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Coupled-channels analyses of scattering and fusion cross sections of 160 + xs2'154Sm,

W systems at sub- and near-Coulomb barrier energies
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Coupled-channels calculations are performed to predict fusion, elastic scattering, and inelastic
scattering cross sections for the 0+ ' Sm and 0+ 6W systems at sub- and near-Coulomb
barrier energies, taking into account the lowest rotational states of the target up to I = 8+ explicitly.
It is shown that experimental data of fusion cross sections taken recently with high precision, partial
fusion cross sections, and also average spin values of compound nuclei formed after fusion are well

reproduced by the calculations using optical potential parameters that can reproduce elastic and
inelastic scattering data. The fusion-barrier distribution, defined as the second. derivative of the
fusion cross section d (Eo')/dR, is also calculated and compared with experimental data. Particular
attention is focused on efFects of the Y4 deformation of the target on various physical quantities.

PACS number(s): 25.70.—z, 24.10.Eq

I. INTRODUCTION

Much attention has been focused in recent years on
heavy-ion-induced reactions at near- and sub-Coulomb
barrier energies [1], the attention being stimulated by a
number of interesting observations made in these reac-
tions, such as enhancement in the fusion cross section
o~(E) [2], correlation between the magnitude of o.~(E)
and the total direct reaction (DR) cross section oDR [3],
and the threshold anomaly [4], i.e. , a rather striking en-
ergy dependence of the optical potential for elastic scat-
tering in the above energy region. All these observations
hinted at the importance of entrance channel coupling to
DR channels. A number of large scale coupled-channels
(CC) calculations [5—7] have thus been performed. The
simultaneous fits obtained to both fusion and scattering
data, however, have not been satisfactory; the fits ob-
tained have not been as good as those obtained in the
usual CC analyses of the scattering data alone. Very
critical tests of the theoretical calculations have, how-
ever, remained as yet unfinished, mainly because sufB-
cient, accurate experimental data for making such tests
were not available for both fusion and scattering.

Recently, however, very precise measurements of
heavy-ion fusion cross sections o~(E) at energies near
and below the Coulomb barrier have been performed
for the 0 + Sm and the i60 + i86W systems by
Wei and co-workers [8,9], providing valuable data that
can be used for making a detailed test of the theoret-
ical predictions. The original motivation of the mea-
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surement was to determine reliable values of the so-
called fusion-barrier distribution [10] D(E), defined as
D(E) = d2(Eo~(E))/dE2 [ll]. In Ref. [11],D(E) was
indeed deduced from the measured ox:(E) for both 0
+ i54Sxn and xsO + xssW systems. The deduced D(E)
showed a characteristic difFerence in the energy depen-
dence of the D(E) for the 0 + i54Sm and xeO + xssW

systems. The difFerence was then explained theoretically
in terms of the difFerence between the Y4 deformations
(P4) of the targets ( Sm and sW) involved [9].

The theoretical analysis made in Ref. [9] used an adi-
abatic approximation [12], and perhaps because of this
a rather large diffuseness parameter of a=1.27 fm was
called for in reproducing the experimental oJ;(E) and
D(E). Fxxrther, for the case of the sO + i W system,
use was required of Pz and P4 values which are signifi-
cantly diferent from those determined &om analyses of
inelastic scattering data. The implication is that the po-
tential and deformation parameters assumed in Ref. [9]
may not reproduce the elastic and inelastic scattering
data.

The aim of the present study is to perform an ex-
tended CC analysis [6,13] of the fusion cross sections of
Refs. [8,9], together with elastic and inelastic scattering
data [14—16] for the xsO + xsz~»4Sm axid isO + xssW

systems. Data of partial fusion cross sectioxis [17] and av-
erage spin of the fused systems [17,18] will also be consid-
ered in the analysis. In the extended CC approach [6,13],
the fusion and other direct reactions (mainly particle-
transfer reactions that are not taken into account ex-
plicitly in the calculations) are described in terms of the
imaginary part of the optical potential; the imaginary
part thus consists of two parts, i.e., the fusion part and
the direct reaction (DR) part. This enables us to treat fu-
sion within the &amework of the CC theory. The radius
and difFuseness parameters of the fusion potential (the
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II. THEQRY

A. Coupled-channels equations

In the extended CC theory of Refs. [6,13], one performs
usual CC calculations for generating the CC wave func-
tions as described, for instance, in Ref. [19]. The wave
functions may be written as

