = 1 —1/K
1 + exp(2Q)

(2.5)

is a barrier penetration factor. The quantity S32 is de-
6ned in Appendix A. It is a WKB integral between turn-
ing points in the pocket behind the centrifugal b
It has a real art dp rt and an imaginary part correspondin~ ~

to absorption, and so we can write
g

exp(2iSs2) = A exp(2i@), (2.6)

where A and @ are real and A ( l.
0

We can get resonances by choosing 0 ( A & 1 dan
akIng some suitable energy dependence for Q. Then

at several energies around the resonance energy. This is
not necessary for the calculation of Eq. (2.8) while it will
be done for the calculation of the escape widths as we
shall see in the next section. In Eq. (2.10) b and c are
the outer and outermost turning points and

(2.11)

where V(r) is the sum of the real plus spin-orbit paten-
tia .

III. WIDTH

1 —/sf' = P 1 —A

1+2A/1 —P cos(2@) + A2(1 —P)
(2.7)

One gets a resonance when cos(2') = —1. Expanding
about the resonance position cos(2@) = —1+n(e —s«, )
glVCS

6' f 8'yes

1 —/Sf' = P (I /2)
(1 —Av'1 —P)' ( x

— - ) + ( /2)

(2.8)

A. Escape width

r, = nP/r (3 2)

is the escape width which is due to the decay of the res-

In Eq. (2.8) I' is the total width of the resonance. In

[17,18]
Appendix we show that it is approximately iven b

r =r, +r~,
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onance by barrier penetration and

I"i 2(W) (3.3)

is the spreading width de6ned in terms of the expectation
value of the imaginary potential. The spreading width
and the definition of (W) will be discussed in the next
section.

In Eq. (3.2) P is the barrier penetration factor dis-
cussed in the previous section and T is the period of the
radial motion of the particle in the real potential pocket
inside the barrier [19]

(3.4)

where a is the internal turning point.
Equation (3.1) corresponds to the usual definition of

the single-particle width as the sum of aD escape width
and a spreading width. However, one has to keep in
mind that this distinction is somehow arbitrary because
the direct decay of the particle which is represented by
the escape width is modified by the coupling to other
modes of excitation of the nucleus which are described
by the spreading width. Therefore the evaluation of the
escape width is very sensitive to the model used.

The definition of the escape width given in Eq. (3.2)
takes into account only the interaction of the particle
with a static potential. The quasiparticle-phonon model
used instead in Ref. [20] treats the single-particle po-
tential as a dynamic quantity calculated within the ran-
dom phase approximation and we expect that the escape
widths calculated in this way would be larger than ours.

The interesting point about Eq. (3.2) is that although
it is very easy to calculate it gives results quite accurate,
comparable to those obtained in Ref. [20] and in Ref.
[21]. However, it is important to notice that in all meth-
ods the values of the escape width depend very much on
the parameters used to define the single-particle poten-
tial. Our method is mainly sensitive to the value of the

radius parameter which determines the position of the
top of the barrier. Small changes in the potential give
rise to changes in the turning points in Eqs. (2.10) and
(3.4) and the overall effect can be a variation of a factor
2 or more on the value of the escape width. Then the
agreement between various methods refers only to the
order of magnitude.

Another advantage of Eq. (3.2) is that it can be used to
estimate the escape widths of states of very high angular
momentum like the 1l$9/Q and 1mqqyq in lead which are
interesting for the present discussion and which could not
be studied with the methods of [20, 21]. Also it allows
one to understand the variation of the escape width with
the resonance energy. To discuss this point we show in
Fig. 1 for Pb, the real plus centrifugal plus spin or-
bit potentials relative to ly ——7, ly ——8, ly ——9, and
lf —10 respectively. The resonance energies indicated
correspond to the peaks of the I, terms shown in Fig. 4
and they are given also in Table III.

It is easy to understand that by increasing the reso-
nance energies the barrier penetration range decreases,
thus giving a larger barrier penetration factor P. At
the same time the period increases because the particle
makes a wider orbit inside the potential. But while the
variations of P are of an order of magnitude in the case
of ly

——7 and I,y
——8, the variations of T are only few

percent; therefore the escape width increases by raising
the resonance energy for a given ly state. This discus-
sion is illustrated by the values of I'0, P, and T given in
Table I for Pb. P was calculated from Eqs. (2.5) and
(2.10) and T Rom Eq. (3.4). The possible values of the
resonance energies given in Table I for each ly state are
taken around the values given in Table III and they are
all below the top of their respective potential barriers as
shown in Fig. 1.

