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Relativistic models for quasielastic (e, e') at large momentum transfers
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Inclusive quasielastic response functions are calculated for electron scattering in a relativistic
model including momentum dependent scalar and vector mean fields. The momentum dependence
of the mean fields is taken from Dirac optical 6ts to proton nucleus scattering and is important in
describing data at momentum transfers of 1 GeV/c or larger. Our simple model is applicable for
quasielastic scattering over a large range of momentum transfers.

PACS number(s): 13.60.Fz, 25.30.Fj, 24.10.3v

I. INTRODUCTION

There is growing interest in quasielastic electron scat-
tering experiments with momentum transfers of order 1
GeV/c or larger. Clearly these require a relativistic treat-
ment. Indeed, there have been many relativistic mean
field and random phase approximation (RPA) calcula-
tions of quasielastic scattering [1—3]. These calculations
often have large scalar S and vector V mean fields which
shift the mass of a nucleon Rom M to M*,

M* = M+S.
This changes the position of the quasielastic peak from
~ = q /2M (with q the momentum and ~ the energy
transfer) to

which have much less energy dependence than the non-
relativistic mean field. When the Dirac equation is re-
duced to a Schrodinger-like form the efFective nonrela-
tivistic mean field is [6]

U."= '+ M~+ M '"2M (3)

Here E is the total energy of the nucleon (T~ b + M).
The linear energy dependence for U ~i implied by Eq. (3)
agrees well with data for T~ b of order 200—300 MeV or
less. However, Eq. (3) (with constant S,V) greatly over-
predicts the energy-dependence of U ~& above 300 MeV.
As a result Dirac optical fits need energy-dependent S and
V in order to reproduce elastic data at higher energies.
One such fit is shown in Fig. 1.

The magnitudes of S and V decrease with energy. This

u) = Qqz + (M*)z —M* (2)

This change agrees well with the "binding-energy" shift
seen in a variety of experiments at moderate momentum
transfers ]q] & 600 MeV/c.

However, Eq. (2) predicts very large shifts for momen-
tum transfers of order 1000 MeV/c or larger. Such large
shifts are not seen in the data [4]. One would like to un-
derstand this limitation and develop a simple relativistic
mean field model that is applicable over a broad range
of momentum transfers. Indeed, most of the relativistic
models assume the self-energies or mean fields (S,V) are
independent of energy or momentum. This approxima-
tion is probably good at low momentum transfers but
fails as the momentum transfer increases.

Dirac optical model fits to proton-nucleus elastic scat-
tering [5] produce scalar and vector optical potentials
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FIG. 1. Scalar S and vector V mean 6elds versus labo-
ratory kinetic energy Tl b. Solid lines are real parts of a
Dirac optical model fit to pCa elastic scatte-ring [5] while
dot-dashed lines are the constant relativistic mean 6eld values
[10]. The dashed lines are extrapolations as described in the
tex:t.
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trend is also reproduced in relativistic Brueckner cal-
culations [7,8]. In this paper we use such momentum-
or energy-dependent potentials to calculate inclusive
quasielastic electron scattering over a large range of
momentum transfers. Results for a simplified form of
momentum-dependent potentials were presented in an
earlier paper [9]. Our formalism is described in Sec. II.
Results for Fe and Ca are given in Sec. III. This sec-
tion also discusses current conservation. We summarize
in Sec. IV.

Here,

+ .~(po —@ )O(k —lpl)
P

p„' = (p —V(p), p),
M' = M+ S(p),

(i2)

(13)

II. FORMALISM

The inclusive (e, e') cross section for excitation energy
~ and three-momentum transfer q is

d 0

dOdE

q4 (q2 g)
Rl, (q, ~) + + tan' — RT (q, ~),q4 ' (2qz 2)

(4)

with the Mott cross section oM = n cos (0/2)/
4E sin (0/2). Here q = —q = q —w and 8 is the scat-
tering angle. The longitudinal RL, and transverse Az re-
sponse functions are calculated in a local density approx-
imation from nuclear matter at a density p = 2k&s/3vr2,

lm(ZII" + NII" ),
KP

BT' = — Im(ZII" + NII" ),
7t P

for a target with Z protons and N neutrons. (Note that
q is assumed to be along the 1 axis, and so the subscript
22 refers to a transverse direction. )