) ~("&e +I )e-=.~«,')e( ) (21)
ee I

~e'where (i Ye 41 )e~ is the channel wave function of the
total angular momentum and its projection (Em), Yp
and 41 M being the spherical harmonics and the intrinsic
wave function of the colliding ions. The Yje e, of course,
represents the relative orbital angular motion of the two
colliding ions. The radial wave function y(e, l, )e(r) in Eq.
(2.1) satisfies [19]

(E o)X(e~i~)e(r) = ) Uele" (r)X(e«1")e(r)~
(+) (+)

el e

where

Uee (r) = ((i &i Ia@1)e~Ui~(t Ye lac'I )e). (2.3)

In the present study, we take into account for 4I M
the lowest rotational states of the target up to I = 8+
explicitly. The projectile excitation is ignored. We also
take into account efFects of Coulomb excitations. The
diagonal potential Uo in Eq. (2.2) and the coupling po-
tential Ui in Eq. (2.3) are generated by following the
usual deformed optical potential prescription [19]:

fusion part of the absorptive potential) are fixed from a
fit of the calculated fusion cross sections to the data. As
will be seen, the radius parameter r~ of the fusion poten-
tial thus determined turns out to be r~ 1.4 fm. The
value is much larger than the value r~ = 1.0 fm assumed
in previous CC calculations performed so far [5—7]. In the
calculations, we also take into account the efFect of the
threshold anomaly [4]. The major issue in the present
study is thus whether the CC calculations assuming a
large fusion radius parameter can improve the simulta-
neous fit to the fusion and scattering obtained before in
the CC calculations with a small radius parameter.

In what follows, we shall 6rst briefly describe in Sec. II
the method of our CC calculations. We employ a new
approach for solving the CC equations, which will be
discussed. in this section. The results of the numerical
calculations and the comparison with experimental data
are presented in Sec. III. Section IV concludes the paper.

1
U(")(' ')(r, E) = 4vr U(r, E;8')Yp„(8')d(cos8'), (2.6)

0

with

U(r, E) = V (r, E) + iW(r, E). (2 7)

The 8' dependence involved in the potential U(r, E) in
Eq. (2.6) is introduced when the various radii involved
in U(r, E) are deformed [see Eq. (2.18) and Eq. (2.19)
given below], V(r, E) and W(r, E) being the real and
imaginary parts of U(r, E).

The V(r, E) that we use in the present study may be
written as follows:

V(r, E) = V(r) + b,v(r, E) + Vc „&(r), (2.8)

where the sum of the first two terms represents the
nuclear part of the potential, while the third is the
Coulomb part. The nuclear potential consists of the
energy-independent part V(r) and the energy-dependent
part b,v(r, E). We fix V(r) at an energy Es above
the Coulomb barrier, where the scattering cross sections
are more sensitive to the parameters than otherwise.
AV(r, E) is generated &om W(r, E) by using the dis-
persion relation [20]. Explicitly, the three terms in Eq.
(2.8) are given as

V(r) =
1+ exp[(r —av)/av] '

P W(r, E')dE'
o (E' —Es) (E' —E) '

3ZZ'e' 8(Bc —r') „,
4vr Bsc

f
r —r']Vc.„)(r,Bc) =

(2.9)

(2.10)

(2.11)

W(r, E) = W~(r, E) + WTR(r). (2.12)

WTR describes absorption due to direct reactions to all
other channels than those included explicitly in the calcu-
lations, while W~ describes the absorption due to fusion.
Note that use is made of the suKx TR, instead of DR
for representing the DR part, since the major part comes
Rom the transfer reactions (TR's). The detailed forms
of W~(r, E) and WTrt(r) are

WTrt(r, E) = (1 —((r, Es))W(r),

Wp (r, E) = ((r, E)W(r),

(2.13)

(2.14)

where

In order to evaluate the fusion cross section, the imag-
inary part W(r, E) is divided into two portions, a direct
reaction part WTR and a fusion part W~ [13]. We have
thus

1 U. (o)(r«) („E)CP )

W(r) =
1 +. exp[(r —Biv)/avv]

' (2.15)

where

) U(A)(rot)
( E)DA Y. (8

A p, (A+0)
(2.5)

exp [(E —E~)/a~]
{1+exp[(E —E~)/a~])