The interesting point is that while low-lying resonances
like 1k&7yq have very small escape widths, other states of
higher angular momentum and higher resonance energy
have larger escape widths although they still maintain
quite strong single-particle characteristics as we shall see

TABLE I. Escape and spreading widths from Eqs. (3.2) and (3.5) in Pb

Ly

7
7
7
7
8
8
8
8
9
9
9

10
10
10
10

s„. (MeV)
3
5
7
9
4
6
8
10
14
16
18
20
18
20
22
24

P
0.10 x 10
0.38 x 10
0.35 x 10

0.15
0.30 x 10
0.78 x 10
071 x 10
036 x 10

0.05
0.13
0.27
0.45
0.04
0.09
0.20
0.35

T (10 sec)
1.67
1.74
1.91
1.96
1.46
1.54
1.63
1.68
1.51
1.69
1.79
2.20
1.34
1.41
1.55
1.72

I'p (MeV)
0.44 x 10
0.15 x 10

0.12
0.50

0 13 x 10
0.30 x 10
0.28 x 10

0.14
0.20
0.49
0.97
1.34
0.19
0.45
0.86
1.35

I'" (MeV)
3.36
4.15
5.04
5.49
3.88
4.75
5.42
6.09
6.99
7.29
7.51
7.36
8.53
8.39
8.75
8.69
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in the following sections.
The calculations in this section have been done by us-

ing MATHEMATICA [22].

B. Spreading width

J' W(r(t))Ct
(3.5)

The second term in Eq. (3.1) corresponds to the
spreading wid. th. We have defined it in terms of the av-
erage imaginary potential inside the barrier to be con-
sistent with the discussion in Sec. II where we described
the neutron target interaction by an optical potential.
However, it is important to point out that Eq. (3.3) is
quite generic and that there is not a unique prescription
for calculating (W). In Appendix A we derive Eq. (3.1)
within the semiclassical approximation to the S matrix
and we show that in order to be consistent with the ap-
proximation, the spreading width has to be defined as
the time average of the imaginary potential

I'~(eg) = Bm pj r2dr w(r, ~g), (3.7)

where p 0.08 fm s/A is an average density of the
single-particle orbitals in the vicinity of the absorptive
region. The value chosen is half the nuclear matter den-
sity. This approximation allows us to use the Brown-Rho
[24] parametrization for the volume integral of the optical
potential which appears in Eq. (3.7)

[r ]~ = — r dr W(r, sf) = b2—2 aR 4& 2 (&f @~)
sf Ep' + r2

(3.8)

assumption is justified by the fact that the imaginary
potential varies appreciably only on the surface of the
nucleus where the radial parts of the wave functions of
the high-spin single-particle states that we are studying
in this paper are also peaked. Then according to Ref.
[23] one can write

Another possible definition of the average potential giv-
ing the spreading width can be obtained. in the kamework
of the nuclear many-body theory [23]. In that approach
the spreading wid. th, also called the damping width, is
related to the imaginary part of the self-energy which
appears in the d.efinition of the Green function of an ex-
citation [15,23]. The definition given in Ref. [23] is the
following:

r~ =-2 (3.6)

where p(r) is the single-particle density given by p(r) =
~vP(r)

~

and Q(r) is the single-particle wave function. In
Appendix B it is shown that if one uses for @(r) the
semiclassical form of the wave function, then Eq. (3.5)
and Eq. (3.6) are equivalent.

There are two important characteristics of the spread-
ing widths that we wish to study, namely, their depen-
dence on the energy and on the angular momentum.
Equation (3.5) depends on the angular momentum in sev-
eral ways. One is that the classical orbit along which we
are taking the time integral of R' is in fact angular mo-
mentum dependent. We should have written r~(t) where
A = l + 1/2 is the classical angular momentum corre-
sponding to the quantum angular momentum l. Then the
angular momentum enters also in the centrifugal poten-
tial and as a consequence the period of the classical orbit
inside the real potential pocket and the turning points
will depend on l. The energy dependence of I'~ is due
mainly to the fact that the strength of TV is energy de-
pendent and also to the dependence of the period and of
the turning points on the resonance energy.

On the other hand, Eq. (3.6) depends on the angu-
lar momentum because of the dependence on the single-
particle wave function @I (r) and on the energy because
both vP and W are energy dependent. However, in Ref.
[23] it was argued that the density of single-particle or-
bitals p(r) which appears in Eq. (3.6) could be taken to
be constant in the vicinity of the absorptive region. This

TABLE II. (a) Spreading width as a function of the con-
tinuum energy in Pb. (b) Spreading width as a function of
the continuum energy in Zr. All units are in MeV.