The polarization II is calculated with the nucleon
Green's function G(p) and the electromagnetic vertex I',

and E* = p2+ M*

We use S(p) and V(p) from the real parts of an op-
tical fit to p- Ca elastic scattering. This fit reproduces
experimental data &om 21 MeV up to a laboratory ki-
netic energy of 1.04 GeV [5]. For energies below 21 MeV
we interpolate between this fit and the mean field ap-
proximation to the Walecka model values of [10]

VMFT = 354 MeV,

SMFT = —431 MeV .
(14)

(i5)

to represent an average over the nuclear volume. Here
p(r) is taken from a relativistic mean field calculation
of Ca [10]. We assume the potentials scale with the
density and then use a Fermi momentum of

For energies greater than 1.04 GeV we use the smooth ex-
trapolation shown in Fig. 1. (However, results we present
are not sensitive to this region. ) Note that the optical fit
has imaginary parts for S and V which we ignore. It
remains to investigate the eÃects of these complex po-
tentials.

We use the fit potentials at the center of Ca. How-
ever, we scale these results by o. ,

n = = (230/257)
J' dsrp(r)2

po dsrp r

4
H*„ (&, ) = —

4 Tr[G(p +' &)II G(p)I"„], (7) kp = 230 MeV/c, (17)

for i = p (proton) or n (neutron). We assume that the
electromagnetic vertex has the simple form

V

I"„=E,p„+E, 2M

~ = &OV(p) + S(P), (9)

even for oH-'shell nucleons in the medium.
We calculate G in a mean field approximation. The

nucleon self-energy is assumed to be

in our calculations rather than a typical nuclear matter
value k& = 257 MeV/c with po ——2k& /3vr . This repre-
sents an average over the central and low density surface
regions.

The polarizations in Eq. (7) are calculated numerically
using the Green's function in Eq. (11) as discussed in the
Appendix. The parameters of the calculation are the
Fermi momentum k~, n, and the two functions S(p) and
V(p) from the Dirac optical fit. This yields a simple
relativistic impulse approximation that will be applied
to data over a large range of momentum transfers in the
next section.

where S and V are taken &om a Dirac optical fit at the
self-consistent energy Ez, III. RESULTS

&~ = V'p'+ [I+ S(p)l'+ V(p).

The Green's function for a Fermi momentum II..~ is

In this section we present results for three calculations.
The first is a free Fermi gas with S(p) = V(p) = 0. The
second is the mean field theory (MFT) with momentum-
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independent V and S given by Eqs. (14) and (15) [scaled
by the n of Eq. (16)]. Finally, we consider momentum-
dependent S(p) and V(p).

The longitudinal response for Fe at [q[ = 550 MeV/c
is shown in Fig. 2. The free Fermi gas somewhat under-
estimates the average excitation energy of the response.
This is better described by either the full momentum-
dependent calculation or the MFT. Indeed at this rel-
atively low excitation energy of about 200 MeV there
are not too large differences between the momentum-
dependent S(p), V(p) and the MFT potentials. There-
fore, either the MFT or the momentum-dependent calcu-
lation can describe the average excitation energy of low
momentum transfer data.

We have used a simple local density approximation.
This is expected to reproduce qualitatively the position
of the quasielastic peak. Full relativistic 6.nite nucleus
calculations (for momentum-independent potentials) [3]
agree well with the local density peak positions and do
a good job of reproducing the detailed shape of the re-
sponse. Note that the area under the longitudinal re-
sponse is controversial. It is subject to systematic ex-
perimental errors and Coulomb distortion corrections.
However, there is general agreement that (near this mo-
mentum transfer) there is a substantial binding-energy
shift compared to a free Fermi gas. This is seen either
in separated longitudinal and transverse responses or in
unseparated cross sections.

