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Angular distributions following three-nucleon pion absorption
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We present an analysis of the energy and angular distributions of nucleons following three-nucleon
pion absorption. Three-nucleon absorption is treated as a one-step process whose transition matrix
element is constant with respect to the energy of the anal state nucleons. The inclusion of partial
wave amplitudes for incident pions of angular momentum less than two shows good agreement with
the experimental data in the delta-resonance region.

PACS number(s): 25.80.Ls

Pion absorption on light nuclei is believed to proceed
primarily through a mechanism in which a T = 0 nu-
cleon pair is involved coherently, while the other nucle-
ons behave as spectators. Although the quasideuteron
absorption channel accounts for a large fraction of the
total absorption cross section, it cannot explain all of the
strength of absorption, particularly in heavy nuclei. The
status of pion absorption studies can be found in recent
review papers [1—3].

The next simplest absorption channel is one in which
three nucleons participate in absorbing the momentum
and energy of the pion. There are two useful limits one
can consider in the description of these three-nucleon ab-
sorption events. The first limit is that absorption takes
place as a two-step process. Two-step processes are those
in which the pion is absorbed on a quasideuteron pair and
an additional nucleon is involved either through a pion-
nucleon interaction prior to absorption [initial state in-
teraction (ISI)], or through a nucleon-nucleon interaction
after pion absorption [final state interaction (I SI)]. Up
to now there has been no clear quantitative evidence for
the existence of such processes in pion absorption in light
nuclei. Nevertheless, several calculations have in differ-
ent ways modeled multinucleon absorption processes as
a two-step process [4—10].

The second limit, which is the one which we consider
here, is that all three nucleons participate coherently in
the absorption. No characteristics of the individual nu-
cleons in the three-nucleon system are important and the
process is reduced to the interaction of a pion with the
nucleus or the group of nucleons as a whole. In our previ-
ous papers, in this limit, we examined the effect of isospin
on the ratios of observed three-nucleon absorption cross
sections as well as the energy dependence of the cross
sections [11,12]. In this paper, we calculate the expected
angular distributions of final-state nucleons emitted af-

ter three-nucleon pion absorption, with the assumption
that the matrix element is constant. This assumption is
consistent with the observed phase space energy distribu-
tions found in three-nucleon pion absorption experiments
on sHe [2].

We will restrict ourselves to the results of experiments
which measure pion absorption on three-nucleon targets.
The most recent kinematically complete experimental re-
sults on three-nucleon absorption in sHe [13—19] and sH

[20] agree that the contribution of 3% absorption pro-
cesses to the total absorption cross section is significant
and on the order of 30% for energies in the A-resonance
region.

Studying three-nucleon targets is advantageous be-
cause one eliminates the effects of interference &om other
possible multinucleon absorption channels. The restric-
tion to a three-body system also simplifies matters by
allowing one to analytically decompose the cross section
into a kinematical factor which includes angular momen-
tum, and a dynamical factor, the matrix element [21].
This is in general not possible for N-body systems with
N & 4. In these cases, one must treat the angular mo-
mentum as part of the matrix element [22,23].

In our treatment we factor the angular momentum out
of the transition matrix and include it with the phase
space factor as a kinematical factor. Our kinematical
factor consists of the product of the phase space factor
and the angular momentum factor, and what remains in
the transition matrix is the dynamic component of the
cross section.

The differential cross section for the pion absorption
reaction,

~+ (3K) ~ K, + K, + N„

is given in the helicity representation by the expression
[24]
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where the expression in brackets represents the S ma-
trix corresponding to reactions starting with a pion and

