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We formulate K+-nucleus quasielastic scattering in a manner that closely parallels standard treat-
ments of e -nucleus quasielastic scattering. For K scattering, new responses involving scalar con-
tributions appear in addition to the Coulomb (or longitudinal) and transverse (e, e') responses which
are of vector character. We compute these responses using both nuclear matter and finite nucleus
versions of the relativistic Hartree approximation to quantum hadrodynamics including random-
phase approximation (RPA) correlations. Overall agreement with measured (e, e') responses and
new K+ quasielastic scattering data for Ca at ~q~

= 500 MeV/c is good. Strong RPA quenching
is essential for agreement with the Coulomb response. This quenching is notably less for the K+
cross section even though the new scalar contributions are even more strongly quenched than the
vector contributions. We show that this "differential quenching" alters sensitive cancellations in the
expression for the K+ cross section so that it is reduced much less than the individual responses.
We emphasize the role of the purely relativistic distinction between vector and scalar contributions
in obtaining an accurate and consistent description of the (e, e') and K+ data within the framework
of our nuclear structure model.
PACS number(s): 25.30.Bf, 25.80.Nv, 24.10.Jv

I. INTRODUCTION

Quasielastic electron scattering from nuclei has lo ng
been used to study various aspects of nuclear structure.
The strong quenching of the measured Coulomb response
relative to Fermi-gas estimates is one prominent exam-
ple [1—3]. Such studies are facilitated by (1) the (rea-
sonably) well-understood nature of the fundamental eN
interaction and (2) by the relative weakness of that in-
teraction. However, this same interaction suffers from
some important shortcomings in that it probes the nu-
cleus in a very restricted fashion. Hence only two inde-
pendent observables exist (without making polarization
measurements), namely, the Coulomb (or longitudinal)
and transverse responses. These limitations have mo-
tivated a number of quasielastic scattering experiments
employing hadronic probes [4—7] . The more complicated
interaction of the probe with nucleons means that in prin-
ciple new responses which are inaccessible with electrons
can be studied. One important example of such investi-
gations is found in the (p, p ) [4, 5]) and (p, n) [6]) experi-
rnents performed (in part) to extract the longitudinal spin
response to complement information on the transverse
spin response determined by electron scattering. Analy-
sis of such hadronic measurements is, however, hampered
by the strength and complexity of the projectile-nucleon
interaction. The former causes strong distortions in the
incoming and outgoing projectile wavefunctions and lo-
calizes the scattering process in the region of the nuclear
surface. The latter typically implies significant modifica-
tion of the interaction in the nuclear medium. Both sets
of effects greatly complicate the theoretical description
of the scattering process and. the extraction of nuclear

structure information.
These considerations have led to much interest in K+-

nucleus scattering. The relative weakness of the K+N
interaction relative to, e.g. , NN and AN interactions sug-
gests that distortions and medium effects may be simpler
to handle and that the scattering process may be more
sensitive to the nuclear interior. Estimates of the mean
free paths (MFP's) of the various probes support the lat-
ter assertion. For example, at a laboratory momentum of
700 MeV/c, the proton and the sr+ have MFP's of about
2 fm while the K+ MFP is roughly twice that value.

While K+-nucleus scattering experiments are still in
their infancy, their promise has been somewhat dimin-
ished by early results. In particular, there is a persistant
discrepancy between measured K+-nucleus elastic and
total cross sections and theoretical results based on mul-
tiple scattering models which are expected to be accurate
due again to the weakness of the K+lV interaction [8].

Data for K+-nucleus quasielastic scattering from C,
Ca, and Pb at a laboratory K+ momentum of 705 MeV/c
have recently become available [9, 10]. A preliminary the-
oretical analysis of the iqi= 300 and 500 MeV/c data for

C and Ca has already appeared along with the data
[9]. In the present paper, we extend those preliminary
calculations and focus on comparison with Ca(e, e')
data at ~qi = 500 MeV/c. In so doing, we make the
first attempt to realize the promise of K+ scattering to
provide nuclear structure information complementary to
that extracted from electron data. The remainder of this
paper is organized as follows: In Sec. II, we derive well-
known results for (e, e') quasielastic scattering so as to
establish a framework for treating K+ scattering which
is addressed in Sec. III. Section IV touches upon prob-
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lems associated with ambiguities in the forms of both the
eN and K+N on-shell elastic scattering amplitudes. Past
efforts to resolve the eN ambiguity are summarized and
a resolution for K+N is proposed. The theoretical treat-
ment of nuclear structure is outlined in Sec. V. Specific
calculations of electron and K+ cross sections and com-
parisons with data appear in Sec. VI where it is shown
that, due to details of the structure of the K+ quasielas-
tic cross section, the strong quenching observed for the
(e, e') Coulomb response does not appear for the K+ pro-
cess even though the latter is dominated by a contribu-
tion which is superficially very similar to the Coulomb
response. Section VII contains a summary of the present
work and our conclusions.

where m is the electron mass. Also,

W = ——Im IIEM(q, q; u))PV PV ~

is the electromagnetic response of the scatterer. For nu-
clear scattering,

IIE~(q, q'; ~)—:jd y e '~'" jd y' e+*~ '"

xII~EM(y y (u)

where the polarization insertion II~EM(y, y', ~) is defined
[11]via

IIEM(y, y') = —.(i~T[@(y)1'EM' (y) g(y')I'EM&(y')]~i)

II. FORMALISM
FOR ELECTRON-NUCLEUS SCATTERING

The discussion of electron scattering from nucleons and
nuclei presented in this section is considerably more de-
tailed than would seem warranted given that no new re-
sults appear. However, this detail is supplied so as to
provide a familiar context for developing our treatment
of K+ scattering which will be outlined in Sec. III.

The unpolarized e scattering differential cross section
in-plane wave Born approximation is

1= —) W p„u(pfsf)u(pfsf) p u(p, s;)u(p;s;)
8f 8i

= 1 1 2
ppp~ + 4 (q gg ~ q~q~)

Ef@~
(2)

1 4o. pv 3der —,E„WEM d pf,
Urel (g

where q = p, —pf = (w, q) and p, = (e, , p;), pf = (ef, pf)
are the initial and final electron four-momenta, respec-
tively, and the electron electromagnetic tensor is

e *""' "0 II" (y, y';or).

In these expressions, the nucleon electromagnetic current
operator is

r., "( f — ')-
2M

where M is the nucleon mass and P, (Pf) is the initial
(final) nucleon momentum.

We now consider e-nucleon scattering. It is useful to
recall the Lehmann representation of the polarization in-
sertion [11] which implies, e.g. ,

——Im IIEM(q, q; u)) = ) (Jy,.) Jf, h((u —Ef + E,),
f

where

Jf = d g 8 g I~M

For a single nucleon, Jf,. is readily evaluated and we find

where p =
2 (p; + pf) and, e.g. ,

WgM m h((u —Ef + E,) h~ ~ i, f." (N), (io)

u(p;, s;) =
I X(s;),

2ei ( ~;+~ )

where the Kroenecker b comes &om the box normaliza-
tion of the &ee nucleon wave function and where the nu-
cleon electromagnetic tensor is

f.""(N) = —) Tr I" u(Pf Sf)u(Pf Sf) I' u(P, S;)u(P;S,)
1

SyS,
G2 7GM pppv G2 ( 2 pv p, v)+ M4(&~ &&)EfE, 1+&

with P:—
2 (Pf + P;), 7—: q /4M = Q /4M— , and Sach's form factors GM = Fi + F2 and G@ = Fi —7.F2.

