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A calculation technique of spectroscopic amplitudes of the lightest virtually excited clusters d,
t, and o. in p-shell nuclei is presented. These amplitudes are incorporated into a cluster quasielastic
knockout theory based on the Glauber-Sitenko multiple scattering formalism where deexcitation
of virtual clusters is taken into account and the outgoing cluster distorted wave is described by
means of an eikonal approximation. Numerical calculations for a few target nuclei and knocked-out
clusters complement our previous results and show that the strong inQuence of deexcitation e8'ects
is a general property of the reactions investigated. It is exemplified by angular anisotropy of the
recoil momentum distributions, etc.

PACS number(s): 21.10.Jx, 21.60.Cs, 24.10.Cn, 24.50.+g

I. INTRODUCTION

The reaction of cluster quasielastic knockout from light
nuclei by various projectiles remains to an area of ac-
tive experimental and theoretical research [1—3]. It was
demonstrated in our previous paper [3] by means of gen-
eralized distorted-wave impulse approximation (DWIA)
calculations in terms of Glauber-Sitenko multiple scatter-
ing theory that the process of cluster quasielastic knock-
out by 1 GeV protons is expected to show a series of sig-
nificant original features reflecting the large influence of
cluster deexcitation amplitudes when a virtual internally
excited cluster changes its internal state to the ground
one during the collision process. These features, pre-
dicted in our preliminary qualitative plane-wave consid-
erations [4,5], are as follows: (i) strong O~ anisotropies
of recoil momentum distributions (form factors) depend-
ing on the scattering angle of the fast proton (O~ and
yq are angles which characterize the orientation of the
recoil momentum q with respect to incident beam direc-
tion (z axis) and to the scattering plane [pa, po] of the
fast proton, respectively), (ii) strong &p~ anisotropies also
depending on the scattering angle of the fast proton, and
(iii) recoil momentum distributions measured along some
direction q defined by the values of Oq and pq depend-
ing both on the orientation of this "ray" and on the fast
proton scattering angle.

The formal origin of all of the above features consists of
the change of internal orbital momentum of the knocked-
out cluster due to the collision which results in the rich in-
terference of many recoil momentum amplitudes ill t (r1)
[4,5]. Of course, the general background here is that the
sum of spectroscopic factors of the internally excited clus-
ters dominate the ground-state one [6,5] and that the
reaction process is of a very surface localized character
[31.

A formal connection can be noted here [5) with the
Treiman- Yang anisotropy in the quasielastic knockout re-

action H(m+, 7r+p)n, etc. [7,8], where this anisotropy ob-
served at large recoil momenta q )300 MeV/c originates
&om the inHuence of the third body n in the above kine-
matical region (strong three-body rescatterings in the fi-
nal state obscuring the quasi&ee mechanism of proton
knockout). However, our case is physically very differ-
ent. We remain within the quasi&ee cluster knockout
kinematical region (q values are small, q ~ 100 MeV/c),
but our knocked-out particle is a composite one and can
be internally rearranged with the accompanying change
of internal orbital momentum.

It is clear &om the aforesaid that our theory consists
of three principal parts. The first part deals with clus-
ter rearrangement (deexcitation) amplitudes calculated
within the Glauber-Sitenko formalism. It is illuminated
in detail in Refs. [3—5]. The algebra of spectroscopic am-
plitudes of virtually excited clusters in nuclei is just the
subject of the second part, its general formulation be-
ing given in Refs. [5,6]. In the present paper, having in
mind the lightest knocked-out clusters and ground-state
shell-model configurations of both initial and final nuclei,
we show that there exists a far-reaching simplification of
the above complicated algebra which can be exposed in
a very practical form. The third part is the treatment
of cluster distorted waves. In Ref. [3], the numerical
calculations were based on the partial-wave expansion of
the knocked-out cluster as an outgoing distorted wave in
combination with the use of proton plane waves, which
appears to be a good approximation. However, this ap-
proach is still rather cumbersome practically, and in the
present paper we formulate a more economical eikonal
approximation version of the DWIA. It was successfully
verified in Ref. [3] but was not presented here.