(a)
r4
7.9 21
8.2 22
8.5 23
8.7 24
8.9 25
9.1 26
9.2 27
9.3 28
9.5 29
9.6 30

r~
1 31 11 9.7
2 37 12 9.8
3 44 13 9.9
4 50 14 10.0
5 55 15 10.1
6 61 16 10.2
7 65 17 10.2
8 69 18 10.3
9 73 19 10.3
10 7 6 20 10.4

E'f 0 8'f

31 10.4 1
32 10 5 5
33 10 5 10
34 10.6 15
35 106 20
36 10 6 25
37 10 7 30
38 10 7 35
39 10 7 40
40 10 7

I4
9.7

10.14
10.67
11.21
11.74
12.28
12.81
13.35
13.88

According to Mahaux and Sartor [25] the values of
the parameters in Eq. (3.8) for the neutron-2osPb po-
tential are b~ ——70.95 MeV fm, r2 ——10.87 MeV, and
E~ = —5.65 MeV. In Ref. [25] it was shown that the en-
ergy dependence of the volume and surface strengths of
the imaginary potential saturates around 40 MeV, then
according to Eq. (3.7) the widths I'~(sf) are constant
for energies in a continuum larger than 40 MeV and the
single-particle e8'ects disappear. The widths obtained
Rom Eqs. (3.7) and (3.6) are given in Table II(a). Our
values are in agreement with those given in Refs. [1,23].

Furthermore, in Table I we give, for several angular
momenta and energies, the spreading widths obtained
from Eq. (3.5). It is interesting to notice that there is
some dependence on the energy for each fixed angular
momentum but there is not much dependence on the an-
gular momentum for a fixed energy. However, there is a
continuous smooth increase of the width increasing the
energy, and. the widths obtained. with this method agree
within 20%%uo with the widths of Table II(a). One could get
a better agreement just by choosing a slightly diferent
value of the constant density of orbitals in Eq. (3.7).
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FIG. 2. Energy parametrization of the optical potential
strengths for Sn (solid curves) and Ni (dashed curve).

In this section we discuss the results of the calcula-
tions made for the reactions mentioned in the Introduc-
tion and we compare them to the corresponding experi-
mental spectra. We start by giving some information on
the optical potential parametrizations used in this paper.

To get the energy dependence of the strength of the
imaginary part of the neutron- Pb optical potential we
followed two different parametrizations given by Mahaux
and Sartor [15,25]. We have found that the parametriza-
tion of Ref. [25] gives a good description of the high-
energy part of the spectra and we have used it for the cal-
culations relative to the reaction Pb( Ne, Ne) Pb
at E;„,= 48 MeV/nucleon together with the real poten-
tial of Ref. [10] while we have used both the real and
imaginary potential of [15] with a spin-orbit strength
V, = 7 MeV for the reaction Pb(n, sHe) o9Pb at
E;„, = 30 MeV/nucleon because it gives a better de-
scription of the spectra at low excitation energy.

For the reactions having Ca and Zr as a target we
used the parametrizations suggested in [15] and [26] re-
spectively. For the other two targets Sn and Ni we
have constructed our own parametrization since there is
none in the literature. In both cases we used an optical

The choice of the most appropriate p is discussed in
Appendix C where we show the radial dependence of the
imaginary potential and of the radial wave functions of
some high-spin resonance states which have been calcu-
lated numerically. With those wave functions it is pos-
sible to calculate Eq. (3.6) exactly and to compare the
spreading widths obtained in this way to those obtained
using the approximation of a constant density of orbitals.

The reason why we wish to study in detail the validity
of Eq. (3.6) is that together with Eqs. (3.7) and (3.8)
it gives a very simple way of estimating the spreading
widths by relating them to the parametrizations of the
imaginary potential. The calculation of Eq. (3.5) requires
instead the numerical calculation of the turning points, of
the period of the radial motion, of the classical trajectory
of the particle within the real potential, and finally of the
time integral of the imaginary potential.

IV. RESULTS AND DISCUSSION

potential having only a surface imaginary part. In Fig.
2 the solid lines show the strengths of the real and imag-
inary parts used for Sn while the dashed line shows
the real potential strength used for Ni. The imaginary
part parametrization was the same as that suggested in
[15],corrected for the appropriate Fermi energy which we
took to be equal to E~ ———8 MeV.