Then, in the initial nucleon rest frame, using p = ~pg,

do e; 4n
~ — . — 2(N) h( ' f + E' Ef) h .—,& —&' &fd&f.

dA lb p+ p q
i ~

Evaluating the integral at fixe scattering angle yields

de
dO&b

p
l.„„f." (N) —'

pf (E; + M) —efp, cosH
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where we now understand that pf &
E'f and Ef take on

their on-shell values in the final state.
For an infinitely massive structureless proton, 7 —+ 0,

Ef M M pf = p, , sf = e;, and Fi —+ 1, E2 + 0, which

implies G@, G ~ 1. In this limit,

m OM = 4 (1 —P sin 0/2),
4P2y2 sin 0/2

which is the Mott cross section. For ultrarelativistic elec-
trons, this expression becomes

and

E" (N) -+ g" g (14) o. cos 0/2
44e; sin 0/2

q = —q = —4p, sin 0/2.

We then have

For physical nucleons, i.e. , when no approximation to
E+"(N) is made, we find, for ultrarelativistic electrons,
the familiar result

do

dO)b I
i —2™I ~ M+2~G' t»'0/2 .

) 1+7 (18)

Next, we examine e-nucleus scattering. Using pe = ed', Eq. (1) yields, in the nuclear rest frame,

0 4Q' CiPf &f
P& EM (is)

Using the fact that q~WEM ——q WEM ——0 due to current conservation, we find

(2O)

For ultrarelativistic electrons this reduces to the familiar expression[12]

des/dA ( q
oM

I 2 I
WEM+

I 2 +t» 0/2
I 2WEM(2q2 ) (21)

in which we identify the Coulomb and transverse responses, namely, W~ ——WEM and WT ——2WEM, respectively. We
now observe that the expression for the ultrarelativistic eN cross section in the initial nucleon rest frame [Eq. (18)]
can be expressed as

ELO 0
(eN) = d(u (eN)

fixed angle

where

(22)

/Q'l 1+~, ( Q'
(eN) =crM b(ur —Ey+M) b~p~ I 2 I

G&+
I

2+tan 0/2
I

2 GM
d(d dO qq' y 1+ 2~ q2q' p 1+ 2&

Comparison with Eq. (21) allows us to determine the single nucleon electromagnetic responses

WEM ~ WEM(N) = b(w —Ey + M) b~ ~~ G@

WEM —+ WEM(N) = b(u) —Ey + M) b~ ~, GM.

(24)

These expressions also follow directly from Eq. (9) when applied to a free nucleon.

III. FORMALISM
FOR KAON-NUCLEUS SCATTERING

This section presents a treatment of K+N and K+-
nucleus scattering which emphasizes the relation to the
formulation of e scattering appearing in the previous
section. We begin by considering the (fictitious) scatter-
ing of a K+ which interacts only electromagnetically with
the scatterer. (Alternatively, we can think of the scatter-

1 4o.
der =, L„WE~M dspg

Urel
(26)

where now q = p; —pf, where p; and pf are the initial and
final K+ momenta and L„ is the K+ electromagnetic

I

ing of a "spinless electron". ) Using arguments analogous
to those which led to Eq. (1) in Sec. II, we find that the
K+ electromagnetic cross section is given in the plane
wave Born approximation by
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tensor given by
1

(I*+Iy) (&'+&Z)46f cq

1
IP I Iy''

E'y 6q
(27)

This expression is to be compared with the electron elec-
tromagnetic tensor, Eq. (2). DifFerences are clearly due
to the presence of "spin currents" in the electron case.

We now treat K+% electromagnetic scattering. It is
simple to show that, in analogy with Eq. (13),

(K+N-EM)
dO

L„E" (N) —*

(v')'
I)y(ey + M) —eyI) cyos 8

(2S)

For a massive structureless proton, we have

(K+N-EM)
dO i b 4P2y2 sin 0/2

(29)

which should be compared with the Mott cross section appearing in Eq. (16). (Since the limit of ultrarelativistic K+ s
is irrelevant for the measurements to be discussed below, we do not present the corresponding formulas. ) The K+
electromagnetic analogue to the e-nucleus double differential cross section appearing in Eq. (20) is

—m
~

'
~ ~ ~

WEM+ W' —~1+ ~W'

1 1 —e
, &~ Jg(q)

4ey~, q2
(31)

where now m is the K+ mass.
Our next task is to generalize this treatment to handle

hadronic interactions. For electromagnetic K+ scatter-
ing, the t matrix which leads to Eq. (26) is explicitly

where

and

Jj, + &i —Jy~, ~ f Jy;(q) ~

fora=s,
fora=@,m

where V is the box volume arising &om box normalizing
the &ee K+ wave functions and where the electromag-
netic transition current J&. is defined in Eq. (9). We next
write

~y, (~) = f d'y e""(fld'(y) ~ d (y)le),

with

—e2

, I~ J&, (q) ~&EM Jf (EM) +EM '=
m

—me 2

g2
r —= fora=s,

fora= p.

(32)

Clearly, the dynamics specific to electromagnetic scatter-
ing appear only in the quantity REM., the remaining fac-
tors are of a form appropriate to a general four-vector
current-current interaction. We propose that for K+
hadronic scattering, we should let

With these definitions, it is straightforward to show that
the hadronic K+ cross section analogous to the electron
and K+ electromagnetic cross sections of Eqs. (1) and
(26), respectively, is

1 1
Q 3I gW dye,

v~~& 4m

—"J~,. (EM) m X' Jg, +W' —"J~;, where the K+ hadronic tensor L g is defined as

where now a scalar interaction appears in addition to the
vector term. In this expression, Ts and Tv are complex
nuxnbers related to the K+% elastic scattering amplitude
in a manner to be established below and where the exact
definitions of J&,- and J&,- will be given shortly. It is plau-
sible that an interaction of this form —while, as will be
discussed below, not unique —is sufficiently general since
we know that an on-shell spin-0 —spin-1 j2 elastic scat-
tering amplitude can be completely specified at a given
kinematic point (including an irrelevant overall phase) by
two complex numbers. It is now convenient to introduce
the notation

(39)

x(y, y'; w),

where II ~(y, y': u) is specified by

(40)

and the hadronic response is defined via [compare with
Eq' (4)-(6)]

1
W "=——Im II (q, q;ur),

jr

II (eLq';le) =f d y e 'e'" jd y e+'e '" ll'
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tt'(y y') = -( l&[F (y)F'(y')]I )