Finally, the last aim of our paper is to extend. our previ-
ous DWIA calculations of the i~C(p, pn) sBe(0+; 2+; 4+)
reaction [3] to the reactions i2C(p, pt) B, i4N(p, pd) C,i O(p, pt) N, and O(p, pn) i2C, enabling us, jointly
with the results of Ref. [3], to see some general features
of the investigated phenomena in p-shell nuclei.
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II. EIKONAL APPROXIMATION FORMALISM

Using the eikonal analytic expression of the knocked-
out cluster distorted wave [9],

{—) (k R) Pk—Rx i{1+P—iP)k R

and the partial wave expansions of plane waves,

exp[ —i(1+P)k. R]
= 4vr ) (—i)'ji((1+ P)kR)Yi (R)Y,' (k),

lm

side by side with the Taylor series,

OO

exp(pk. R) = ) —,(k R)',
t=o

t l

(k. R)' = (kR)'t! ) Nti ) Yi (k)Y,* (R),
m= —l

where the value Nti is presented below in Eq. (20), we
can write the generalized Fourier transform of the bound-
state cluster wave function [3],

(2)
r

p„~M(k, p) = dRexp~ i p—r y{+)(k,R)
~
nAM),

m~ )
where p = pp —pp is the momentum transferred by the fast proton, k = (m~ i,/m~)p + q (—q being the recoil
momentum of the A bspect-ator nucleus) as

t t

Next, in terms of Refs [4,5] the reaction amplitude looks like

zooM, f(q, p) =
27t

dpe'~~ & 'Iff &BC;,
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with the last summation running over Iq, l2, ls, /4, mi, m2, ms, m4 and
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where p is the impact parameter (two-dimensional vector) and 0 the multiple scattering operator of Glauber-Sitenko
theory. Using the detailed formulas of Refs. [3—5] and Eq. (3) above we obtain the square of the reaction amplitude
averaged and summed over the proper angular momenta projections in the form [10]
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and the reaction cross section verification confirming its good accuracy was given later

0 mp 1 2

dn„dn, z =
n2 2&+ 1 ~ - '

free

III. SPECTROSCOPIC AMPLITUDES
OF VIRTUALLY EXCITED d-, t(h)-, AND

a-CLUSTER IN p-SHELL NUCLEI
The first through sixth suinmations in formula (5) run

over the indices Mg, Ms„Mg, , [f]LS, [f']L'S', [fi]LiSi,
[fi]LiSi; Nocro[fo]lo JoAn&, No~'o[fo]L'o JoA'n'l, lil2ls,

lil2l~ and lliLMMoMo, respectively. The coefBcients

n(fj&& here characterize the intermediate (between LS
and jj) coupling in p-shell nuclei. Spectroscopic ampli-
tudes of internally excited clusters (An