First we discuss the group of reactions made at E;„,=
30 MeV/nucleon and having the n particle as a projectile.
These reactions are easier to analyze because there is
only one initial state in the projectile to be taken into
account. For a discussion of the initial state efFect we
refer the reader to Refs. [10] and [13].

Figure 3(a) shows the experimental and calculated
spectra of the reaction Pb(a, sHe)zosPb at E;„,= 30
MeV/nucleon. The solid curve (a) is the calculated in-
clusive cross section which is arbitrarily normalized to
the experimental spectrum from [7] while the solid curve
(b) is the breakup part of the spectrum multiplied by a
factor of 10. We give also the energy distribution of the
cross section corresponding to the absorption term in Eq.
(2.1) for some fixed values of the final angular momen-
tum, namely, /y

——6 —10. For each /y the contributions
corresponding to jy = ly + 1/2 were summed. This is
possible because the transfer probability, Eq. (2.1), con-
tains an incoherent sum of final jy values. We remind the
reader that for this calculation we have used the optical
potential of Ref. [15].

In Fig. 3(b) we show again some of the calculations of
Fig. 3(a) made with the optical model S matrix (solid
curves) while the dotted curves were obtained using the
semiclassical S matrix, Eq. (2.8), discussed in Sec. II.
The width appearing in Eq. (2.8) is the total width but
kom the values of the escape and spreading widths given
in Tables I and II(a), respectively, we see that the escape
widths are negligible compared to the spreading widths
and therefore we shall use Eq. (2.8) with I' = I'". We
have used Eq. (2.8) with A=0.93 for /y = 8, A=0.9 for
ly ——9, and. A=0.85 for ly ——10. The parameter A gives
the magnitude of the S matrix. Values of A close to
1 are appropriate for a weak absorptive potential. The
values of I'~ are given in Table II and were obtained &om
Eqs. (3.7) and (3.8). The resonance energies in Eq. (2.8)
were taken as the peak energies of the ly-resonant terms
obtained &om the optical model calculation.

In Fig. 3(b) we notice that the absolute values of the
cross sections calculated with the two difFerent methods
agree in all cases. This proves that the semiclassical S
matrix is a good approximation to the optical model S
matrix for the kind of reactions we are concerned with
in this paper. According to Eq. (2.8) the single-particle
resonance states have a Lorentzian energy distribution
around the resonance energy. By looking at Fig. 3(a) we
notice that for the l y

——8, ly ——9, and ly ——10 resonances
also the optical model calculation gives an energy distri-
bution very close to a Lorentzian. Therefore in all cases
the Lorentzian approximation to the spectral distribution
of the single-particle states in the continuum seems to be
correct. Also the values of the widths obtaineQ &om Eq.
(3.7) agree with the exact values implicitly contained in
the optical model S matrix and we can say that Eq. (3.7)
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FIG. 3. (a) Inclusive spectrum of the
reaction Pb(n, He) Pb at E;„, = 30
MeV/nucleon [7]. Curve (a) is our total cross
section; curve (b) is the breakup multiplied
by a factor 10. The other curves are the
individual lf ——6 —10 contributions to the
absorption as indicated on the picture. (b)
Same as (a). In this case the dotted curves
correspond to the calculations made with
the semiclassical S matrix. (c) Spectrum of
the reaction Zr(cr, He) Zr at Ei„, = 30
MeV/nucleon [7]. The solid curve superim-
posed onto the experimental spectrum is our
calculation of the inclusive cross section while
the solid curve in the lower part of the fi-e g-
ure is the calculated breakup. The individ-
ual I,f ——3—8 6nal angular momentum con-
tributions are also shown as indicated in the
lower part of the figure. (d) Ni(cr, He) Ni
at Ei„, = 30 MeV/nucleon [7]. The nota-
tion is analogous to the previous figure and
in this case the bump can be attributed to the
population of the ly = 4—5 final states. (e)
Results of the reaction Sn(a. , He) Sn at
E;„,= 30 MeV/nucleon [7]. The solid curve
superimposed to the experimental spectrum
is the calculated inclusive cross section. The
breakup contribution is indicated by the dot-
ted curve. The lf ——4—7 contributions are
also shown.
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gives a very reasonable estimate of the spreading widths
of the single-particle states.