0 OI
e i—~(y —y ) ttab(y yI. ~)2' (41)

and 1 (y) = g(y)F Q(y).
We now specifically consider K+N scat tering. In

Eq. (13) for electron scattering and Eq. (28) for K+K
electromagnetic scattering, we presented expressions for
the difI'erential cross sections in the initial nucleon rest
frame. It is straightforward to derive a similar expression
for the K+N hadronic cross section. A slight generaliza-
tion yields this cross section in a reference frame in which
the K+N relative motion is colinear but otherwise arbi-

lz+ml
dO (

where

2

= —) f u(PgSg)F u(P, S,)
SfS,

(42)

1 E
(43)

and where e and E are the K+ and N energies, respec-
tively, in the center-of-momentum frame. It is straight-
forward to show

trary. It will be convenient to have a formula for the
K+K hadronic cross section in the center-of-momentum
frame, namely,

f u(PtSt)F u(P;S, ) = u(PtSy) Es + P~ —u(P, S,)m

= ~'(St) [+(q) + i~-G(q)l ~(S')

where

1 E
+S~4' e+ E

1 E
+V~4' e+ E

and cr = a n, n —= (p; x pt)/lp; x p~l as well as

@+M Z M & ~ & Z M
E(q) = Wg 1 — cos0

l
+ —X~

l
1+ coso

l
+ X~

l
1+ cosl9

l2F E+ M ) m q E+ M ) 2mE q ) (46)

and

E —M
G(q) = Xs ——Wv-

2E m

E2 —M2
sin 0.

2mE

(47)

nucleus cross section in the nuclear rest kame is

d&dO h~~ 4K pq
(48)

We recognize I'"(q) and G(q) as the Wolfenstein ampli-
tudes for K+-nucleon scattering and take them &om
Amdt's SP88[13]K+-proton and K+-neutron phase shift
solutions. The above relations may readily be inverted
to find Ws and Tv or, equivalently, Ts and Wv.

We finally investigate K+-nucleus scattering. In anal-
ogy with Eq. (19) for e-nucleus scattering, the K+-

Using q~tV" = q lV" = q~R "' = 0 which follows
from the assumption that the baryon current is con-
served and also using TV~' = W'~, we can evaluate
I b~ b to obtain —in analogy with Eq. (20) for e-nucleus
scattering and Eq. (30) for K+-nucleus electromagnetic
scattering —the following K+-nucleus hadronic cross sec-
tion:

1 pf
16' 2 p,. 2m y gq') q'

f12
+2Re(W,'XP)

l

'~ ' l, W'
2m )

—
i
1+ iW )4m')

(49)

This is the main result of Sec. III. We note that two new
responses, namely, W" and TV ', which were not present
for the electromagnetic processes, enter in the hadronic
cross section.

We finally observe that, for a single nucleon, the
hadronic responses TV and W are given by the cor-
responding single-nucleon electromagnetic responses of
Eqs. (24) and (25) in the limit that I"q -+ 1 and E2 ~ 0
or, equivalently, G~, G~ ~ 1. Furthermore, it is

l

easy to show that, in the initial nucleon rest frame,
W" = W' = W = (1 + w)/(1 + 2w) for a single nu-
cleon.

IV. ON-SHELL AMBIGUITIES
FOR PRO JECTILE-NUCLEON INTERACTIONS

The expression for the electromagnetic current of a free
nucleon [Eq. (9)] contains the matrix element of the nu-
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clean electromagnetic current operator, I'gM [Eq. (7)], evaluated between free nucleon Dirac spinors. Using the Gordon
decomposition, we may write

u(PX St) I'EM u(P' Pf) = u(Pj Sf) I'EM(() u(P &X) (50)

where

with

I's(() —= (E2—, +v(() —= R+ V'2

and where ( is arbitrary. In reference ta the Dirac char-
acter of the operators in the three terms (as opposed
to their I.orentz character which is of course vectorial
on all three cases), we have identified the first through
third terms as "scalar, " "vector, " and "tensor, " respec-
tively. We may then transform to three distinct on-shell
equivalent forms of I'EM each containing only two terms
according to

(=0
(=1

( — Qi jp"2

VT,
VS,
ST,

where, e.g. , "VT" means that only vector and tensor
terms are present. [Note that, in evaluating the &ee nu-
cleon electromagnetic tensor, E""(N) of Eq. (11), it is
most convenient to employ the VS (or ( = 1) form of
I'EM(().1

The impulse approximation used in Sec. II to evalu-
ate the nuclear (e, e') cross section does not in and of
itself prescribe which representation of I'gM(() to use.
This well-known ambiguity is problematic since as soon
as the nucleon wave functions are modified by the nu-
clear medium, the various forms of I'EM(() are no longer

equivalent. Put another way, if we define the generalized
electromagnetic response WgM(() just as in Eqs. (4)—(6)
except that I'EM(() is employed in Eq. (6), we find that
WEM(() is not generally independent of (. This repre-
sents an important qualification of the oft-repeated state-
ment that the nuclear electromagnetic interaction is well
understood. (There are, of course, any number of other
eKects which can modify the in-medium electromagnetic
interaction; we are at present restricting our attention to
the ambiguities inherent in the impulse approximation. )
It is worth noting that the ( dependence of electromag-
netic observables is especially strong in the relativistic
model of nuclear structure we will employ and which is
outlined in Sec. V. A definitive resolution of the ( ambi-
guity awaits a dynamical description of nucleon structure
and how it is affected by the nuclear environment. We
do not, of course, propose to solve that problem here.
Indeed, we simply adopt the VT or ( = 0 form of I'gM(()
according to "conventional wisdom" [14].

Since the treatment of K+-nucleus scat tering pre-
sented in Sec. III is also based on the impulse approx-
imation applied to the underlying K+N interaction, it
is plagued by its own on-shell ambiguities. In the ex-
pression for the center-of-momentum frame K+N cross
section [Eq. (42)], we find the free nucleon matrix element

f u(PyS~) I' u(P;S, ) =u(PySf) Xs 1+Xv—u(P;S;)

= 6(P/Si)(X (() i i —5" Xv(() Y" + iXg (i) )u(P~S~)p~ o ""(Pf —P, )
m 2M (53)

where

&s(() —= &s+ V=v
pP

&v(() = (1 —()&v, &T(() = (&v (54)

(=0
(=1

mM)

VT,
VS,

ST.

[We note that, by choosing the VT form of the K+K in-

and ( is again arbitrary. We have once more identified
Dirac scalar, vector, and tensor terms and may also de-
fine scalar, vector, and tensor forms of the interaction
according to

I

teraction, K+ hadronic scattering becomes, in the plane
wave Born approximation, formally identical to the (fic-
titious) K+ electromagnetic process discussed in the be-
ginning of Sec. III.] As will be discussed in detail below,
K+-nucleus cross sections show some sensitivity to the
form of the K+N interaction. Since there is no "con-
ventional wisdom" to guide our choice as there was for
electron scattering, we must appeal to a dynamical model
of K+N scattering for help in resolving the an.-shell am-
biguity.