1

1+exp[(r —R~)/ap]
' (2.16)
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Note that WTR(r) is assumed to be energy independent
and is determined at E = Eg. Also note that at E = Eg,
the sum of W~(r, E) and WTR(r) becomes simply equal
to the energy-independent W(r) defined by Eq. (2.15).
Therefore we have at E = E~

U(r, Es) = V(r) + Vc „~(r) + iW(r). (2.17)

The idea is that we take U(r, E~) &om the literature
that gives results determined &om the usual CC analy-
sis of the elastic and inelastic scattering data. We then
separate W(r) into W~ and WTR parts by means of the
radial cutoff factor 1/(1+ exp[(r —R~)/a~] j in $(r, E),
Ry and a~ being the radius and dift'useness parameters.
The additional E-dependent factor involved in the func-
tion ((r, E), i.e. , 1/(1 + exp[(E —E~)/a~]), is designed
to introduce an energy dependence in WJ;(r, E) in order
to take into account the fact that the fusion channels
become progressively closed as the incident energy de-
creases ("threshold anoinaly" [4]). Note that E~ in the
factor denotes the Coulomb barrier energy and a~ is the
the diffuseness.

As remarked, the 0' dependence of U(r, E) is intro-
duced by deforming all the radii involved in U(r, E):

OR —OIN + 0TR + &I ) (2.23)

~, = —(e~+llw, le~+i)

= q„):hp+'l(wg)~-l~.'+')
a,P

, (e),
e

(2.24)

where

~(2Z+1) t'8 )
A2 (hv)

(+)* (+)
X(e"I")eWi;e e (r)&(e I )e(r) "

(2.25)

where o.IN is the total inelastic cross section to the chan-
nels that are taken into account explicitly in the calcula-
tions, while oTR and o~ are contributions coming &om
absorption due to, respectively, WTR and W~. The 0.~.

(j = TR and F) can be given in terms of W~. and the CC
wave function 4'~+l [6,13] as

R; = Ro, ~
1+) Pq Ypo(8')

J

Rc = Roc 1+) .P), Y~o(~')
)

(2.is)

(2»)

where i = V, W, and F, and P& and P& are nuclear(N) (&)

and Coulomb deformation parameters, respectively. The
values of the nuclear deformation parameters P& 's are
obtained from the Coulomb deformation parameters P&c's

by taking into account the so-called radius correction for
heavy ions [21]:

W~ ewe~ (r) = (i (Ye~~ x 411~)el' li (Ye~ x 4 1~)e). (2.26)

(L") = ) .L"~~(L)/): &~(L). (2.27)

C. Method of solution of the CC equations

Note that W~ includes not only diagonal, but also non-
diagonal coupling terms.

The average kth moment of the spin distribution of
the compound nucleus is calculated by using the partial
cross sections 0 p (L = E) as

(2.2O)

bv= c&1+~+ ) &, ,PP,. (2.2i)

i(i+1)
&8m

~L
i)j 1 i(i+1)(2i+1)j(j+1)(2j+1)

2 4~(2L,+1)
, x(ijl —llLO)(ijOOlLO)

ifI. =O,

otherwise.

(2.22)

where T~ and Tv are, respectively, the Coulomb and real
nuclear potential radius parameters and C, . is a geomet-
rical factor:

The dimension of the CC equations we solve in the
present study is fairly large; in fact, taking into account
the rotational states of the target up to I = 8+, it
becomes N = 25. This, together with the inclusion of
Coulomb excitation, makes the numerical calculations
very time consuming. In order to reduce the compu-
tation time, we solve here the CC equations by fol-
lowing a method developed previously for solving con-
tinuum random-phase-approximation equations [22] and
also nonlocal optical potential problems [23]. We give
below a brief description of the method.

The first step is to convert the differential equation [as
given by Eq. (2.2)] into an integral form. For an example,
Eq. (2.2) may be rewritten (in an abbreviated form) as

The value of b is determined from Eq. (2.21). Ixe& = Ixe &~ee, +) t e Uee lxe &~

e

(2.28)

B. Fusion and transfer cross sections and average
spin values

Once W(r, E) is separated into two parts, as in Eq.
(2.12), the total reaction cross section o~ can be given
as

(o) 1
&e E —T —Up+ ie

(2.29)

where G& is the optical model Green's function and is
given by



T. IZUMOTO, T. UDAGAWA, AND B. T. KIM

We further transform Eq. (2.28) by multiplying both
sides by Ue e and summing over 8" into

taken into account enough basic functions in the expan-
sion or not, may be checked, e.g. , with e = 10 3 as