In Fig. 3(c) we show the spectrum of the reaction
Zr(n, He) Zr at E;„,= 30 MeV/nucleon [7]. The solid

curve superimposed onto the experimental spectrum is
our calculation of the inclusive cross section while the
solid curve in the lower part of the figure is the calculated
breakup. We show also the individual /y

——3—8 final an-
gular momentum contributions from the optical model
calculation. One notices that the big bump in the ex-
perimental spectrum can be attributed to the combined
effects of the lf ——5—6 final angular momenta correspond-
ing to the population of the 1hg/2 and li13/'2 states in

Zr. The rising of the lf ——5 contribution towards neg-
ative final energies is due to the presence of the 1h,1qy2
bound state which has a large probability of being popu-
lated since in this reaction the spin-matching conditions
[27] require j; = l; + 1/2 ~ jy = ly + 1/2.

Figure 3(d) refers to the reaction Ni(n, He) Ni at
E;„,= 30 MeV/nucleon [7]. The notation is the same as
in Fig. 3(c) and in this case the bump can be attributed
to the population of the lf ——4 —5 final states.

Finally in Fig. 3(e) we show the results of the reac-
tion ~20Sn(n, sHe)~2~Sn at E;„, = 30 MeV/nucleon [7].
En this case the spectrum looks quite different &om the
previous ones because it contains a large breakup contri-
bution indicated by the dotted curve. There is a peak at
about sy = 1 MeV due to the lg = 6, jg = 13/2 single-
particle state which is the only one strongly populated.
The lf ——7 contribution is spread over all final energies,
thus showing that the state 1jqsy2 is completely damped
in Sn.

We turn now to the discussion of the reactions made
at high incident energy.

Figure 4 refers to the reaction Pb( Ne, Ne) Pb
at Ei„, = 48 MeV/nucleon. The experimental spectrum
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E.,„=48Mev/nucleon FIG. 4. Inclusive spectrum of the reac-
tion Pb( Ne, Ne) Pb at E~, = 48
MeV/nucleon [10]. The solid curve super-
imposed onto the experimental spectrum is
the result of our calculation. The dotted
curve shows the calculated breakup while the
curves labeled l f ——8—13 show individual con-
tributions to the absorption cross section of
several 6nal angular momenta.
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is compared to the calculated inclusive cross section. The
details of such a calculation were explained in Ref. [10].
The discrepancy between experiment and calculation for
energies larger than 50 MeV is due to a cut in the ex-
perimental spectrum [10]. In the lower part of the figure
we show also the contributions to the cross section of the
Lf ——8 —13 terms.

It is interesting to notice that the experimental spec-
trum has three bumps at E 14 MeV, E 25 MeV,
and E 34 MeV. At the same excitation energies
also the calculated spectrum has bumps and &om the
lf decomposition in the low part of the figure we notice
that the bumps correspond to the maximum value of the
lf ——8, ly ——10, and lf ——11 contributions. However,
because of the cut in the experimental spectrum, it is
not so clear that the Ly ——11 state gives rise to an iso-
lated bump. The Lf ——8 term shows two peaks. The first
one corresponds to the 1k~7y2 state, while the second one
around E 20 MeV corresponds to the 1kq5~2 state.

The dotted curve shows the elastic breakup which is
calculated from the first term of Eq. (2.1). This is a very
small contribution to the total inclusive cross section in
the low-energy part of the spectrum and it has a maxi-
mum around E = 50 MeV. Its effect is just to enhance
the Ly ——10—11 contributions.

To our knowledge this is the first clear example of the
persistence of single-particle effects in the excitation en-

ergy region E = 20—40 MeV. This is possible because
in this energy range the widths of the Ly resonances are
still smaller than the spacing between them. At higher
excitation energies this is not true anymore. In fact the
l f —12 contribution has a total width of about 13 MeV
while the spacing between the lf ——12 and Lf

——13 max-
ima is about 10 MeV. We remind the reader that the
widths of the lf resonances calculated with the optical
model S matrix depend both on the real as well as on
the imaginary parts of the optical potential and then
they are the sum of the escape plus spreading widths.
The optical potential used for this calculation [10] is dif-
ferent &om the potential used for the previous reaction

TABLE III. Resonance energies in Pb.

lf
e„, (MeV)

6
3.2

7
4.8

8
5.5

9
12

10
19

on lead [15] shown in Fig. 3(a). The main difference is
that for final energies larger that 10 MeV the real poten-
tial of Ref. [15] is shallower than ours for about 3 MeV.
As a result the peaks of the Lf

——9 and Lf
——10 terms in

Fig. 3(a) are shifted by about 4 MeV with respect to the
results shown in Fig. 4 and resumed in Table III, but the
peak of the ty = 8 contribution in Fig. 3(a) fits very well
the bump in the experimental spectrum.