We turn specifically to the meson exchange model of
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K+K scattering developed by the Bonn group[15] along
the lines of their model of the NN interaction. This
model has as its input parameters meson masses, K+-
meson and N-meson coupling constants, and form fac-
tors. Certain of the interactions implied by these cou-
plings are iterated to all orders and the resulting phase
shifts are in good agreement with those determined by
experiment. For our purposes, we focus on the K+N
interactions mediated by the exchange of p, w, and (fic-
titious) o mesons. To proceed, we identify the T = 0
(isoscalar) and T = 1 (isovector) combinations of the
K+N elastic scattering amplitude. In terms of, e.g. , the
Wolfenstein amplitudes of Eq. (44), we define

cesses [e.g. , multiphoton exchanges in the case of (e, e')]
may be ignored. In this framework, all relevant nuclear
structure information is contained in the responses of the
nuclear target introduced in Secs. II and III to be dis-
cussed further in this section.

The response of the nuclear target will be calculated in
a relativistic random-phase approximation (RPA) to the
Walecka model. In the Walecka model nucleons interact
via the exchange of isoscalar scalar (0) and vector (u)
fields. The dynamics of the system is, thus, described in
terms of the Lagrangian density

2 = Q(i,P —M)g + —(0„$0"P —m. P ) — F„„F—""
1F =— —(F„+F„), 1 F ) (55) +g.444 —g 0v"4&p+ ~&, (56)

where F„(F ) is the K+-proton (K+-neutron) ampli-
tude. The isoscalar and isovector pieces of Ts and Tv
then follow as described at the end of Sec. III. For N = Z
targets, the K+-nucleus cross section is simply the sum
of T = 0 and T = 1 contributions given by Eq. (49) with
diferent T"s and R' 's for each isospin.

In the Born approximation, p exchange contributes to
the isovector amplitudes while ~ and o exchange con-
tribute to the isoscalar amplitudes. Since the pN cou-
pling has a vector-tensor Dirac character (with the tensor
component dominant), the Born isovector amplitude gen-
erated by p exchange has a VT [or, referring to Eq. (52),
a ( = —X~/(Xv "~)]form. Numerically, the p exchange
Born amplitude predicted by the Bonn model at the kine-
matic point appropriate to the lql = 500 MeV/c K+-
nucleus data, namely, p; = 705 MeV/c and oi b = 43'[9,
10], is qualitatively consistent with the empirical ampli-
tude [13] we employ. (Specifically, dominance of PT over
Pv is observed. ) Similarly, since the cuX coupling is as-
sumed to be purely vector, the Born isoscalar amplitude
due to 0 and u exchange has a VS (or ( = 0) form.
Again, the Born amplitudes &om the Bonn model are
qualitatively consistent with the relevant empirical re-
sults. Specifically, it is observed that Tp and T~ are of
opposite signs (the scalar interaction is attractive) and
are nearly equal in magnitude.

The arguments presented above are clearly only sug-
gestive. While we have argued that the form for the
K+N interaction employing the VS representation for
the isoscalar amplitudes and the VT representation for
the isovector amplitudes is physically most plausible, we
will also show in the analysis to follow calculations which
utilize the VS representation for both the isoscalar and
isovector amplitudes.

where g, (g„) is the scalar (vector) coupling constant, M,
m„and m„are the nucleon, o-meson, and u-meson
masses, respectively, and g, P, and V" are the corre-
sponding field operators. The term bZ contains renor-
malization counterterms and the antisymmetric field-
strength tensor E~ has been defined by

F„=B„V —8 V„. (57)

11" (x, y) =
—,(ilT[J"(x)J"(y)] li) .
1

(58)

In a mean-field approximation to the ground state the po-
larization insertion can be written, exclusively, in terms
of the single-nucleon propagator G(x, y),

1II""(x,y) = —Tr [p"G(x, y)7"G(y, x)]

The nuclear ground state will be obtained in a rela-
tivistic mean-field approximation to the Walecka model.
In this case, the meson-field operators are replaced by
their ground-state expectation values. This approxima-
tion yields a set of Dirac single-particle states that are
determined self-consistently &om the equations of mo-
tion.

The one-body response of the nuclear ground state to
an external probe is fully contained in the polarization
tensor. The polarization tensor is a fundamental many-
body operator that can be systematically computed using
well-known many-body techniques (e.g. , Feynman dia-
grams). To illustrate these techniques we concentrate on
the vector polarization, for simplicity. This is defined
as the ground-state expectation value of a time-ordered
product of nuclear (vector) currents

V. NUCLEAR STRUCTURE

In this section we describe our nuclear structure model.
Throughout this paper we assume the impulse approxi-
mation to be valid. Hence, apart &om the ambiguities
addressed in the previous section, the in-medium e N
and K+N couplings are entirely determined &om on-
shell data. Moreover, we assume that both sets of cou-
plings are small so that distortions and multistep pro-

The nucleon propagator contains information about the
interaction of the nucleon with the average mean field
provided by the nuclear medium. Note that even if the
interactions are ignored, such as in a Fermi-gas descrip-
tion, the propagator would still be diferent than its &ee-
space value because of the existence of a filled Fermi sea.
This fact suggests the following decomposition of the nu-
cleon propagator:
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d(d
G(x, y) = e ' ( " lG(x, y; ur),

2K

G(x, y; ~) = GF (x) y; (u) + GD (x) y; (u) .

(60)

(61)

U (x)U (y) V (x)V (y)
GJ —E~ + Z'g M + E~ —Z'g

(62)
The Feynman part of the propagator, G~, has the same
analytic structure as the &ee propagator, namely, an-
tiparticle poles above the real axis, particle poles below
the real axis, and residues proportional to the single-
particle wave functions,

The density-dependent part of the propagator, GD, cor-
rects G~ for the presence of a filled Fermi surface. For-
Inally, one eÃects this correction by shifting the position
of the pole of every occupied state &om below to above
the real axis,

1
GD(x, y;(u) = ) U (x)U (y)

&F Ct) —E~ —Zg (d —E~ + 177

= 2xi ) b(~ —Ei+i)U (x)U (y) .
cx&F

(63)

(64)

The decomposition of the nucleon propagator into Feynman and density-dependent contributions suggests an equiv-
alent decomposition for the polarization insertion,

d(dII" (x, y) = e ' ( " lII""(x,y;u)),
2K

II" (x, y;cu) = II~~"(x, y;~) + II~ (», y;~) .

(65)

(66)

The Feynman part of the polarization, or vacuum polarization, II~, describes the excitation of nucleon-antinucleon
(NN) pairs,

OO g /

II~~ (x, y;u)) = —. Tr p"Gp(x, y;(u+(u')p"G~(y, x;(u')
i — 2K

(67)

Note that this contribution diverges and must be renor-
malized. A lowest-order calculation of the response, how-
ever, requires only the imaginary part of the polarization
insertion. In infinite nuclear matter, the threshold for
pair production is at q = 4M*2 ) 0 (M* is the effec-
tive nucleon mass in the medium). This timelike thresh-
old lies far away 6.om the spacelike region accessible in
electron and kaon scattering. Thus, a lowest-order de-
scription of the process is not sensitive to vacuum po-
larization. However, NN excitations can be virtually

I

I

produced. Hence, in a more sophisticated treatment of
the response (e.g. , the RPA) the effective coupling of the
nucleon to the probe can be modified by vacuum polariza-
tion. Indeed, it has been suggested that virtual NN pairs
play an important role in the quenching of the Coulomb
sum [17].