0556-2813/95/51(2)/797(6)/$06. 00 797 1995 The American Physical Society



798 NEVEN SIMICEVIC AND ARTHUR MATEOS

a three-nucleon system, and ending with three individ-
ual nucleons in a given anal state, and dp3~ is the in-
variant three-nucleon phase space volume. piAi, p2A2,
and p3A3 are the four-momenta and helicities of the final
three nucleons, p A and p3~A3~ are the four-momenta
and helicities of the initial pion and three-nucleon sys-
tem, and p is the momentum of the incoming pion. Us-
ing momentum and energy conservation, the invariant
three-nucleon phase space volume is a function of five
independent variables and can be written as

form the angles Pi, ei, and Pi 2 to the Euler angles n, P,
and p. We have chosen the z axis of our system to be the
direction of the incident pion, and the Euler angles such
that n and P correspond to the aziinuthal and polar an-
gles between the z axis and the direction of momentum
of an arbitrarily chosen final-state particle (the z' axis).
The angle p represents an arbitrary rotation around the
z' axis. The transformation between the Euler angle rep-
resentation and the angular momentum of a system is
given by the standard D matrix

dps~ = dEidE2dgidcos(gi)dpi 2,

where Oi and Pi are the polar and azimuthal angles of
pi, and (t i 2 is the azimuthal angle between pi and p2.

In the case of an unpolarized beam and target, with
no measurement of the final polarization, after averaging
over initial and summing over final helicities and replac-
ing A by its value 0, the expression becomes [24—26j

4'
dO'2~ =

2 (2ssN + 1)

X ) ).1&pi Ai p2A2psAs IS(W) IAsiV) I'd psN &

Ag, A2, Ag Ag~

(4)

where 83N is the spin of the three-nucleon system. In this
expression we have required that the diagonal elements of
the S matrix be relativistic invariants and have replaced
the dependence on p and p3~ with the dependence on
the pion —three-nucleon invariant mass W.

In order to correlate the angular distribution to the
angular momentum of the system it is necessary to trans-

(~Pp~ JKM) = DM~(o.', P, p) = e ™d~~(P)e
(5)

where J is total angular momentum of the pion —three-
nucleon system, J = ~J(3H 3H) + 1 ~. In our model, the
requirement of a one-step process means that the internal
nucleon spin and angular momentum degrees of freedom
are unimportant, and one considers the coupling of the
angular momentum of the incident pion with the angular
momentum of the He nucleus. J(3H 3H) is the total an-
gular momentum of the He or H target, and 1 is the
relative angular momentum between the pion and the
three-nucleon system. M is the projection of the total
angular momentum J on the z axis in the original coor-
dinate system, in this case the pion beam line, and K is
the projection on the z' axis in the rotated coordinate
system, in this case the direction of a selected outgoing
nucleon in the center of mass system. With our selec-
tion of the z axis, M corresponds to A3~. We can now
expand S-matrix elements in the individual momentum
basis using Eq. (5):

(piAip2A2p3A3~S(W) ~M) — ) J + — D~lc(n, p, p)(KEiE2AiA2A3~S J(W) ~M). (6)

Inserting Eq. (6) into Eq. (4), using the relation

J +J
DM~, (a, P, p)DMIN(a, P, p) = (—)( ) ) (J MJ —M~LO)(J K J —K~l(K —K))D (~, ~)(o., P, p),

1=
)
J' —JI

and integrating over p, the differential cross section can be written as

d03~ = (2ssiv+ 1) ) J+ — J + — ) dto(P) ) (—1)( )(J MJ —M~l0)(J KJ —K~lO)

x ) (K@1@2A1A2A3~SJ(W)~M) (K&i&2AiA2AS~Sg' (W) ~M) d@ld@2d~d cos 0
A1,Ag, A3

In our definition of quantization axis n and P correspond to P and 0, and we get the final angular distribution:

= ) ) ) J + — J + — (J KJ —KilO) iAz~ i
P~(cos 8),dgdcose -

~ 2) ( 2y

I

where ~A2~ ~

are the amplitudes defined by the expression
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) ) (-i)~ — l(J'MJ - Ml&0)

X KE»E2~»~2~3 ~J ~ M ~E»E2A»~2~3 ~J' ~ M dE1dE2 ~ (10)