Then from the analysis of Fig. 4 we can conclude
that the transfer to the continuum inclusive spectrum
of Pb at incident energy E;„, = 48 MeV is still
dominated by absorption effects on single-particle high-
angular-momentum states of the target. This is due to
various combined facts. One is that the single-particle
damping is not very large for excitation energies lower
than 40 MeV and also the escape probability of the par-
ticle &om the potential pocket via barrier penetration
is small. Furthermore, there are good matching condi-
tions between the initial and final energies and angular
momenta of the neutron in the projectile and target, re-
spectively, and this enhances the transfer probability.

Figure 5 shows the experimental and calculated spec-
tra of the reaction Pb( Ar, Ar) sPb at E;„, = 41
MeV/nucleon [6, 10]. In Ref. [10]we showed that this re-
action is dominated by the transfer &om the 1d3y2 initial
state in 4oAr (solid curve superimposed onto the exper-
imental spectrum). The lf decomposition in the lower
part of the figure refers to the transfer cross section from
this initial state only. As in the previous reaction the
ly = 8 term (solid curve) gives rise to two peaks. The
individual 1ki7g2 contribution is shown separately by the
dotted curve. The second peak in the solid curve is
due to the 1k&5y2 and it is higher that the first one be-
cause in this case the spin-matching condition requires
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FIG. 5. Inclusive spectrum of the reac-
tion Pb( Ar, Ar) Pb t E~„, = 41
MeV/nucleon [10]. The solid curve superim-
posed onto the experimental spectrum is the
result of our calculation for the cross section
due to transfer from the ld3/2 initial state in
Ar. In the lower part of the figure the dotted
curve shows the contribution of the 1k&q/2
final state. The solid curve is the total con-
tribution due to Lf ——8. The second peak is
due to the 1k&5/2 state. The dashed line is
the contribution of lf ——9 and the dot-dashed
line is for lf ——10. The tightly dotted curve
is the elastic breakup.
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j, = l; —1/2 + jy = ly —1/2. The Iy = 9 (dashed
line) contribution has quite a large width and its contri-
bution does not give a definite bump in the experimen-
tal spectrum; rather it is responsible together with the
lf —10 contribution shown by the dot-dashed curve, for
the second bump in the experimental spectrum. This re-
sult confirms the analysis done for the previous reaction,
namely, that the experimental spectra contain evidence
for the population by transfer of the If ——10 state in
208Pb and 209Pb

Figure 6 shows the calculated inclusive spectrum of the
reaction soZr(20Ne, Ne) ~Zr at E;„,= 40 MeV/nucleon.
From the angular momentum decomposition in the lower
part of the figure one notices that the first bump is due to
the population of the lii3y2 and 169/2 states, while the
second bump is due to the 1j~sy2 state. The experimental
spectrum for this reaction has been measured [3] and it
does show two bumps at energies E = 16 MeV and
E = 30 MeV corresponding to those predicted by our
calculations.

Therefore we can conclude that the resonant behav-
ior of the transfer inclusive spectra so far analyzed does
correspond in fact to an absorption of the neutron into
states of the target which have definite angular momen-
tum and a Lorentzian distribution around the resonance
energy. We can predict the widths of these states with
good accuracy by using Eqs. (3.1), (3.2), and (3.7). Our
analysis predicts the persistence of single-particle efFects
in lead up to lf ——10 at E = 26 MeV. However, the
lf ——11 and If ——12 states give also a resonant behavior
around E 32 MeV and E 42 MeV, respectively, as
shown in Fig. 4, but such energies are very close to the
top of their respective potential barriers which are at 30
MeV and 35 MeV. Then the treatment of these states as
single-particle potential resonances cannot be justified so
well and we conclude that the resonant behavior is due
only to an optimum Q-value efFect. In Zr single-particle
states are populated up to E 30 MeV.

Finally Fig. 7 shows the results of the reaction
4sCa(20Ne, ~ Ne) Ca at E;„,= 48 MeV/nucleon [8]. The

1000

Zr ( Ne, Ne) Zr E,„,=40Mev/nucleon

800— . u

'+II 'P
I Il

600 ~

400

FIG. 6. Calculated inclusive spectrum of
the reaction Zr( Ne, Ne) Zr at E;,
40 MeV/nucleon superimposed onto the ex-
perimental spectrum [3]. The final angular
momentum decomposition is shown in the
lower part of the figure.

