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Relativistic effect on low-energy nucleon-deuteron scattering
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The relativistic effect on differential cross sections, nucleon-to-nucleon and nucleon-to-deuteron
polarization transfer coefficients, and the spin correlation function of nucleon-deuteron elastic scatter-
ing is investigated employing several three-dimensional relativistic three-body equations and several
nucleon-nucleon potentials. The polarization transfer coefficients are found to be sensitive to the
details of the nucleon-nucleon potentials and the relativistic dynamics employed and are found to
prefer trinucleon models with the correct triton binding energy.
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I. INTRODUCTION

Recently, there have been many benchmark nonrela-
tivistic calculations of the three-nucleon system involving
realistic two- and three-nucleon potentials [1—3]. How-
ever, both the bound-state and low-energy scattering cal-
culations of this system involve large momentum com-
ponents of the wave function or the t matrix elements,
and this demands a relativistic treatment of the prob-
lem. Relativistic dynamical calculations in the three-
nucleon problem have been mainly restricted to the study
of the three-nucleon bound state [4—9] with few excep-
tions where relativistic efFect on the nucleon-deuteron
(nd) scattering length has been studied [9, 10]. Both
the four-dimensional Bethe-Salpeter-Faddeev (BS) equa-
tion [4, 5] in some approximate form and several types of
three-dimensional reductions of this equation have been
employed in numerical calculations [4—7, 9, 10].

We study the effect of relativistic dynamics on nd
elastic scattering by employing several nucleon-nucleon
potential models and four types of three-dimensional
relativistic scattering equations suggested recently [11].
These relativistic equations obey conditions of relativis-
tic covariance and two- and three-particle unitarity. At
the present time, one of the practical and feasible ways
of performing a relativistic three-nucleon calculation is
through these three-dimensional equations. At this point
it should be noted that the solution of the approximate
BS equation in ladder form, as has been performed re-
cently [4, 5], is not necessarily a superior way of dealing
with the relativistic effect [7, 12], partly because of the
problems in interpreting the four-dimensional potential
in the BS equation, and partly because of the difficulty
in extracting a meaningful single-particle limit &om the
two-particle BS equation in the ladder form.

In our previous investigation [9] we studied the efFect
of relativistic dynamics on the trinucleon binding energy
and the S-wave nd scattering length. Here we study the
relativistic eff'ect on differential cross sections, various
nucleon-to-nucleon and nucleon-to-deuteron polarization
transfer coefficients, and the spin correlation function,
C of nd elastic scattering. The present study indicates
that these polarization transfer coefficients are very sen-

sitive to the details of the nucleon-nucleon potentials and
the dynamics employed in three-nucleon calculation, and
favor models with correct triton binding energy.

The sensitivity of the nucleon-to-nucleon polarization
transfer coefficients of nd elastic scattering, especially
K„",at low energies (( 10 MeV) to the off-shell behav-
ior of the nucleon-nucleon potential has been known for
quite some time [13]. Recently, in relation to a study of
the three-nucleon problem with realistic meson-theoretic
potentials it has been observed [1, 14) that these polar-
ization transfer coefficients at 22.7 MeV are very sensi-
tive to the tensor part of the nucleon-nucleon potential.
It was found that the theoretical calculation employing
the Bonn-A meson-theoretic potential reproduced the re-
sults of nucleon-to-nucleon polarization transfer coeffi-
cient K„" better than the calculation based on the meson-
theoretic Paris potential. As the tensor parts of these two
potentials are very different, it was concluded [1,14] that
this 6nding supports the weak tensor force of the Bonn-A
potential as being more realistic than the stronger tensor
force of the Paris potential.

A previous study [15] demonstrated that three-nucleon
models based on central nucleon-nucleon potentials can
reproduce the nucleon-to-nucleon polarization transfer

t
coefficient K~ quite well, provided that these models also
reproduce the correct triton binding energy. In view of
this it is unlikely that the nucleon-to-nucleon polarization
transfer coefficient K" should carry much new informa-
tion about tensor nucleon-nucleon potentials which is not
implicit in the results of the triton binding energy. The
Bonn-A tensor potential reproduces for triton binding
energy 8.38 MeV, whereas the Paris potential yields 7.47
MeV. As the Bonn-A potential reproduces the experi-
mental triton. binding energy (8.48 MeV) better than the

I
Paris potential, it also reproduces the above K& better
than the Paris potential. This casts doubt on the conclu-
sion about the superiority of the Bonn-A tensor potential
over that of the Paris potential [1, 14]. In our previous
study [15] only nonrelativistic three-nucleon models were
used. In this study we would like to see if the inclusion
of relativistic dynamics changes the general conclusions
of Ref. [15].