The cross section for pion absorption on three nucle-
ons as defined in Eq. (4) is a fivefold difFerential quan-
tity. It is common practice in kinematically complete
experiments to reduce the number of difFerential quanti-
ties to two by integrating over the final reaction angles.
In that case the cross section depends only on the en-
ergies of two of the final-state nucleons. This leads to
the standard representation of the three-body reaction
in the form of a Dalitz diagram. The characteristic fea-
ture of the two-dimensional Dalitz diagram (Ei, E2) is
that the event density over the area inside the kinemat-
ically allowed region is proportional to the square of the
matrix element, while the kinematic contribution is uni-
formly distributed over the region. No significant devi-
ation &om a uniform density in the Dalitz diagram has
been reported in the three-nucleon pion absorption ex-
periments, indicating that the matrix element is roughly
constant. In our case the condition

d&3N

dE»dE2

is satisfied if

(KE]E2A] A2A318 J(W) IM) (KEiE2AiA2As
I 8~ (W) IM)

is not a function of E» and E2. As a consequence, the
final momentum distributions of the nucleons also show
no deviations Rom the expected constant matrix element
distribution. One must be aware, however, that the in-
formation &om the Dalitz diagram, because of the inte-
gration over the final reaction angles, has no dependence
on the angular momentum of the interacting pion —three-
nucleon system.

We will now examine the angular distributions which
one should observe in three-nucleon absorption on He.
As already mentioned, by assuming that three-nucleon
pion absorption is a one-step process, we remove the
dependence on the internal structure of the He nu-
cleus. The only quantities which enter the calculation
are the total He angular momentum J3H, ——

2 and the
pion —three-nucleon system relative angular momentum
j. . This means our final angular distribution becomes

d~3N

dPd cos 0

/ J3H, +1

J=/ J3H —1

( 1~ ( 11) ) ) J+ —
i J + — (J KJ —KIEO)IAzlc

I
Pg(c sgo).

)'E )

I I

From Eq. (10) the amplitudes must satisfy the symmetry relation IA&~ I

= —IA z~ I
. The results for the first

few pion- He relative angular momenta are given below.
For l = 0,

31v ~IA1, 112
dPd cos 8

For l & 1,

= ~2IA" I' —4(IA"I' —IA I') + 4~21A"I'Pi(«so) + 4[IA"I'+ IA"I'jP. («s~). (i4)

For I, &2,

= ~~IA" I' —4(IA" I' —IA" I') + 3~~(IA"I' —IA"I'+ IA" I')

+ 4~21Ai" I' — (~6IAi'I'+ 2IAs'I') Pi(«»)
5

+ 6~~IAi'I'+4(IAi'I'+ IA" I') —3 7(41Ai'I'+ IAs' I'+ 51A.' I') P2(cos~)

+ [2IAi'I'+ ~~1Am'I'lPs(cos ~) + [&IAi'I'+ 3IAs'I'+ IAs'I'1P4(co«).
5 7
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We can reduce the number of parameters required by
the formalism if we consider another angular quantity of
interest in the description of a three-nucleon absorption
event, namely, the plane angle (. The plane angle is
defined as the angle between the perpendicular to the
plane of the three outgoing protons in the center-of-mass
system and the beam axis (see Fig. 1). Measurement of
the plane angle provides a simpler experimental test of
the formalism, as it involves in the case of three identical
particles, fewer &ee parameters than the 6nal nucleon
polar angle distribution.

One can apply the same formalism as described above,
except that in this case the quantum number K is defined
as the projection of the final-state angular momentum on
the new z' axis, which we have taken to be the normal
of the plane spanned by the Anal-state nucleons in their
center-of-mass system. With this choice of quantization
axis, the Euler angles n and P correspond to a set of
angles rI and (. While the form of Eq. (9) remains the
same, the choice of a difFerent quantization axis changes
the meaning of the amplitudes. In the new case, symme-
try requires that for three identical particles in the final

FIG. 1. A depiction of the final state following
three-nucleon pion absorption in the center-of-mass system.
8 is the angle of an outgoing proton, ( is plane angle defined
in the text. The shaded region depicts the plane formed b
the three nucleons in the center-of-mass system.

I I

state the amplitudes IBz~ I
and IR ' I2 are equal.

The resulting distributions for the plane angle for an in-
cident pion of angular momentum up to l & 2 are given
below.