The density-dependent part of the polarization, IID,
is finite and can be organized in terms of three distinct
contributions,

II" (x, y; ) = II" (x, y;u) + II" (x, y; ) + II"" (x, y;v), (6S)

with each one of them of at least linear in GD,

rr" (x,y;~)=) U. (x)y"a ( , x; y+E!+i~)&.U. (y),
a&F

U~~(x, y;x) = ) U (y)y Gx(y, x;Ei+i —x)y"U (x),
cx&F

U.(-)."U. (*) U. (.). U-(y) ~(-+ E.'" —E!")
a&F a'&F

(69)

(70)

(71)

The density-dependent part of the polarization describes the traditional excitation of particle-hole pairs. A spectral
decomposition of the Feynman propagator, for II~~, is useful when discussing the spectral content of the polarization
(the Il~y term, with the opposite time ordering, contains the same physical information as II~D),

U ( )p"xUp( )Uxp(y)p" U (y) U (x)p"Vp(x)Vp(y)p"U (y)

xxx tx —(E& —E+) +i@ w+ (Ex +E+) —iq
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The first term in the sum represents the formation of a
particle-hole pair after the system has absorbed (e.g. , a
photon carrying) energy a. Note, however, that some
of these particle-hole transitions should be Pauli blocked
since the Feynman part of the propagator includes an un-
restricted (P) sum over all single-particle states. The role
of II~~ in the present formalism is, precisely, to enforce
the Pauli principle. Note that since the Feynman part
of the propagator will be evaluated nonspectrally, these
Pauli-forbidden transitions cannot be simply removed by
hand.

The density-dependent part of the polarization con-
tains, in addition to particle-hole pairs, a contribution
that has no nonrelativistic counterpart. This contribu-
tion is contained in the second term of the sum and rep-
resents the Pauli blocking of NN excitations. Recall that
the Feynman part of the polarization insertion represents
the unconstrained excitation of NN pairs. At finite den-
sity, however, some of these excitations should be Pauli
blocked.

It is important to note that the inclusion of antinucleon
degrees of &eedom is not an unnecessary complication. If
one is satisfied with computing the lowest-order, or un-
correlated, nuclear response, then a "nucleons-only" ap-
proximation is certainly justified. If, however, one wishes
to examine the role of correlations by means of an RPA
response, then one is forced to include antinucleon de-
grees of &eedom in order to satisfy fundamental physical
principles such as gauge invariance.

Traditionally, relativistic calculations of the nuclear re-
sponse have been carried out using two mean-field ap-
proximations to the Walecka model. In mean-Geld. theory
(MFT) the Feynman contribution to the single-particle
propagator is neglected &om the calculation of the nu-
cleon self-energy. In contrast, one incorporates the ef-
fect from the (full) Dirac sea in the relativistic Hartree
approximation (RHA). For a mean-field ground state ob-
tained in the MFT approximation, it has been shown that
the consistent linear response of the mean-field ground
state is obtained by neglecting the Feynman part of the
polarization insertion. This consistency is reHected, for
example, in the proper treatment of spurious excitations
associated with an overall translation of the center of
mass. Notice, however, that in the MFT approximation
one retains the Pauli blocking of an (KN) excitation that
has not been included from the outset. It has recently
been shown that this approximation leads to severe in-

consistencies in the description of the effective ~-meson
mass in the nuclear medium[19]. Thus, in this work we
favor a RHA treatment of the scattering process in which
vacuum loops are included in both the description of the
ground state as well as in the linear response of the sys-
tem.

%'e start with a discussion of the density-dependent
contribution to the polarization. This contribution is fi-
nite and can be evaluated exactly in the finite system.
According to Eq. (69) we inust compute, self-consistently,
all occupied single-particle states and the Feynman part
of the propagator. The calculation proceeds by, Brst, cal-
culating a set of occupied single-particle states satisfying
the following Dirac equation

El+i p + i p . 8 —M —Z~ (x) U (x) = 0 . (73)

A Hartree calculation of the mean-Beld ground state
yields, in addition to the single-particle spectrum, the
self-consistent (scalar and vector) mean fields used to
generate the spectrum,

ZH(x) = Z, (x) + Z„(x)p (74)

Knowledge of the self-consistent mean Belds now enables
one to compute, nonspectrally, the Feynman part of the
nucleon propagator by solving the equation

(76)

where R, = —K, and we have introduced the spin-spherical
harmonics defined by

(x) = (x~li jm), l if/= j+lj2,
—l —1 ifl = j —lj2.

(77)

The Feynman part of the propagator can be, similarly,
written as a sum over partial waves,

+ip. O —M —Z~(x) GF(x, y;u)) = 6(x —y),
(75)

with the appropriate boundary conditions.
The evaluation of the polarization insertion, although

still highly nontrivial, gets simplified for the case of a
spherically symmetric ground state. In this case, one
can classify the single-particle states according to a gen-
eralized angular momentum K,

.(„,.) ) -~~ „(*, ;-)~-( )~.' ( ) -',",(-, ;-)~.-( )~ ( )~~
~W „E+'~21(*,V;~)X~-(x)X.' (y) a22(~, V;~)X=-(x)X~ (y))

(78)

II" (g, g'; ur) = d ze ' '

d ye' '"II" (x y~),
(79)

Once the bound-state orbitals and the Feynman propa-
gator have been determined, the evaluation of the polar-
ization tensor in momentum space,

becomes straightforward. The angular integrals are done
analytically, leaving two radial integrals to be performed
numerically. We stress that the procedure outlined. above
enables one to calculate the density-dependent part of the
polarization exactly in the Bnite system.

The Feynman part of the polarization, however, must
be calculated in a local-density approximation. To our
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knowledge, the renormalization of the divergent integrals
has never been carried out in the finite system. Thus, in
the present work we adopt the following form for the
Feynman contribution to the response:

IIp (q, q';tz) = f d z z '(z z )'((p (q, tz; M" (z)),
(8o)

where II~& (q, (t); M'(r)) is the renormalized vacuum po-
larization calculated in nuclear matter at an average mo-
mentum q = (q+ q')/2, and at a local value of the effec-
tive nucleon mass,

M*(r) = M+ Z, (r) .

The nuclear response will be calculated in a variety
of models and approximations. The most sophisticated
calculation that we will present involves calculating the
nuclear response in a relativistic random-phase approx-
imation (RPA) to the Walecka model. In the RPA one
incorporates many-body correlations through an infinite
summation of the lowest-order (or uncorrelated) polar-
ization. Due to scalar-vector mixing the RPA equations
form a set of 5 x 5 coupled integral equations

IIRpA (q, q'; ur) = II (q, q'; t()) + II '(q, k; cu) V,(t(k; ~)IIRpg (k q (d)
27r 3 (82)

D„(q) = ( g„„+q„q—„/m„') D(q),

D(q) = 1
—fA

(84)

where we have introduced latin indices a = (s, )(t) that run
over scalar and vector Lorentz structures, and a residual
interaction V b given by

V-s(q ~) —= V-s(q) =
I

(g,'b, (q) 0

gv gsv q )
Note that the &ee vector and scalar propagators have
been defined, respectively, by

I

In particular, this implies that the nucleon propagator is,
formally, indistinguishable from the free nucleon propa-
gator. The Feynman and density-dependent propagators,
which are the basic building blocks for the response, are
thus given, respectively, by

(:p().)=(t+ns), ', , (92)

G (~)=(t+M") *.~(v-z„)()() -~)
~)

(93)

where k~ is the Fermi momentum and we have defined

&(q) = 1

Q
—7Th

(86) k" =— (A: —g„V,k) . (94)

The RPA equations are solved for every spin and. par-
ity J by, first, performing the radial (k) integral us-
ing a Gauss quadrature scheme and then solving the re-
sulting matrix equation using standard matrix-inversion
techniques.