~

A —bni, nA;bao)
(see below) jointly with the cluster internal rearrange-
ment amplitudes B~ &

~~~

(& j(p) (see Ref. [3]) define the
contribution of various cluster deexcitation processes.

The first application of the above eikonal technique
was exposed briefly in Ref. [11] on the example of the

C(p, pn) Be(g.s.) reaction but a detailed independent
I

The spectroscopic amplitudes of arbitrary virtually ex-
cited clusters in p-shell nuclei can be calculated by ex-
ploiting the method of Refs. [5,6,12] based on the use of
creation and annihilation operators of the oscillator shell
model. However, the general formalism is rather compli-
cated. It will be shown below that if we have in mind
shell-model configurations with a minimal possible num-
ber of oscillator quanta, % = N;„, in both the initial
and Anal nucleus and if we also deal with the lightest
knocked-out clusters d, t(h), and n, then the above for-
malism can be simplified very much and can be presented
in a rather practical form.

Let us introduce the subsidiary integral [5,12]

('P(000) (RQ) AN '"[f](Ap) LST
I p(ooo) (R~-s), A —bNi '"[fl](Al pl)

x Li S,T, : y„~(Ri )bN2 [f2] (A2 p2) L2S2T2CLST),

written in terms of the translationally invariant shell model (TISHM).
Integrating over R~ we obtain

—n/2

I = (—1)"
( )

(AN '"[f](Ap)LST
I

A. —bNi '"[fi](Aipi)Lisiri, nA, bN2[f2](A2p2)L2S2T2(Z)LST), (8)
A —b)

where the value of the simplest Talmi-Moshinsky-Smirnov (TMS) coeKcient [5,12] is substituted. Alternatively,
expressing the initial and final state wave functions via shell-model configurations by means of the Bethe-Rose-
Elliott-Skyrme (BRES) theorein [5,12] we can write

I = ) (s p [f](Ap)LST
~

s p '[fi](Aipi)LiSiTi, p '+"[f2](A2p2)ZS2T2)
(A2P~)

x (p '+"[f2](A2p2)rs2T2
~

nA, bN2[ f2](A2p2) S2T2). (9)

For the lightest clusters under consideration the Young scheme [f2] has only one row, (A2p2)=(N2, 0), and the
summation in Eq. (9) is absent.

By comparison of Eqs. (8) and (9) we conclude that

(AN '"[f](Ap)I ST
~

A —bNi '"[fi](Ai pi)I isiTi, nAbN2[f2](A2p2)L2S2T2(z))

= (—1)"
I I I b ( I b I

(p" '[f](Ap)LST
I

p" ' '[fi](Aipi)Lisiri p'[f2](A2s 2)&S2T2)
r &b)

x(p'[f2](A'p2)&S2T2 I
nA bN2(A2p2)I's2r2)' (10)

i.e. , we can express the cluster spectroscopic amplitude on the left side (written down in terms of the TISHM) via the
multiparticle &actional parentage coefiicient (FPC) of the usual shell model and a specific cluster coefficient Kg [the
last factor on the right-hand side (rhs) of Eq. (10)] which, in fact, does not depend on the quantum numbers S2T2.
To be complete, the usual definition of the cluster spectroscopic amplitude is as follows [5,12]:
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(-"~(Jo Jz) =
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TiMT', T2MT' )

t'x)
&b)

L j Sg Jg
x & 8 S2 j & g(2Ji+ 1)(2Jo+ l)(2L+ l)(2S+ 1)I S J
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I

A bNi[fi](Aipi)niLiSiTi', nA, bN2[f2](A2p2)o2L2S2T2(C}).

e =~ "p" [f](A&)LS-T), (13)

Returning to Eq. (10), our problem is to find the expres-
sion for the coefficient Kb. As the first step, its SU(3)
scalar part can be factorized out:

~b = (p"'+"[f2](A.p2)& I
nA(Rb)bN. [f2](A2p2)Lz)

((n0)A(A2p2)L2
~ (A2p2) &) (»

"'+"[f2](A2p2)

x(n0), bN2[f2)(A2p2)),

the first factor being a scalar factor of the SU(3)
Clebsh-Gordan coeKcient. Here we have omitted the
SU(3) &O(3) scheme projections K2 and K in all expres-
sions. They become useful when more than one wave
function with the same (Ap) and L values exists. For
p-shell nuclei only one example of type (Ap)=(22) I=0
takes place. It is not a subject of the investigation.

As the second step, we introduce projection operators.
The hole states of the usual shell model,

(i4)

where the
~

bN = b —v[f](A2p2)LST) state entering the
first term of Eq. (14) is the sp state of the TISHM.

The pro jection operator Pooo eliminates the ghost
states,

p(ooo)(Rb) ~

bN = b —v[f](A2pz)LST)
A= —Pooo I

s p' [f](A2p2)LST),
Ob

(iS)
where the amplitude Bb can be calculated by means of
the formula

called sp states (as far as they contain only s and p nu-
cleons), have both true components with the zero c.m.