Though the magnitudes of relativistic corrections to
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the triton binding energy, Bq, and the S-wave spin-
doublet nd scattering length, a„g, as emphasized in pre-
vious studies, are interesting, it is most relevant to see if
meaningful physics could be extracted &om the relativis-
tic treatment of the three-nucleon system. The nonrela-
tivistic potential model calculations of these two observ-
ables employing meson-theoretic nucleon-nucleon poten-
tials [16] did not allow us to extract meaningful infor-
mations about the two- and three-nucleon interactions
because of the correlated behavior of the observables di-
rectly sensitive to these interactions [3]. The question
to ask at this stage is whether the relativistic treatment
of the three-nucleon problem is expected. to change the
scenario.

We present the mod. els in Sec. II. In Sec. III we present
numerical results. Finally, in Sec. IV a brief summary of
the conclusions are given.

II. NUCLEON-DEUTERON MODELS

The models that we shall use have been developed re-
cently [9, ll]. Here we present a brief summary of these
models.

The relativistic two-nucleon dynamics for a central S
wave potential is taken to be governed by the following
partial-wave Blankenbecler-Sugar (BIS) equation [17]:

[t-(q' q )l- = [ -(q')] .[ '(k')]-)[ (q)] ., (6)

the functional form of [r]„)of Eq. (6) is exactly identical
to its relativistic counterpart (4). This procedure gener-
ates phase-equivalent, two-nucleon potentials to be used
in nonrelativistic and relativistic three-nucleon problems.

The three-nucleon problem is solved with the following
one-nucleon-exchange three-nucleon Born term [9]:

+, '(»8 =" (&)U '(~)G(»$. (7)

In the nonrelativistic case the propagator G(p, g is given
by

G„„(p,q, E) = (p2 + q + pqx —mE —iO) (8)

2((d& + (d&)

~~.[(~.+ ~.)' —(V s —~-)' - '0]'

(10)

with 'P = p /4 +. q + pqz, and Q2 = q2/4 + p2 + pqz,
where z is the cosine of the angle between p and q.

In the relativistic case we use the following propagators
in Eq. (7) [9, 11]:

2(~~+ ~. + ~-)
J &g) Sj

s e [(~s + ~a + ~s ~) —s —iO]
'

t(q', q, k ) = V(q', q) +4vr p dp V(q', p—)
0 (dp

x t(p, q, k ),' —p'+ i0

1
Gc(p, q, s) =

(d„q[(d„+ (d~ + (dpi'
—~s —iO]

'

where(d„= (m +p ) ~ . The nonrelativistic two-nucleon
dynamics is taken to be governed by the I ippmann-
Schwinger (I S) equation.

We take the relativistic nucleon-nucleon potential in
the following form:

[VrL(q g q)]re) = ~rr[()rr(q )]rel[Urr(q)]re)& (2)

We generate a nonrelativistic two-nucleon t matrix, phase
equivalent to its relativistic version by the following
transformation for the form factors:

(~-(r)I- = (Q~/~a) l~-(r))-~

so that

where n = 0 (1) represents the spin triplet (singlet) state,
and the subscript rel (nr) denotes relativistic (nonrela-
tivistic).

The relativistic t matrix in this case at the square of
the center-of-mass (c.m. ) energy s = 4(m2+ k2) is given
by

[t-(q' q k')]-) = [~-(q')]-)[~. '(k')]-) [~-(q)]-)

where

(k2)] 4 .d
~

l~ [ -(q)l,.)
((d~) k2 —q2 + iO

(4)

wit} V
' = (~, + ~„,)'/4 —p'/4 —m' and g2 = (~„+

(d&q)2/4 —q2/4 —m2. Here we use notations (d&
——(m +

p2)~~2, (d„~ = [m2 + (p+ qQ~]~) 2, etc. The spin variables
are treated nonrelativistically in all cases.