We conclude this section with a brief discussion of
the response of infinite nuclear matter. Due to the
translational-invariant character of nuclear matter the
previous discussion simplifies considerably. In a mean-
field approximation to the Walecka model the meson-field
operators are replaced by their classical ground-state ex-
pectation values which are constants in nuclear matter,

4 ~(4)—:4o,
V" m (V") —= g" V

(»)
(88)

M*—:M —g.yo, (89)

and effective nucleon and antinucleon energies which are
shifted by the presence of a constant vector field,

The ground state of the system is, thus, characterized by
a filled Fermi (and Dirac) sea of nucleons with an effective
mass M* determined self-consistently from the equations
of motion,

From the nucleon propagator it is simple to construct the
lowest-order nuclear response

'll~" (q) = Tr p"G(k+ q)p G(k)

A tr= d re ' lp(r), (96)

1
PefF = ~eR'

ds zrt (t)) 2
( )

— P'2k3" —
3~2 '

where o is the elementary projectile-nucleon total cross
section and t(t)) is the nuclear-thickness function defined
by

As before, the polarization contains a divergent Feyn-
man component that must be renormalized, and a finite
density-dependent contribution that describes particle-
hole excitations and the Pauli blocking of %% pairs.
From this lowest-order polarization one computes the
correlated response by solving the RPA equation which
becomes, in nuclear matter, a simple algebraic equation.

The only ingredients that remain to be specified are
the effective number of nucleons and for nuclear matter
calculations the average density at which the scattering
occurs. These quantities are determined from eikonal
formulas that read

E~ = E~ + g V(+)

Ei', = Qk2 + M"2 .

(»)
(9I) z(b) = f dz p(z) .
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From the effective density a self-consistent nucleon mass
M' is determined [16] which then serves as input for the
calculation of the various nuclear responses per nucleon.
These responses are subsequently scaled by the effective
number of nucleons, A ~, and then compared to experi-
ment. In the case of e -nucleus scattering we ignore the
small electromagnetic distortions (i.e. , assume o = 0)
and compute, for Ca, A g ——40, k~ ——1.13 fm
and M*/M = 0.81. The equivalent expressions for
K+-nucleus scattering (where the isospin-averaged total
cross section is a = 14.12 mb) become A, ir = 16.06,
ky = 1.04 fm, and M'/M = 0.84. (Note that we use

ezperimentatty determined [9, 10] values of A,@ to nor-
malize the K+ quasielastic calculations to be presented
below. The reason for the discrepancy between our
eikonal estimates and the experimental value of A,g 21
is not understood at present. )
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VI. RESULTS

We begin our comparison of e and K+ quasielastic
scattering by presenting calculations of the longitudinal
(or Coulomb) and transverse (e, e') responses for 4 Ca at
~q~

= 500 MeV/c in Figs. 1 and 2, respectively. The
data are from Ref. [1]. All calculations are based on
the relativistic Hartree approximation (RHA) to quan-
tum hadrodynamics (QHD) as described in the previous
section and thus include effects due to polarization of
the nucleon sea at the one-loop level. We show both nu-
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FIG. 2. Same as Fig. 1, but for the transverse (e, e') re-
sponse ST .
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FIG. 1. The longitudinal (e, e') response Sl. for Ca at
~q~ = 500 MeV/c. Data are from Ref. [1]. RHA nuclear
matter (NM) and finite nucleus (FN) calculations without
(Har) and with (RPA) RPA correlations as described in the
text are shown.

clear matter (NM) and finite nucleus (FN) calculations
without (Har) and with (RPA) RPA correlations. Figure
1 clearly shows the dramatic quenching of the longitu-
dinal response due to the RPA which results in reason-
able agreement with experiment. As explained in, e.g. ,
Ref. [17], this quenching is most readily interpreted as
a screening of the nucleon charge due to polarization of
the nucleon sea. The magnitude of the quenching is com-
parable for NM and FN calculations but an acceptable
description of the shape of the measured response evi-
dently requires inclusion of finite nucleus effects. Figure
2 compares our calculations with the measured trans-
verse response. Since, as for all calculations reported
here, we have included isoscalar correlations only, the
differences between Har and RPA results are small for
this predominantly isovector response. Good agreement
with experiment is found for the low-energy side of the
quasielastic peak, especially for the finite nucleus calcu-
lations. The underestimation of transverse strength on
the high-energy side of the peak, believed to be domi-
nated by isobar formation and meson exchange currents,
is a common shortcoming of most "one-nucleon" models
such as ours.

Comparable calculations are displayed with the K+
data [9, 10] in Figs. 3 and 4 where we employ the VS
and mixed VS (for T = 0) and VT (for T = 1) represen-
tations, respectively, for the K+K t matrix as discussed
in Sec. IV. In Fig. 3 the calculations are normalized
using A g = 21 which is the mean value extracted &om
experiment [9, 10]. The calculations appearing in Fig.
4 use A,g = 24 which is the experimental upper limit.
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FIG. 3. The K+ quasielastic cross section for Ca at
p~ = 703 MeV/c and Hi b = 43'. The data are from Refs. [9,
10]. RHA nuclear matter (NM) and finite nucleus (FN) calcu-
lations without (Har) and with (RPA) RPA correlations and
employing the VS representation of the K+N amplitude are
shown. The calculations are normalized using A,g ——21, the
centroid of the experimentally determined range of A,~ for

Ca [9, 10].

The agreement between our most complete calculations,
namely, those labeled FN(RPA), and the data is excel-
lent although the VS calculations reproduce the overall
magnitude of the measured cross sections slightly better
than the mixed VS-VT results which slightly underesti-
mate the measurements. We note that, while the simple
mass M Fermi-gas result reproduces the observed peak
K+ quasielastic cross section of 0.24 mb/sr MeV using
the eikonal value of A g ——16, its accounting of the shape
of the cross section is poor. In particular, the mass M
Fermi-gas cross section peaks at u —85 MeV and drops
too rapidly at high u, vanishing at u 210 MeV. For
this reason, the mass M Fermi-gas calculations must be
considered inadequate regardless of normalization. Re-
turning to the full calculations, we see that two difFer-
ences relative to the (e, e') calculations are immediately
apparent. First, NM and FN calculations are much more
alike for K+ than for (e, e'). Second and more striking is

FIG. 4. Same as Fig. 3 except that the mixed representa-
tion of the K+N amplitude is used and that the calculations
are normalized using A,g ——24, the upper limit of the exper-
imentally determined range of A,s for Ca [9, 10].

the fact that RPA efI'ects are relatively small for the K+
cross sections in contrast to the large quenching they gen-
erate for the (e, e') longitudinal response. This difference
is even more surprising since the K+ cross section is dom-
inated by "longitudinal" contributions [i.e. , by terms in
Eq. (49) not involving Wii] which are closely related to
the (e, e') longitudinal response. We will show that this
diff'erence arises from a subtle interplay of kinematic and
relativistic nuclear structure efI'ects. In the course of this
discussion, we will see that the lack of strong quenching
in K+ quasielastic scattering is quite remarkable since
the additional "longitudinal" responses appearing in Eq.
(49), namely, W" and Wo', are quenched even more
than W to which the (e, e') longitudinal response is
most closely related.