Next, Fig. 3 shows the longitudinal response at a mo-
rnentum transfer of [q[ = 1.14 GeV/c. At this mo-
mentum transfer the MFT response is at substantially
too high an excitation energy. In contrast, either the
momentum-dependent or the free Fermi gas calculation
provides a reasonable description of the position of the
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FIG. 3. Longitudinal response for Fe at a momentum
transfer of q=1.14 GeV/c. See the caption to Fig. 2. The
data are from Ref. [4].

quasielastic peak. Thus the reduction of S(p) and V(p)
with increasing energy or momentum (as shown in Fig. 1)
corrects (at least in large measure) the tendency for the
MFT to overpredict the binding energy shift. At still
higher momentum transfers, we expect small differences
between the momentum-dependent calculation and a free
Fermi gas because S(p) and V(p) continue to decrease

The transverse response for Ca is shown in Fig. 4
for [ql =550 MeV/c. Again, at this q the MFT and
momentum-dependent calculations are similar. Note
that there is substantial extra strength in the trans-
verse response at high excitation energies &om meson
exchange currents and delta production; see for exam-
ple [11].These are not contained in our simple model.

Note that a flee Fermi gas reproduces the peak po-
sition well at high q. However, there is no theoretical
motivation for simply ignoring the mean fields which are
known to be present. Furthermore, a ft'ee Fermi gas will

0.03 0.07

0.02
0.06

q
0.05

0.01

0.00
0 50 100 150 200 250 300 350 400

m (MeV)

0.04

0.03

0.02

0.0 I

FIG. 2. Longitudinal response function for Fe at a
momentum transfer of q=550 MeV versus excitation en-
ergy cu. The solid curve is the full momentum-dependent
calculation including the vertex correction from Eq. (21)
while the dot-dashed curve omits this vertex correction. The
short-dashed curve is the response for a free Fermi gas while
the dashed curve is the response assuming constant relativis-
tic mean Beld theory self-energies. The data are from Ref.
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FIG. 4. Transverse response for Ca at a momentum
transfer of q=550 MeV/c. The solid curve is the full momen-
turn-dependent calculation while the short-dashed is a free
Fermi gas and the dashed is for constant relativistic mean
field theory self energies. The data are from Ref. [12].
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fail at low q where it is generally believed one needs a
binding-energy shift. Thus, we think, the only theoreti-
cally consistent model is one which includes mean fields
and takes into account their momentum dependence.

Alternatively, some nonrelativistic models simply as-
sume a momentum-independent excitation energy shift
equal to the average binding energy of a nucleon. This
works reasonably well at low q and possibly could be ex-
tended to high q by using some form of relativistic kine-
matics. However, there is no theoretical justification for
this prescription. Strictly speaking one would have to
assume an energy-dependent potential which is big for
bound states and then goes rapidly to zero for positive
energies. This is unrealistic. Thus, we believe that a
theoretically consistent description will have to address
explicitly the momentum or energy dependence of the
mean fields.

We now discuss current conservation. The full electro-
magnetic vertex should satisfy the Ward- Takahashi iden-
tity

&~ra".u = & '4 + &)
—& '4 ) .

FIG. 5. Vertex correction in a relativistic Hartree-Fock ap-
proximation. The nucleon line is solid while the dashed line
is an exchanged meson and the wavy line a photon.

rors from our (slight) violation of current conservation.
However, Eq. (21) is nonunique and this point deserves
further study; see below.

IV. SUMMARY AND CONCLUSIONS

U(S(p), V(p))&~re iiU(S(p), V(p)) = 0 .