oscillations and ghost states,

[f](A»2)LST) =
0+@(ooo)(Rb)

~

bN = b —v[f](A2p2)LST)
+ghost states,

fib = (s"p' "[f](A»~)LST
I

Pooo
I

s p "[f](A»2)LST).

It is helpful in the expression

rp(ooo) (Rg) ~

bN = b —v [f] (A2 p2) L

ST�)

= Ob
i

s"p [f](A2p2)LST) + Ci
i

s + p (2s —2d): [f](Azp2)LST) +
connecting the TISM wave function with the usual shell-model basis. Here, dots mean the highest shell-model
configurations,

Ci —— (s"+ p (2s —2d)[f](A2p2)LST
~

Pooo
~

s p "[f](A2p2)LST),
Ob

etc.
De6ning the creation operator Ub as

1 (Rb
V2 &&ob Pob)

'

1
(R )

—
( 1)( —i)/ g4 ~ (Ub Ub )'" " '&~ (Ub )v ooo(&b)

[(n —I)!!(n+I + 1)!!]~

-i( b+. b)'" " ' ~-( b)OOOO(Rb)

we can write down the cluster coefFicient Kb as

Kb = Ob(p + [f2](A2p2)EST
~

N ~(U+ ~ U'+)( ~ YjM(U+)
~

s p [f2](A2p2)L2ST),
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where A + L2 ——C. The second and next terms of the expansion (17) give no contribution; only Os ~ lp transitions
contribute here. We can write the wave function entering the rhs of the matrix element as

(22)

I
s" p"'(A2~2)L2: [f21(A2I')L2ST) = ) ([n]S»i[f~, ]S2Tz II [f21ST)

S1T1S2T2

x
I I

A
I

s"[n]OSiT„.p '[f„,]I.,S2T, : LST),in' )
with the operator A meaning antisymmetrization between separated shells and the erst factor in the rhs being the
SU(4) Clebsch-Gordan coefficient [i.e., the spin-isospin fractional parentage (FP) coefficient]. Subsituting expression
(22) into (21) and having in mind that the operator entering (21) is permutationally symmetric and is commuting
with A we obtain

1
2 ) . &[n]SiTi[f.,1S2T2 I

[f2]ST&&p"""[f21(A'~')~ST
I
N-~(U' U')'" "'&~M(U')

I

s,T;s,T,

x
I

s"[n]OSiTi., p '[f ,i](A 2}M)zL S2T22. LST). (23)

Extracting &om the lhs by means of the FP expansion the subsystem of N2 nucleons with numbers n + 1, ..., N2 + n
we can integrate over these variables since they are not acted upon by the operator

B = N„(U+ U+)!" l} Y (U+),

standing in Eq. (23).
As a result,

1

). &[n]SiTi [f,]S2T2
I [f2]ST)

sg Tg sg Tg

(p
' [f2](A'p2)&ST

I
p"[n](nO)ASiTi p '[fs.](A2p2)L2S2T~)&p [n](no)ASiTi I

&
I

s"[n](OO)OS, T,), (25)

where (A2pz) has only one possible value, because the sig-
natures of the Young schemes [f2] and [fz, ] are uniquely
connected with the signatures of the quantum numbers

(Az[Mz) and (A2p2), respectively. The last factor in Eq.
(25) can be reduced to the simplest cluster coefficient,

&p" [ ]( 0)AS T,
I
R

I
"[ ](00)OS,T )

n

= (p" [nf[no}A [rlA, no[n[(oo}0}(—), [26}

(' n! ) '
K„= (p" [n]A

I
nA, no[n]0) =

I

[ nTl)
(27)

which can be easily obtained if the (U+) operator is ex-
pressed in terms of single-nucleon oscillator creation op-
erators. Substituting expressions (26) and (27) into (25),
we can factorize the FPC (p '+

I p, p ') into orbital
and spin isospin parts, with the resulting elimination of
spin-isospin quantum numbers due to orthonormality of
the SU(4) Clebsch-Gordan coeflicients. So the scalar part

I

II Kb II of the cluster coefficient Kb can be written as

II Kb II —= &p"'+"[fv,](A'[ ') I (no), &N2[f.](A2c 2))
1

=nb
I ) nf, /ng, K„ (28)

[we see that Ab is just the reduced cluster coefBcient (28)
for the particular case of n=o]. Finally, what remains to
do is to calculate the value of Ob following formula (16)
[the sign of Ob is not essential, since only the first term
of the expansion (17) takes part in our constructions].
Thus, we return to the projection operator Pppp, which
can be written as [13]

P[}00 = exp: —(U+U):= ) (—1):(U U): /A, '!. (29)
k

Here, ::is the symbol of the ordered product of operators
where all U+ operators stand to the left of U operators.
Further, we exploit the expansion

:( ' U):= '(- )'). .', :(U'. ')'" "'[ (U'). ( )]„( )'" "", (3o)

where the coefficients N„ 1 [see also Eqs. (3) and (20)] arise in analogy with those in Ref. [14] where a similar expansion
of the scalar products (ri r2) was used. Introducing the intermediate states and taking into account the Hermitian
properties of the operators U+, U we obtain

Ob = ) ( 1) N i&s p "[f—](A}[J)LM
I

(U+ . U'+) l Yj (U+)
I

s"+ p
" [f](A'y, ')L'M') (31)