IAe &
= Ipe ) + ) Ue e Ge IAe" &, (2.30) (2.39)

where

IAe) =) Uee Ixe ),
etc

lpe ) = ):Ue e" lxe &be",e, = Ue e, lxe, &.
(0) (0)

(2.31)

(2.32)

Equation (2.30) is our basic equation to be solved. Once
IAe) is solved, we may easily evaluate lye& as

Ixe& = Ixe )bee. +).Ge IAe&.
e

(2.33)

IA) = ).&'ID').
i=O

The basic functions are generated as follows:

(2.34)

The above equation follows from the insertion of Eq.
(2.31) into Eq. (2.28).

The merit of considering Eq. (2.30), instead of Eq.
(2.28), is in the fact that the unknown quantities IAe )
are localized functions, in contrast to lye), which are of
course not localized. We may then assume that IAe ) can
be expressed as a sum of a set of orthonormalized basic
functions (ID;)) (Lanczos method),

The essential task of the numerical calculations in-
volved in the above approach lies in evaluation of the
integral for generating the basic functions, i.e. , in the
calculations of UG ID;). Since we include Coulomb ex-
citation e6'ects, the radial integral involved in the calcu-
lation has to be extended to a large distance. We, in
fact, carry out the integration up to r „=250 fm. This
makes the calculation very time consuming. In order
to save computation time, we employ the semiclassical
approximation [24,25], particularly in evaluating the in-

tegrals at large distance, say, r ) ~2a, where a is the
classical turning point. There the Coulomb wave func-

tions He (kr) are approximated by WEB wave func-
tions and the rapidly oscillating terms in the integrand
such as He(+)(kr)He(, +)(k'r) and He (kr)He, (k'r) are
discarded. Once this approximation is made, one can use
a large mesh size in carrying out the integrals, enabling
us to save considerably on computation time without los-
ing numerical accuracy in the calculations. We take into
account partial waves up to E = 700. As remarked above,
the solutions of the CC equations are obtained by setting
up a convergence check with e = 10 . N = 55 is set as
the maximum number of iterations. The typical number
N necessary for achieving convergence is N = 20 for the
~60 + ' Sm systems, while a somewhat larger num-
ber N is required for the 0 + 6W system. Sometimes,
N 50 is required for the latter reaction case.

1
IDo& = ~ Ip&,

0
(2.35)

III. ANALYSIS

1
ID'+~& = ~i+1

T

&
UG(') ID, ) —);,ID, ) &,

j=O
(2.36) A. Optical potential parameters

where a;~ is fixed &om the orthonormal condition

(D, ID, ) = b;, . (2.37)

N

) (b,, —n,,)C, = Nab, o.
i=G

(2.38)

The convergence of the expansion, i.e. , whether we have

Equation (2.30) is then reduced to the following inhomo-
geneous linear equation for determining the expansion
coefficients C;(i = 1 N):

The parameters of the starting optical potential
U(r, Fs) of Eq. (2.17) are taken from Stokstad and
Gross [14] for the 0 + Sm systems at E~ b
72 MeV and from Love et al. [26] for the 0 + W
system at E) b ——90 MeV. Modifications are, however,
introduced to the strength parameters VG and WG in
such a way that the resultant elastic and inelastic scat-
tering cross sections fit the data [14,15] as well as pos-
sible. Since scattering data are not available for the

0+ W system, use was made of the data for the 0
+ W system. This procedure fixs the potential pa-
rameters at E~~b ——72 and 90 MeV for the 0 + ' Sm
and 0+ W systems, respectively. The corresponding

TABLE I. Optical potential parameters.

System
16O + 152j154S
16O + 152,154S

16,18O + 186)184~
16/ 18O + 186)184'g7

Set
A
B
A
B

Vp

(MeV)
20.0
22.5
40.0
35.0

~o
(MeV)
20.0
13.0
13.5
18.0

rv
(fm)
1.34
1.34
1.313
1.313

(fm)
1.34
1.34
1.313
1.313

av
(fm)
0.57
0.57
0.457
0.457

+W

(fm)
0.36
0.36
0.457
0.457

&C

(fm)
1.25
1.25
1.10
1.10
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TABLE II. Fusion potential parameters.