Here, the spinors U satisfy a Dirac equation with S,V
and

(20)

We choose

q2~r ' = & ', " S(p+q)+ ~.V(p+ q)

—S(p) —&oV(p) (21)

This simple prescription ensures

q II„—II„q =0. (22)

Calculations using Eqs. (20) and (21) are shown in
Figs. 2, 3 and are only slightly smaller than calculations
with Lr~ = 0. Therefore, we do not expect large er-

This is no longer true for the vertex r~, of Eq. (8), given
that t is calculated with momentum-dependent poten-
tials [and that Eq. (8) has form factors]. Clearly we must
add a vertex correction. However, there is no unique way
to calculate this correction without detailed knowledge of
the processes included in S(p) and V(p) and in I"i and

Instead, we add a very minimal vertex correction so
that not Eq. (18) but at least current conservation is
satisfied,

There have been many relativistic mean field calcula-
tions for inclusive quasielastic electron scattering. Ironi-
cally, although these do a reasonable job at low to moder-
ate momentum transfers, many of these relativistic calcu-
lations are not appropriate for momentum transfers near
1 GeV/c or above. This is because they assume the mean
fields are independent of momentum or energy. As a re-
sult they predict too large a binding energy shift in the
position of the quasielastic peak.

Instead, we assume a simple model where the momen-
tum dependence of the scalar and vector mean fields are
taken &om an optical model fit to p- Ca elastic scatter-
ing. The inclusive response is calculated in a relativis-
tic impulse approximation. Reasonable predictions are
made for the position of the quasielastic peak at both
low and high q. Therefore, the model can be used over
a large range of momentum transfers.

Our calculations are for nuclear matter in a local den-
sity approximation. We expect this to qualitatively re-
produce the position of the quasielastic peak but not its
detailed shape. One should repeat the calculations in a
full finite nucleus formalism, such as from Ref. [3], using
energy-dependent potentials.

We have only brieHy mentioned vertex corrections.
These are needed for current conservation in momentum-
dependent mean fields. Future work should calculate
the vertex correction in a full microscopic model. For
example, one can choose a (somewhat unusual) set of
meson couplings (including nonlinear self-couplings) so
that a relativistic Hartree-Fock (HF) calculation approx-
imately reproduces the momentum dependence of the
mean fields. This allows the vertex correction to be cal-
culated explicitly from the diagram in Fig. 5.

Note that Eq. (21) does not contribute to RL, when
contracted with the conserved electron current. However,
Eqs. (4) and (5) assumed current conservation. One gets a
difFerent answer for Rz, from Eq. (5) if one sets KI'„= 0
because in this case the current is not conserved.
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APPENDIX

Here we summarize the calculation of imaginary part of
the polarization II~ . The Green's function of Eq. (11)
can be written in three parts: (1) the propagation of
an antinucleon in the Dirac sea, the propagation of a
(2) hole inside, and a (3) particle outside of the Fermi
sea. Since vacuum polarization does not contribute to
the imaginary part for the spacelike q„, the propagation
of antinucleons can be dropped and the Green's function
[Eq. (11)] written

G(»)=" . ' . +p„*p™,* 8(k —Ip]) 8(]pl —k )
2E* po —Ep —i~ po —E~ + i~

[(P + 9)*"P*"—P* . (» + 9)*9""

+@*"(p + q)
*"+ M*M*+ 9""], (A3)

2M' M,*[(v+9)* W" —
(» +9)*"9"]

Using this Green s function, it is straightforward to inte-
grate over po and the imaginary part of the polarization
becomes

Im II""=—,8((p+ q] —kp)8(kp —]p])
pzd]p] dcosg

4' E,*E,*,
x 8(Ep+~ —Er —&p) [T)". + T2" + Ts" ],

(A2)

where cos0 is the angle between p and q. Here Tq, T2,
and T3 are &om the trace of Dirac matrices,

(A1)
+M*+ [p*"9 —»* 99""], (A4)

Fi
[M,*+,M,*+a*.(P+ 9)'](9" 9„' —9"9 ) +P* g[(P+ 9)*"9 + (P+ 9)* ~"]

~„'((I+~)'"p"+(p+~)"p'")+(7+~)* q)q"p-+q p"] —2p'. A+~)' qg" ), (A5)

with p = (Ez —V(p), p). Equation (A2) is evaluated numerically. The phenomenological self-energies [V(p), S(p)]
are fitted to polynomials in p. Finally, the angle integration of the b function restricts the momentum integration so
that ]cose~ ( 1. The form factors I"z and I"z are taken from Ref. [14].
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