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TABLE I. SU(3)-reduced cluster coe%cients [[ Kb
~~

for d,
t, and n clusters with [f]=[2], [3], and [4], respectively.

l.2-

¹
0
1

2
1

3
0 2 3
~3
3 ~3 3

0
~3

4~a

2
~3

3 4
1 ~15

4~i

0.8

0.4

with the summation being carried out on r, I, L', (A'p, '),
M', and m. Based on the experience of the derivation of
formula (28), it is easy to arrive at the final result

"'=) (—')
I „ II „ I( )

&I6I

xK, 'u ([v][r][f][f„']:[v+ r][f„]).
A J'

(32)

Here, the Racah coefficients of the SU(4) group are dis-
cussed in Ref. [15], v + r ( 4, [f~] is the Young scheme
of configuration p, the signature of (A, p) is defined as
A = f„, —f„„p= fp, —f„„b—v = f„, + fp, + f„„and
the connection between the quantum numbers [f„'] and
(A', p') of the configuration p " " is similar.

In our specific situation of d, t(h), and n clusters
when scattering amplitudes are diagonal on [f] the above
Racah coefficients are equal to unity. So we need only
the quantities

~[
Kb [[ and the SU(3) Clebsch-Gordan co-

efficients which are displayed in Tables I and II, respec-
tively. ' Multiparticle fractional parentage coefficients of
the usual shell model can be found in Ref. [16].

Our algebraic treatment has the remarkable common
features with Ref. [17] where only ground-state virtual
clusters were considered but the residual nucleus A-6 was
permitted to have an arbitrary hole excitation.

IV. A FEW REACTIONS ON p-SHELL NUCLEI

The first example is the i O(p, pt) N reaction to the
three lowest levels 1/2, 3/2, and 5/2 of the resid-
ual nucleus N. Figure 1 demonstrates the expected
Oq anisotropy at the kinematical conditions p =0.6
(GeV/c), q=90 MeV/c, and @~=15'. We see that the
anisotropy is rather substantial; the ratio of maximum to
minimum is 2—5, but the above ratio is still a few times
less than for the i2C(p, pn) C(0+;2+;4+) reaction [3].
This feature is typical for clusters lighter than the o. par-
ticle. Figure 2 shows the calculated momentum distri-

I i i I & i I

0 30 60 90
8& (deg)

FIG. 1. Oq anisotropies of the final nucleus momentum dis-
tribution for the O(p, pt) N reaction, p = 0.6 (GeV/c)
q=90 MeV/c, and Ipv = 15'. Curves 1, 2, and 3 correspond
to the lowest levels of the N nucleus with j = —,—,and

, respectively.

butions of the recoil nucleus N in the corresponding
states 1/2, 3/2, or 5/2 after averaging on the orien-
tation angles Oq and &pq. The pronounced minima of the
form factors, which are typical characteristics of our the-
ory with no deexcitation effects, become apparent when
the above effects are taken into account, and the cross
section increases from 2 to 10 times. So, even though
the form factors are being averaged over the orientations
of the recoil momentum q, they still show the essential
inQuence of deexcitation effects.

Various approximations to our theory are compared in
Figs. 3—5 showing the results for the deuteron, triton,
and o.-particle knockout from N, C, and 0 nuclei,
respectively, with the transition to the ground states of
the residual nuclei. Typical eikonal parameters of cluster
distorted waves are given in Table III. For potentials of
clusters bound in the initial nuclei, see Ref. [18]. It is
instructive to see from these figures that deexcitation ef-
fects produce a few times increase of cross sections. How-
ever, if the values of Oq and pq are fixed, some times the
shapes of the form factors can be similar for theories with
and without deexcitation efFects, respectively. So the
comparison of results for a few different g orientations
is of importance here, which means the investigation of
8& and &p~ anisotropies (see Table III).

TABLE II. Clebsch-Gordan coeiiicients of the SU(3) group
((Ap)L

~

(A'p')L', (A"y,")L")
(A'p') (20) (3o)

(Ap)L L'L" sP
I

DI
II

ss
(3o)I
(30)E 1

(40)s
(4o)D v —,'. v —,'.
(40)G

If (A, p)=(AO) and (A'p)=(A', 0), then (A"p")=(A —A', 0).

- I ]I I

lo' =
I I I I I I I I I I I I I I

C) l00 200
q(MeV/c)

FIG. 2. Momentum distributions of the final nucleus for
the O(p, pt) N reaction averaged over orientations of the
recoil momentum —q, p = 0.75 (GeV/c) . Curves 1, 2,
and 3 correspond to the lowest levels of the N nucleus with