System
16Q + 152)154S

16Q + 152,154S
16Q + 186~
16Q + 186~

Set
A
B
A
B

pp

(fm)
1.51
1.47
1.45
1.48

ap
(fm)
0.30
0.30
0.30
0.30

g~
(MeV)
59.0
59.0
69.0
69.0

any

(MeV)
3.0
3.0
3.25
3.25

c.m. energies (65 and 83 MeV, respectively) are called
Eg values for these two systems. The set A values of the
parameters listed in Table I are those determined in this
way. We shall also perform, however, calculations of o.~
with another set 8 in order to study the sensitivity of 0.~
to the choice of the potential. Set 8 can also reproduce
quite well the scattering data, though the fit obtained is
somewhat worse than that obtained with set A. Set 8 is
also listed in Table I.

The parameters r~ and a~ in W~(r, E) are determined
by demanding that o'~(E) at the incident energy Es
(which is above the Coulomb barrier) should be repro-
duced. The values thus determined for the set A and 8
potentials are listed in Table II. We note that the val-
ues of r~ = 1.4 fm and a~ ——0.3 fm thus 6xed are very
much the same as those determined previously in an ex-
tended optical model analysis [27] of the elastic scatter-
ing and fusion data. It is remarkable that the value of
r~ is much larger than that used in CC calculations done
before [5—7].

As for the parameters E~ and a~ describing the en-
ergy dependence of the fusion potential W~(r, E), we set
E~ equal to the height of the Coulomb barrier. The dif-
fuseness parameter a~ is fixed as given in Table II. (The
parameter a~ is not critical in the present calculations. )
We normalized the dispersive term AV(r, E) of the real
part [20] to be zero at E, = Es. In Fig. 1, we show
energy dependence of the real and imaginary parts of the
nuclear optical potential at three radial distances at the
surface region.

10

9
Real Part

1 60 1 54Sm

8
RS 11 03 fm lmag. Part

6)
CO

CO
Ct:

11.43

11.8P, '
rr

r
i»

5355575961 6365676971 73

(MeV)

10

Real Part 160 186W

S = ''52

The overall fit of the calculated cross sections to the
data is very good as expected. We note that in order to
get this good fit, it was important to use a positive P4 for
is2Sm and a negative P4 for 4W. This is clearly seen in
the case of the 0 + Sm system; the calculated 4+
cross section changes quite dramatically when the sign of
P4 is reversed as demonstrated by the dotted line in the
6gure. The change occurs as a consequence of the change
in the interference between the double LI = 2 and single
LL = 4 excitations. The good Gt of the calculated 4+
angular distribution with positive P4 to the experimental

B. Elastic and inelastic scattering

Figure 2 shows a comparison of the calculated elas-
tic and inelastic scattering cross sections to the data at
E = Es. Use is made in the calculations of the set A
optical potential parameters (see Table I) and also of the
Coulomb deformation parameters listed in Table III. The
values of pz+'s for the isO + is2'is4Sm systems are taken
from Refs. [14,21], while those for the isO + is4W and

0 + W systems are &om Refs. [26,28]. The nuclear
deformation parameters are then generated by using Eq.
(2.20). These values are further modified by applying the
radius correction for heavy ions [21]. Note that the signs
of P4 for the Sm isotopes are positive, while those for
the W isotopes are negative. These signs are well estab-
lished &om o.-particle scattering experiments [21]. The
solid lines shown in Fig. 2 are the Anal theoretical pre-
dictions, while the dashed lines shown there are 4+ cross
sections obtained by artificially reversing the sign of P4.

6)
Q)

5
CQ

CC

4 11.92
Imag. Part

12.34

RS ——11.52 fm

1.92

I A 4 I I I0

12.34

6365676971 7375777981 83

Ec m (Mev)

FIG. 1. Energy dependence of the real and imaginary parts
V(B,E) and W(B, E) of the nuclear optical potential (a)
for the 0 + Sm system (A = 154) and (b) for the 0 +

W system (A = 186), calculated at three radial distances
R, = 1.40, 1.45, and 1.50 times of (16 ~ + A ~ ) fm. Here
the nuclear deformation Pq 's are set to be zero.
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TABLE III. Coulomb deformation parameters.