200

10
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FIG. 7. Results of the reaction Ca( Ne, Ne) Ca at
E;„, = 48 MeV/nucleon [8]. The solid curve superimposed
onto the experimental spectrum is the calculated inclusive
cross section. The dotted curve is the total breakup. The
6nal angular momentum decomposition is shown in the lower
part of the Ggure.

solid curve superimposed onto the experimental spec-
trum is the calculated inclusive cross section. The dotted
curve is the total breakup which in this case gives the
dominant contribution to the spectrum. This result is
consistent with the ly decomposition shown in the lower
part of the figure. Only the ly ——4 contribution, centered
around E = 9 MeV seems to have a single-particle be-
havior. All the other contributions have widths larger
than their spacing and we have checked than their reso-
nance energies are higher than the top of the correspond. -
ing real plus centrifugal potentials. Then also in this case
the resonant behavior of the individual lf terms does not
correspond to the population of a single-particle state
but rather to an energy-matching effect. The experimen-
tal spectrum does not show any isolated bump, but just a
structureless continuum with a maximum corresponding
to the maximum breakup probability.

V. CONCLUSIONS

In this paper we have studied the microscopic origin
of the resonant structures shown by several one-neutron
transfer to the continuum experimental spectra. It has
been demonstrated that they are due to the population of
single-particle states of positive energy and high angular
momentum.

The single-particle nature of the excitations has been
clarified by introducing a semiclassical S matrix which
describes the rescattering of the neutron on the tar-
get. Near resonance the semiclassical S matrix exhibits
a Lorentzian shape with an explicit dependence on the
width. We have shown that within the semiclassical the-
ory the width can be written as a sum of an escape width
plus a spreading width. The physical meaning of these

two terms has been discussed and we have given some
prescription to calculate them.

The spreading width has been analyzed in great de-
tail because it gives the largest contribution to the total
width. Three different ways of calculating it have been
proposed and the numerical values obtained agree within
20%. The spreading widths increase smoothly with the
neutron energy in the continuum following the energy de-
pendence of the imaginary part of the optical potential.
It was also shown that the dependence on the angular
momentum is negligible.

Our calculations suggest that the low-energy bump
shown by the spectra of the reactions made at E;„,= 30
MeV/nucleon is due to the population of single-particle
states of high angular momentum but low final energy.

On the other hand, the results of our analysis seem to
suggest that single-particle effects in lead and zirconium
persist at excitation energies as high as 20—30 MeV. The
reason is that states like the 1m2qg2 in lead or the 1jqsy2
in zirconium have resonance energies which are still be-
low the top of the barrier formed by the real plus cen-
trifugal plus spin-orbit potentials and their escape prob-
abilities by barrier penetration are small. Furthermore,
the strength of the imaginary part of the neutron- Pb
optical potential which depends on the mixing between
the single-particle states and other modes of excitation
increases up to about E = 40 MeV where it starts to
saturate. As a consequence, the spreading widths below
40 MeV remain smaller than the spacing between the res-
onances which then can still be considered isolated. Be-
cause of these properties, the single-particle resonances
are preferred modes of excitation in a transfer reaction
to targets like Pb and 0 Zr.

This point has been illustrated by the analysis of
the reactions Pb( Ne, Ne) Pb at E;„, = 48
MeV/nucleon sPb( Ar, Ar) Pb at E;„, = 41
MeV/nucleon [6, 10], and soZr(2oNe, Ne) Zr at E;„,=
40 MeV/nucleon [3]. It has been shown that the ly = 10
final state corresponding to the 1m2~y2 single-particle
resonance centered around ey ~ 20 MeV in Pb can
be populated. by one-neutron transfer with a probabil-
ity higher than underlying states and the experimental
spectrum shows a bump in correspondence to this state,
thus indicating that the single-particle damping is not
complete yet. The estimated escape width for this state
is about 1 MeV w'hich is the same order of magnitude
as the spreading width and one could hope to detect a
noticeable direct decay of this state by performing an ex-
periment similar to the one of [7]. A similar result holds
for the 1jqsy2 state in Zr at ef 18 MeV.

The fact that at E;„, =40—50 MeV/nucleon transfer
reactions on heavy targets dominate the inclusive cross
section suggests that the description of the nucleus by a
mean field is still valid. This remark might be useful for
the understanding of the &agmentation process which
is the dominant reaction mechanism at higher incident
energies.