j = 2, 2, and —,respectively (solid line, with deex-
citation; dashed lines, with the ground-state virtual cluster
only).
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) -~~
2

la'

10'

)P
~ a s s ~ I & i ~ I I

0 )00 200

q (MeV/c)

IO
2

$0

JP4 i s s s I i s i I I i s

0 IOO 200
q(MeV/c)

FIG. 4. Same as in Fig. 3 for the C(p, pt) Bs., ( — ) re-
action, p = 1.2 (GeV/c), O~ = 57', y~ = 88'.

IO'
U

A CL (p2

IO'

~p4»» I

0 IOO 200
q(MeV/c)

FIG. 5. Same as in Fig. 3 for the O(p, pn) C(0+~) reac-
tion, p = 1.2 (GeV/c), O~ = 42', p~ = 62

TABLE III. The eikonal parameters of distorted waves

Eb, ~ b(MeV)-
"C(p,pt)'B

14N( d)12C

16O( )12C

15
0.55

(o.o57)
0.32

(0.036)
0.67

(o.ooo)

30
0.60

(0.072)
0.41

(0.053)
0.74

(0.103)

45
0.64

(0.088)
0.47

(0.068)
0.79

(0.114)

60
0.67

(0.101)
0.50

(0.085)
0.82

(0.120)

FIG. 3. Momentum distribution of the final nucleus for the
N(p, pd) C(0+~) reaction, p = 0.5 (GeV/c), O~ = 22',

pq
——74 . Curves 1, 2, 3, 4, and 5 correspond to plane

waves with deexcitation, distorted waves with deexcitation,
distorted waves with deexcitation but with oscillator asymp-
totics of the bound cluster wave function, distorted waves with
no deexcitations, and plane waves with no deexcitations, re-
spectively.

The asymptotic character at the bound cluster wave
function is of in8uence too; it corresponds either to the
Woods-Saxon potential well or to the oversimplified case
of the oscillator potential. Finally, the form factor of the

O(p, pn) C(0+) reaction is, in general, similar to that
of the C(p, pa) Be(0+) reaction —see Ref. [3]. We
must remember in all the above discussions that the the-
ory is valid in the region of small recoil momenta q (300
MeV/c. At higher q values three-body rescattering ef-
fects [7,8] are expected to be visible. However, their mag-
nitude in general is a few times less than that of cluster
deexcitation effects in the region of small q values.

V. CONCLUSION

The principal results of the present paper are the fol-
lowing.

(1) Eikonal approximation formulas for a cluster
quasielastic knockout theory are given. This numerically
economical version of a generalized DWIA approach was
confirmed by the method of a partial-wave expansion of
the distorted waves.

(2) A method of calculation of excited cluster spectro-
scopical amplitudes is presented with the emphasis on
practical details.

(3) Numerical DWIA results for the
O(p, pt) N(1/2, 3/2, 5/2 ) reaction show the essen-

tial Oq anisotropy, which is, however, a few times less
than the anisotropies expected for the (p, pn) reaction on
a C nucleus [3]. This feature is typical for knocked-out
clusters lighter than the a particle. In general, Oq and yq
anisotropies originating in cluster deexcitation effects are
much more strong than those connected with three-body
rescattering effects, etc. [7,8].

(4) The contribution of cluster deexcitation amplitudes
to the momentum distribution of the recoil nucleus A-6
is quite visible even if this distribution is averaged over
the orientations of the recoil momentum q.

(5) The investigation of the q dependence of the form
factors at a fixed q orientation can be especially instruc-
tive when the results for a few different orientations can
be compared to each other.

So, in general, the experimental investigation of
quasielastic knockout of clusters &om p-shell nuclei by 1
GeV protons is a very promising area of research where
many original features are expected.

The actual direction of further theoretical investiga-
tions should take into account the corrections to Glauber-
Sitenko multiple scattering theory (especially, spin- and
isospin-dependent effects) to be able to cover the energy
range E„=400—800 MeV. We strongly suggest experi-
menters extend to this energy range the productive cur-
rent experimental research of cluster quasielastic knock-
out at bombarding energies of 100—200 MeV [1] having
in mind here the low-energy modification of new effects
discussed in Ref. [3] and in our present paper.

The authors express their gratitude to Prof. V.M.
Kolybasov and Prof. R.E. Warner for valuable remarks.
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