To understand the important physical contributions
which determine the (e, e') longitudinal response and the
K+ quasielastic cross section, we focus on Eq. (49), our
plane wave expression for the latter. With this formula
as our starting point, we can define
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where W—:jd(u W R ' = W '/W R"
W-/W", and

and

B' —+o. (105)

ei+ef Q 2

2m q2
(1oo) Then, because R" = (R ') is an excellent approxima-

tion, we have

The L subscript indicates we have dropped all transverse
(i.e. , oc Wii) contributions, retaining only "longitudinal"
terms. We furthermore consider only isoscalar (T = 0)
contributions since it is here that strong RPA correlations
appear. These restrictions are intended to simplify the
analysis by focusing exclusively on the physics of greatest
interest. We recall that the isoscalar Coulomb response
is roughly half of the full response. To assess the relative
importance of the longitudinal isoscalar contribution to
the K+ cross sections, we observe that, for K+N scat-
tering from a free nucleon, the longitudinal T = 0 and
T = 1 contributions are 0.999 and 0.017 mb/sr, respec-
tively, while the corresponding transverse contributions
are 0.120 and 0.210 mb/sr. This shows that the longitudi-
nal isoscalar contribution accounts for about two-thirds
of the total. Thus the isoscalar longitudinal contribu-
tions to which we temporarily restrict our attention for
the sake of simplicity are very significant components of
the measured e and K+ quantities.

I et us now consider the specific case of K+ scattering
from a free nucleon of mass M originally at rest. Then
Eq. (99) can be expressed as

~1. = ~L, vp2 f(n2),(p) (1o6)

where oL is now equal to the integrated uncorrelated
nuclear matter cross section per nucleon obtained. from
the cross sections designated in Figs. 3 and 4 by NM
(Har).

Finally we consider the effects of the RPA. With

and

w" p 1 + 27p
(107)

B"~o. '
)

we find

= ~i ~Ps f(ns)RPA (p)

(1o8)

(109)

where crl is equal to the integrated uncorrelated nu-

clear matter cross section per nucleon designated in Figs.
3 and 4 by NM (RPA). We also observe that the uncorre-
lated integrated longitudinal (e, e') response per nucleon,
i.e. , the uncorrelated Coulomb sum per nucleon, is given
by

(p) 1 +7p / /
o-I. -+ 0.~ = Kp 1&v + +sl1+ 2vp

(1o1)
1+ 2&p

where we have used the fact [Eq. (24)] that W
W ' = W" = (1 + 7p)/(1 + 2&o) which also implies
B ' = B"= 1. In this expression we have also defined
Kp = 1/16m x yf/P, and 7p = Q /4M and have rede-
fined gv, all at the particular kinematics of this specific
case.

We now modify this situation by letting M + M*.
Since the kinematics change, we define

t'~;+ef Q* l
2m q2 j

( . + (o) Q(o)

2m q )
1+7*
1+2~*

1 + Tp

1 + 27p

and

(p)
7 —nit f/S f

(1o2)

= ~L, ~pi f (ni).(p)* (p)

Next we let kF g 0 and write

oo p
1 + wp

1+2'

(103)

where now the "starred" quantities refer to the new kine-
matics of the M ~ M* case while the "zero" desig-
nation is for the mass M kinematics. We still have
B ' = B"= 1 and can write

Its correlated counterpart is

~RpA p i&
1+~p

~~' E1+ 2~, )
The point of this formulation is that, by examining the
numerical values of p, n, , and P, as well as the behav-
ior of f (n), we can understand the physical relationships
between the K+ cross section and the longitudinal (e, e')
response.

In pursuit of this understanding we first determine that
p = 0.85 for p; = 700 MeV/c and M*/M = 0.81 which
is the self-consistent nuclear matter value for the average
density of Ca. (Note that, because of K+ absorption
in the nuclear medium, we should use the slightly larger
value of M*/M appropriate to the lower average den-
sity at which the K+N interaction occurs for quasielas-
tic scattering. However, differences are small and we use
the overall average density of Ca, which is appropriate
for electron scattering, in both cases so as to facilitate
the following comparisons. ) It remains to establish the
behavior of the P, and the n; or, more relevantly, the
values of f (n;) as we include the effects of (i) M* g M,
(ii) kp g 0, and (iii) RPA correlations. These behaviors
are summarized in Fig. 5 where we plot p;, f(n, ), and
o'r, /01, = pp; f(n, ) as they evolve from cases (i)—(iii).
We see that M* g M causes only a very small change
in P. Hence, the ratio of the corresponding Coulomb

sums, SL /8L ——Pi, is nearly unity which implies that(p)* (p)

changing M* from M, by itself, has very little conse-



COMPARISON OF K+ AND e QUASIELASTIC SCATTERING

1.4

1.2

t.o i

/
/

/
/

/

/
/

/
/

/
/

/
/

/
/

/

/

0.8

0.6
M M*

I

k, w0 RPA

quence for electron scattering. The effect on the inte-
grated K+ quasielastic cross section is appreciable, how-
ever; we find f (o.i) = 0.87. This large effect is traceable
to the delicate cancellation between the first two and the
third terms of Eq. (49) and the changes in the kine-
matic factors multiplying these terms brought about by
M' f M. Overall, taking into account the effect of p,
the K+ cross section is reduced by 0.73 simply by letting
M*/M + 0.81.