For I, =0,

For l & 1,

d3N f 11 2

(
= &21&i'I' —4(l&i" I' —l&s'I') + 4(&2I&i"I'+ l&i"I'+ l&s'I') &2(cos &). (17)

For l & 2,

d&3N 1,1 2

(
= ~21&x ' I' —4(l&i' I' —l&s'I') + ~~fi(l &"I' —

I

&"I' +
I
&s'I')

+ 2~2(21&"I'+ 3l&"I') + 4(l&"I'+ I& I')

(l&i"I' —81&s'I'+ 41&i"I' —l&s'I' —51&s'I') & (c ()

[Sl&i"I'+ l&s'I'+ ~3(21&"I'+ 3l&"I'+ I&"I')]&4(cos()

One can see that in the description of the plane an-
gle distribution only I egendre polynomials of even order
enter, and the distribution is symmetric around 90 and
involves fewer parameters.

Up to this point we have developed a general formalism
for the description of the reaction of pion absorption on
three nucleons. Deviations &om isotropic angular distri-
-butions of 6nal-state nucleons in three-nucleon pion ab-
sorption have been observed in the L-resonance region
i16 17 19)~. Th, 9~. These angular deviations can be explained

~ ~

in the framework of our formalism without affecting the

observed uniform event density in the Dalitz plot.
We apply the formalism to the Anal nucleon angular

d istributions for pion absorption on He measur d beasure y
Smith et al. [17]. The difFerential cross section in the lab-
oratory system shown in Fig. 2(a) exhibits the expected
Legendre polynomial shape. Figure 2(b) shows the differ-
ential cross section in the vr- He center-of-mass system.
The transformation from the laboratory system to the
center-of-mass system has been done assuming a constant
matrix element. While in a two-body final state there is a
one-to-one correspondence between the energy and angle
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(b) = ) AiPi(cos 0).
d dcose (19)
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of an outgoing particle, in the case of a three-body final
state such a correlation does not exist so a Monte Carlo
technique must be used. In the Monte Carlo, we gener-
ated a three-body phase space distribution and weighted
it by the experimentally measured lab angular distribu-
tion to determine the center-of-mass angular distribution.
Following the expression for the difFerential distribution
Eq. (9), we fit the diff'erential cross section in the center-
of-mass system by a sum of the Legendre polynomials:

FIG. 2. Differential cross section for the reaction
z.+ + He m ppp for pion energies of 350 and 500 MeV: (a)
data and fit in the laboratory system from Smith et al. [17];
(b) distribution in center-of-mass system obtained by Monte
Carlo calculation assuming constant matrix element. The er-
ror bars are the statistical errors of the Monte Carlo calcula-
tion. The coefBcients are from the fit of the distribution using
Eq. (19).

Extremely good agreement was shown using only Legen-
dre polynomials of up to second order [the coefficients
corresponding to the fit are shown in Fig. 2(b)]. From
Eq. (9) this would correspond to pion angular momen-
tum values of / = 0 and 1.

Because of the limited solid angle over which the ex-
periment was performed one cannot exclude with cer-
tainty absorption of pions with l ) 1. Nevertheless, our
model gives a physical basis for using a Legendre poly-
nomial fit in describing the measured angular distribu-
tion. A large solid angle measurement such as one which
could be made with the large acceptance detector system
(LADS) [18,28] would be able to determine conclusively
the range of angular momentum brought in by the pion
in the three-nucleon absorption mode.

To conclude, in this paper, we have examined for the
first time the angular distributions one would expect by
treating three-nucleon pion absorption as a coherent one-
step process. Using our model, with the assumption of
a ffat phase space energy distribution [13,27), we are
able to reproduce the angular distributions of an out-
going nucleon observed in absorption experiments at 350
MeV and 500 MeV [17] with pions of angular momen-
tum l = 0 and 1. Furthermore, we have presented a
calculation of the shape of the expected angular distri-
bution of the plane angle following three-nucleon pion
absorption. Prom the measurement of this angle one can
completely determine the role of angular momentum in
three-nucleon absorption.
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