1PO

0 (72 MeV) +

0+

152S
154S
184~
186~

pC

0.25
0.27
0.280
0.239

pC

0.048
0.054

-0.089
-0.090

pC

-0.009
-0.014
0.0
0.0

CC

1 0-1

10 2

100

20 40 60 80 100 120 140

0 (deg)

0 (90MeV) + 4W

data [14] clearly indicates that the sign of P4 for that
system is positive. A similar change is also seen in the 4+
cross section of the 0 + W system. Unfortunately,
there is no experimental data available at this moment
for this system to test the theoretical prediction. Finally
we note that the change of the sign of P4 affects not only
the 4+ cross section but also the cross sections of other
spin states significantly.

Figure 3 shows the results of the calculations for the
p + Sm at other energies E)~b: 59' 621 66) and

68 MeV than E~ b
——72 MeV considered above and are

compared with the experiinental data [16]. The same
optical potential parameter set A is used in the calcula-
tions. The overall fit of the calculated results to the data
is again very good. The fit obtained above is better than
that reported previously in Ref. [16]. This supports the
validity of the optical potential parameter set A.

For the sake of comparison, we included in Fig. 3 by
dashed lines, as was done in Fig. 2, 4+ cross sections ob-
tained by artificially reversing the sign of P4. For lower
energies, not much difference is observed in the shapes of
the cross sections obtained with positive and negative P4,
but still appreciable difFerence is observed in the Inagni-
tude of the cross sections.

C. Fusion cross section

101
CL"

D 10-2

103

20 30 40 50 60 70 80 90 100 110 120

() cm ("'»
FIG. 2. Calculated elastic and inelastic scattering cross sec-

tions (a) for 0 + San at E~~b = 72 MeV and (b) for Q +
W at E~ b ——90 MeV in comparison with the experimental

data of Refs. [14] and [15], respectively.

In Figs. 4 and 5, calculated fusion cross sections cr~(E)
for the p + ' Sm and 0 + W systems, respec-
tively, are compared with the experimental data [8,9]. It
is seen that the calculation reproduces the experimental
o.~ very well. We are thus able to achieve a simultaneous
fit to both fusion and scattering data. In Figs. 4 and
5, included are calculated o ~(E), o iN (E), and o T R (E)
It is remarkable that the calculated oTR(E) decreases
much slower than does o~(E). Such a feature in oTR(E)
is indeed observed in the measured oTR(E). Some au-
thors [14] assume that W(r, E) = W~(r, E) without sep-
arating ~(r, E) into the F and TR parts. This means
that o.~ + o.TR is identified as o.~. As seen, this approx-
imation overestimates cr~ by a large factor, particularly
at lower energies.

In Fig. 6, we study how the calculated fusion cross
sections change if one ignores higher-spin states one by
one. It is seen that almost no change is seen when one
ignores the highest-spin 8+ state. We note, however, that
the change is not completely negligible, particularly in
the barrier distribution D(E) as will be discussed later
in Sec. IIID.
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0 (59 MeV) + Sm
()

1 60 (62 MeV) + 1 52S

100 Q+
100

1 Q 1

CC

U

102 10-2

101
CC

a

D

103 103

30 50 70 90 110

8 c (deg)

130 150 30 50 70 90 110 130 150

8 c (deg)

(c)0 (66 MeV) + Sm 160(68 MeV) + 152Sm ()
100

100 0+

1Q-1

CC

10-2 10-2

10 1

CC

a

U

103

30 50 70 90

8 (deg)

110 130 150 30 50 90 110

8 c m (deg)

130 150

FIG. 3. Comparison of the elastic and inelastic cross sections of 0 from Sm from the coupled-channels calculation with
the experimental data at E& b = 59, 62, 66, and 68 MeV [16]. The dashed line shows the prediction for the 4+ state by
artificially reversing the sign of P4.
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D. Pusion-barrier distribution

We now turn our attention to the fusion-barrier dis-
tribution D(E), which is, in practice, approximated by
a finite difFerence h (Eo)/b'E'2. We use the five-point fi-
nite difference formula. In Refs. [8,9], the data of o'y
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FIG. 4. Calculated fusion cross sections cr~ for the 0 +
Sm systems in comparison with the experimental data.

Included also are the reaction cross sections o ~, the inelastic
scattering cross sections o.iN, and the transfer reaction cross
sections o TR.