We next examine the effect of k~ g 0. The P factor
does not change as the Coulomb strength is merely re-
distributed. However, now R ' g 1 due to the Lorentz
contraction of the scalar density and in consequence the
delicate cancellation alluded to above is somewhat al-
tered. We find f(n2) = 0.93 and the uncorrelated K+
cross section goes up slightly so that O'I /O'I ——0.78.(o)

We finally consider the infIuence of the RPA correla-
tions. As shown in Fig. 5, they cause P to drop dramati-
cally to 0.61. This just refIects the strong RPA quenching
of the Coulomb response which, as mentioned above, is
a well-known feature of the RHA RPA [17]. We further
observe that B ' goes &om 0.978 without correlations to
0.84 with them, which means that the summed responses
R' ' and W" are quenched even more strongly by the
RPA than is R' . Indeed, W" is reduced by a factor of
0.46. This would seem to imply a strong quenching of the
K+ cross section. However, as is evident in Fig. 5, such

FIG. 5. The evolution of the integrated longitudinal
isoscalar K+ cross section per nucleon is shown for (i) a sin-
gle nucleon of mass M initially at rest, (ii) a single nucleon of
mass M* = 0.81M initially at rest, (iii) a Fermi gas of nucle-
ons of mass M' = 0.81M and Fermi momentum k~ ——1.13
fm, and (iv) a system like (iii) except with RPA correla-
tions. See discussion in text.

is not the case because f(ns) = 1.38, an increase which

ofFsets the RPA quenching to the degree that 0& /0&
drops only from 0.78 to 0.71 (i.e. , by a factor of 0.91)
when RPA efFects are included. The large increase in
f (n) in this case is due to the large reduction in B ',
that is, due to digjerential quenching of timelike vector
and scalar contributions in the RPA. If no such differen-
tial quenching were present, a& /cr& would necessarily( ) (o)

decrease like P, i.e. , like the Coulomb sum. As the dis-
tinction between scalar and vector contributions is purely
relativistic, it is hard to see how nonrelativistic models
of nuclear structure could simultaneously account for the
strong quenching of the Coulomb sum and the absence
of quenching in the K+ quasielastic scattering cross sec-
tion in a manner as natural as for the present relativistic
model.

The preceding analysis is based on a number of sim-
plifying assumptions which can be tested, e.g. , by com-
paring with the results of more complete nuclear matter
calculations which, as we have already established, are
quite consistent with the full finite nucleus results. Fig-
ure 5 compares the ratio of the integrated nuclear matter
cross sections, labelled "NM, " with the 0&~')//Tz~) ratio
discussed above. The agreement is good enough to in-
spire confidence in the simplified analysis.

Overall, we find that the full integrated RHA-RPA K+
quasielastic cross section per (efFective) nucleon which in-
cludes isoscalar transverse as well as isovector contribu-
tions is reduced from the (isospin-averaged) K+K cross
section. For the VS representation of the K+K ampli-
tude, the reduction factor is 0.94 while for the mixed
representation the factor is 0.82. These differences are
clearly due to the different behavior of the isovector con-
tributions, namely, that they are appreciably enhanced
by M ~ M* in the VS representation but little changed
in the VT representation. By comparison, the full inte-
grated RHA-RPA Coulomb response per nucleon is re-
duced from the isospin-averaged single-nucleon value by
a factor of 0.76. Clearly, while the K+ reductions are
less than for the Coulomb, they are not dramatically dif-
ferent, especially when the mixed representation is used
for the former. However, it is important to observe that
the reduction of the K+ cross section is not due just to
the quenching of the underlying responses but depends
also on the interference effects discussed above. Most
importantly, if it were not for the differential quench
ing of scalar versus time like vector contributions which
emerges naturally in our relativistic model of nuclear
structure, the reduction factor for the K+ cross section
would be much smaller and therefore inconsistent with
the K+ quasielastic data. As it is, we have a gratifyingly
accurate and consistent description of both the K+ and
(e, e') data.

VII. SUMMARY ANI3 CONCLUSIONS

We have formulated a treatment of K+-nucleus
quasielastic scattering in a manner which parallels as
closely as possible more or less standard treatments of
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e -nucleus quasielastic scattering. The latter depends in
a straightforward way on the Coulomb (or longitudinal)
and transverse nuclear responses which in turn are of
great importance in understanding essentials of nuclear
structure. We have shown that in the present formu-
lation K+ quasielastic scattering depends on these same
Dirac vector and tensor nuclear responses as well as addi-
tional ones containing Dirac scalar contributions. Thus,
in principle, K+ quasielastic data can supplement and
extend structure information extracted from the electron
data and perhaps shed light on important issues such as
the strong quenching of the Coulomb sum [1—3].

Our treatment of the underlying K+N interaction re-
lies on the impulse approximation and we have been care-
ful to spell out the connection between the K+N am-
plitudes appearing in our expression for the K+-nucleus
quasielastic cross section, Eq. (49), and K+N phase shift
solutions [13]. We have also briefly summarized problems
associated with on-shell ambiguities in the form of the
e N amplitude [14] and have indicated how these prob-
lems carry over to the form of the K+N amplitude. We
rely on a meson exchange model of the K+N interaction
[15] to justify a specific form of this interaction expressed
as a "mixture" of Dirac vector and scalar invariants for
the isoscalar channel and vector and tensor invariants for
the isovector channel.

Our nuclear structure model is based on quantum
hadrodynamics, a successful relativistic phenomenology
of nuclear dynamics. We specifically focus on the rela-
tivistic Hartree approximation [16] and the RPA based on
it [17,18]. This treatment takes into account the polariza-
tion of the nucleon sea in a one-loop approximation and
in so doing provides a unique mechanism for quenching
the Coulomb response which is found to be in reasonable
accordance with experiment. We have given a thorough
discussion of both full finite nucleus and nuclear matter
calculations of the nuclear responses in the RHA RPA.
We also have indicated how to fix the effective nuclear
densities and M*/M values for the nuclear matter treat-
ment of K+ quasielastic scattering which is complicated
by the absorption of the K+ scattering waves.

We have compared our calculations with the Coulomb
and transverse responses for Ca at [q] = 500 MeV/c
[1]. We reproduce the low-u side of the transverse re-
sponse quite well, but, as is typical of "one-nucleon"
models such as ours, we underestimate the response
on the high-u side, presumably due to the omission

of meson-exchange-current and L-isobar effects. RPA
effects strongly quench the Coulomb response relative
to the uncorrelated results and bring about reasonable
agreement with the data. This quenching can be inter-
preted as a screening of the nucleon charge due to polar-
ization of the nucleon sea. Finite nucleus effects appear
to be important in reproducing the details of the shape
of the measured Coulomb response.

We have also shown similar calculations for the new
4oCa(K+, K+ ) data at the same momentum transfer [9,
10]. Here the quenching due to the RPA is much less
than for the Coulomb response and differences between
finite nucleus and nuclear matter calculations are smaller.
Agreement of the full RHA-RPA calculations with the
measured cross sections is very good although the calcu-
lations slightly underestimate the data when the "mixed"
representation of the K+N amplitude is employed.

We have gone on to explain why the RPA quench-
ing of the K+ cross section is so much less than what
is observed for the Coulomb response, a phenomenon
which is all the more surprising given the dominanance
of the "longitudinal isoscalar" contribution in the former
which is where RPA effects occur in our model. The
situation becomes even more puzzling upon observing
that the new responses containing scalar contributions
which arise in the case of K+ scattering [see Eq. (49)]
are even more strongly quenched than the Coulomb re-
sponse. However, careful analysis shows that this dif
ferential quenching of responses alters a sensitive can-
cellation in the expression for the K+ cross section in
such a way that the cross section is only slightly reduced.
The situation is qualitatively unchanged for the full K+
quasielastic cross section which also includes transverse
isoscalar and isovector components. We note that the
phenomenon of differential quenching is purely relativis-
tic in origin and that, without it, the calculated K+ cross
sections would be much smaller and in strong disagree-
ment with experiment. We have concluded that our rela-
tivistic model of nuclear structure provides a gratifyingly
accurate and consistent description of both K+-nucleus
and e -nucleus quasielastic scattering.
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