All the above remarks hold true because, in the reac-
tions we have described, the background. due to breakup
is small. This is due to the fact that the initial bound
state energy of the neutron in the projectile is large, of
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the order of 10—20 MeV, and the incident energy per nu-
cleon is of the same order of magnitude such that the
energy-matching condition gives a most favorite final en-
ergy which is in the range of persistence of single-particle
states. In the case of the reactions on Sn and SCa in-
stead, the most favorite final energies do not correspond
to any single-particle resonance state of the targets and
the spectra are dominated by the breakup.

The results would again be difFerent for a reaction hav-
ing a projectile with a loosely bound neutron like Be
or if the incident energy were much higher [12]. In those
cases also the inclusive spectra would be dominated by
the direct breakup component.
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The step between Eq. (2.7) and Eq. (2.8) is made by
expanding about the resonance position cos(2$) = —1 +
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where v. is half the period of the classical orbit inside the
real potential pocket defined by Eq. (3.4).

Then Eq. (2.8) is obtained from Eq. (2.7) if one defines
a width I' as
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I'= 2/
( QAo. gl —P j

(A9)

where P is the barrier penetration factor defined in Sec.
II.

Now, since P ( 1, we can expand gl —P and use also
the approxiinated forms of A and ~A given above which
are valid when the imaginary potential is small. Then we
get for I'

1 A+ AP
2

APPENDIX A

In this appendix we derive Eq. (3.1) given in Sec. III A.
First we give the definitions of S32 and A which appear

in Eq. (2.6),

l

——2W+ PW
l (1 —W)

(P
r( 2

P)2W+ —
l2 j

exp(2iS32) = A exp(2i@).

S32 is a WKB integral defined as

(A1) hP h——2 —W = I'0+2(W)T 7
(A10)

S„= lp(r) I
dr,

a

where

(A2)
In getting the above result we neglected terms of the

order PW and we defined also I'0 ——hP/T [cf. Eq. (3.2)].
Finally we defined the time average of the imaginary po-
tential as

( ) = [&(")+'W(") ~ 1+
2m . &(1+1)

(A3)
(W) =-f W(r(t))dt

(A11)

(2
A = exp(21mSs2) = exp

l

— W(r(t))dt (A4)

In Eq. (A2) a and b are the inner and outer turning points
which appear when the real potential has three turning
points. Also

The minus sign in the above equation is correct since in
this paper we use a negative strength for the imaginary
potential.

APPENDIX B

where W(r(t)) is the imaginary part of the potential
which appears in Eq. (A3).

If the imaginary part of the potential is small, one can
expand the exponential in the above definition of A and
then get

In this appendix we show the equivalence between Eq.
(3.5) and Eq. (3.6). We start from

I'~= —2 pr TVr dr,

and

A- 1+2%' (A5) where p(r) is the single-particle density given by p(r) =
lg(r) l

and g(r) is the single-particle wave function
which depends on the quantum numbers l and m as well
as on the single-particle energy. In the following we omit
those indices for brevity. Let
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TABLE IV. Spreading widths from Eq. (3.6) with the ex-
act wave functions.

Nucleus

208Pb

91z

lf
5
7

6
7

e„, (MeV)
4.02
6.82
6.22
8.62
17.8

I'~ (MeV)
1.90
2.01
3.12
10.17
11.14

orbitals to be constant outside the integral when we are in
a region of continuum energies where the shell model pre-
dicts only states of high angular momentum whose wave
functions have no nodes and are peaked at the nuclear
surface. For the three states discussed here we calculated
the spreading widths from Eq. (Bl) with the exact wave
functions shown in Fig. 9 and the resulting values are
shown in Table IV. They are smaller by about a factor
of 1.85 than the values given in Table II in the case of

Pb. In Table IV we give also some values of I'~ calcu-
lated for Zr. In this case the agreement with the values
obtained &om Eq. (3.7) is very good.

Unfortunately it is rather dificult to get convergence
in the numerical solution of the Schrodinger equation for
states of angular momentum higher than those discussed
here; otherwise one could always calculate Eq. (Bl) ex-
actly. Then we suggest that if one is interested only in
an estimate of the spreading widths having in mind that
their most important characteristic is the energy depen-
dence, Eq. (3.7) can be used together with an appropriate
density of orbitals and with a good parametrization of
the volume integral of the imaginary part of the optical
potential.

Finally we notice that the value of the resonance en-
ergies are diferent than those given in Table III; this is
because the values given here come &om the solution of
the Schrodinger equation while those of Table III corre-
spond to the peaks of the / resonant terms of the transfer
probability Eq. (2.1).
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