FIG. 5. Calculated fusion cross sections o.~ for the 0
+ W system in comparison with the experimental data.
Included also are the reaction cross sections sr~, the inelastic
scattering cross sections oqN, and the transfer reaction cross
sections crTR.

have been taken with a step size of bE = h =0.453 MeV
for the 0 + 4Sm system and 6 =0.460 MeV for the

0 + W system. The barrier distribution is, how-
ever, normally calculated by using hE=4h Note that.
bE=4h —1.8 MeV, which is quite large. The use of
such a large bE=4h is required in order to make the sta-
tistical error of the deduced D(E) reasonably small [9].
With such a large bE, we are looking at quite gross fea-
tures of D(E). In the present study, however, we shall
investigate D(E) extracted by using bE=h and hE=2h, ,
in addition to the case of bE=4h. When necessary, we
shall distinguish these D(E) obtained by using bE=h,
2h, , and 4h as Dh, (E), D2&(E), and D4h, (E), respectively.
In Figs. 7 and 8, we first show calculated D4g(E) and
D2h(E) by the solid lines in comparison with the corre-
sponding experimental data. The vertical bars indicated
in these figures are estimated from the statistical errors
of the experimental data. It is seen that the calculated
results explain fairly well the experimental data.

It is remarkable that the experimental D(E) of the is0
Sm and 0 + W systems are significantly dif-

ferent from each other, particularly at the lower energies;
D(E) of the 0 + Sm system rises rather slowly at
the lower energies while D(E) of the 0 + W sys-
tems does rather rapidly. This characteristic difference
is fairly well explained by the calculations. The sign of
P4 played a crucial role in reproducing the difFerence; if
one changes the sign of P4, the predicted D(E) becomes
completely diferent as shown in the 6gures by the dotted
lines. It should be noted here that a similar explanation
has been given earlier in a study based on the adiabatic
approximation [9].
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It is also remarkable that the peak structure appears
more conspicuously in D(E) for the MO + ~ssW system
than for the 0 + Sm system. We may ascribe this
to the fact that the absorptive potential for the the 0
+ W system is much weaker by about a factor of 3
at the surface than that for the 0 + Sm system
(see Fig. I). The stronger absorption averages out the
structure. Also, a large negative P4 for the ~sO + ~ssW

system plays a crucial role there. This point will further

be discussed later when the calculated partial fusion cross
section 0~(l) is presented.

Also notable is that the structure becomes more re-
markable when bE is decreased &om 4h to 2h. The
reason seems to be evident; the structure should appear
more markedly in the D(E) with a smaller bE, since the
energy average involved becomes less for the smaller bE.

In Fig. 9, we study how D(E) changes when the cou-
pling schemes of the calculations are changed. For the
case of the 0 + Sm system, two peaks appear when
the 0+-2+ coupling is assumed, while in the 0+-2+-4+
coupling, the number of the peaks increases to 3. How-
ever, even if the 6+ and 8+ states are added successively,
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FIG. 7. Calculated b (Eo)/bE (solid lines) for the 0 +
Sm system in comparison with the data for (a) 6E = 4h

and (b) bE = 2h. The dashed lines shown are the predictions
obtained by reversing the sign of the P4.
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the number of peaks does not increase any more, but
rather the peak structure tends to be smoothed out. For
the case of the 0 + W system, the number of peaks
appearing is 3 in the 0+-2+ coupling case and 4 in 0+-
2+-4+ coupling case. We thus have an additional peak
for the 0 + W system. This is in accordance with
the tendency seen before that the structure appears more
conspicuously in this system. The weak absorption and

a large negative P4 are responsible for the appearance of
the additional peak.

In view of the importance of the absorption effects, we
show in Fig. 10 calculated D2h(E) with the optical po-
tential parameter set B.The set B potential has a weaker
(stronger) absorption for the sO + Sm (~ 0 + W)
system than the set A potential has. Comparing with the
D2h, (E) shown before in Figs. 7 and 8, it is seen that the
structure of D(E) shown in Fig. 10 is more distinct for
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the case of the 160 + ~ Sm system, while the situation
is opposite in the 0 + W system. This shows that
the absorption indeed tends to smooth out the structure
as it should.

Finally, we show in Fig. ll calculated Dh, (E) in com-
parison with the experimental data, taking, as an exam-
ple, the 0 + W system. As seen, the statistical er-
ror bars are quite large, particularly at the higher-energy
region. It is thus impossible to make any meaningful
physical discussions there. However, at the extremely
low-energy side, the statistical errors are relatively small.
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There we observe a finer structure than that seen before
in D2h, (E). At this moment, it is still premature to draw
any definite conclusion, but nevertheless we might take
it as a sign of the possibility that we might observe more
detailed fine structure in D(E), if the data become avail-
able with better accuracy.

E. L distribution of fusion cross sections and the
average values

Figure 12 shows partial fusion cross sections 0 p (/) cal-
culated for the 0 + Sm system in comparison with
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the experimental data [17]. The data are again well re-
produced by the calculations.

In Fig. 13, we show two-dimensional plots of the partial
fusion cross sections 0~(/, E) as functions of E and E for
(a) the isO+is4Sm system and (b) the isO+issW sys-
tem. An interesting aspect here is that a rather striking
double structure develops in o~(E, E) for the sO+ s W
system. Such a structure is not seen in D(E) of the
~ 0+ Sm system. We have noticed that the structure
disappears when the absorption becomes stronger and
also the absolute magnitude of the P4 value is reduced.
The structure also disappears when the sign of P4 is re-
versed. These physical effects are exactly the same as
those seen in the appearance of an additional peak in
D(E) of the i 0+ W system. This suggests that these
two features have the same physical origin.

In Fig. 14, we present calculated average values of spin
distribution (L) for the 0 + is ' Sm systems in com-
parison with the experimental data [17,18]. The calcu-
lated (L) are again in good agreement with the measured
values. In Fig. 15, comparison of the calculated (L2) with
the existing data [17] is made for the isO + is~Sm sys-
tem. Again the agreement between the calculated and
experimental values is good.

Finally, we present the calculated (L) for the 0 +
6W system in Fig. 16. Corresponding data are not

available at present for this system.

overestimate the experimental 0~ by a factor of 2—3 at
sub- and near-Coulomb barrier energies.

We observe a similar effect on the distribution of par-
tial fusion cross sections as shown in Fig. 18. There o.~
calculated with the dispersive and nondispersive poten-
tials are shown by the solid and dotted lines, respectively.
When use of the nondispersive potential is made, the
cross section becomes larger. For the 0 + 6W sys-
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and (b) for the 0 + W system at E~~b = 70, 72.5, 75, 80, and 90 MeV. The dashed lines show the prediction obtained hy
neglecting the energy dependence of the optical potential.

tern, the wiggle seen in D(E) at sub-Coulomb barrier
energies disappears.

IV. CONCLUSION

We have performed extended CC calculations of fusion
and scattering for the heavy-ion systems 0 + ' 54Sm,

0 + W, and 0 + W at sub- and near-Coulomb
barrier energies. Use is made of dispersive optical poten-
tials that satisfy the dispersion relation [20] in order to
take into account the rapid energy dependence (thresh-
old anomaly [4]) of the fusion potential (fusion part of
the imaginary potential). The parameters of the fusion
potential were determined &om a fit of the calculated fu-
sion cross sections to the data. The radius parameters
thus fixed turued out to be rather large: r~ 1.4 fm. It
has been shown that calculations using such optical po-
tentials can reproduce both fusion and scattering cross
section data in a quantitative manner. The fusion data
thus reproduced include not only the total fusion cross
section, but also the partial E distributions and the aver-
age spin ((L)) values of the compound nuclei formed after
fusion. It is remarkable that the fit obtained, particularly
for the elastic and inelastic scattering data, is much bet-
ter than that obtained in previous CC calculations using
a small fusion radius parameter of r~ = 1.0 fm [5—7].

Ihxrther the calculations have been able to repro-

duce successfully the characteristic difference in the
fusion-barrier distributions between the 0+ Sm and

0+ W systems in terms of the difference in the signs
of P4 of the above two heavy-ion systems. Note that a
similar success has been obtained earlier in a study based
on the adiabatic approximation [9].

The calculations have further indicated that the Y4 de-
formation plays an important role in explaining charac-
teristic features of other physical quantities, such as the
interference pattern seen in the 4+ inelastic scattering
cross section and the enhancement of the average (L)
values in the sub-Coulomb barrier energies observed in
the 0+ ' Sm systems.

It is remarkable that the 4+ cross sections and the
partial fusion cross section o ~ (/) predicted for the

0+ W show characteristic destructive interference
patterns. These patterns originate &om a large nega-
tive P4 value that is experimentally well established in
the n-particle scattering from ~ssW [21]. At this mo-
ment, experimental data for testing the predictions are
not available. It is desirable that such data will be col-
lected in the future.
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