In Eqs. (9)—(12) the parameter s is the square of
the total c.m. energy of the three-particle system. All
these propagators satisfy conditions of relativistic three-
particle unitarity, governed by that part of the denomi-
nator in these propagators which corresponds to the pole
for three-particle propagation in the intermediate state,
e.g. , at ~s = (dz + (dz + (dzq. The condition of relativis-
tic three-particle unitarity in these propagators is man-
ifested. in having the same residue at this pole. These
equations also satisfy conditions of two-particle unitar-
ity.

Equation (9) was advocated by Aaron, Amado, and
Young [18] and obeys time-reversal symmetry, e.g. ,
G(p, q, s) = G(q, J7, s). Equations (10) and (11) also have
this virtue of Eq. (9). The propagator Gc was suggested
long ago [19]. It has been shown [20] that the propaga-
tor G~ follows &om a suggestion by Ahmadzadeh and
Tjon [19]. However, the propagator Gz) has never ap-
peared in this form before. Previous numerical applica-
tions [4—7] of this propagator used unnecessary approx-
imations which violated conditions of unitarity and co-
variance [20]. Physically, these propagators di8'er in the
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way the particle and antiparticle contributions appears
in the kernel of the integral equation. In the propagator
Gg, for example, there is no antiparticle contribution.

q2 + &2 q2 q2
gz(q) = ', K = 1.5, 2.+7 q+ (14)

The Yamaguchi potential will be referred to as Y, and
the Tabakin potential with K = 1.5, 2 will be referred to
as T-1.5 and T-2, respectively. The constants of these
potentials are given in Ref. [9).

Tabakin-type nucleon-nucleon potentials yield
nucleon-nucleon phase shifts in better agreement with
experiment, which change sign at higher energies, com-
pared to the Yamaguchi potential. If Tabakin-type po-
tential is used in both Si and So spin channels, it leads
to a triton ground state of several hundred MeV's [22].
However, we shall use the Tabakin potential in one of
the nucleon-nucleon spin channels and Yamaguchi in the
other, and this does not lead to a collapsed triton and
leads to trinucleon observables in better agreement with
experiment and realistic calculations. The numerical cal-
culation is also simplified by an order of magnitude in this
model. We perform this "cheap" study with a view to
conclude if a more realistic calculation is worth the price.

At positive energies the three-particle equations were
solved by the technique of contour rotation [3]. In the
relativistic case, as was already noted before [4, 5] in the
bound-state problem, more care was needed to obtain a
converged result in the scattering calculation. Some 48
mesh points were needed for obtaining converged rela-
tivistic scattering results with a rotation angle of 5 de-
grees, whereas some 24 mesh points were enough to ob-
tain the nonrelativistic scattering results to the same de-
gree of precision.

We calculated the S wave spin-doublet nd scatter-
ing length, a g, differential cross section, spin cor-
relation function, nucleon-to-nucleon, and nucleon-to-
deuteron polarization transfer coefEcients of nucleon-
deuteron elastic scattering and the triton binding Bq in
the nonrelativistic case as well as with each of the four
versions of relativistic formulations A D. Propagator-
A has been used before in nuinerical calculations of the
three-nucleon problem [4—6, 10]. To the best of our knowl-
edge, propagators 8, C, and 'V are new and have never
been used before in the three-nucleon problem.

The results for triton binding energies and the S wave
d.oublet scattering lengths in the present models have re-
cently appeared [9]. All the relativistic propagators in-
crease the triton bioding energy Bq in relation to the non-
relativistic case, except propagator C which reduces the
binding. This tendency, also observed in previous calcu-

III. NUMERICAL RESULTS

For two-nucleon separable potentials in spin-triplet
and spin-singlet channels we take the following Yam-
aguchi and Tabakin form factors [21], recently used by
Rupp and Tjon [5]:

1
gi. (q) = q'+ (»)

lations [4, 5, 8], has been justified recently by theoretical
arguments [9]. The relativistic correction to Bq varies
&om —0.3 MeV to 0.7 MeV in different situations. We
observed in numerical calculations the following general
inequality:

(%)n, (A)s & (%)~ & (%) ~ & (R)c (15)

These results are summarized in Fig. 1 where we plot Bq
versus a g for the present nonrelativistic and relativistic
model calculations, as well as for many other nonrela-
tivistic calculations taken from the literature [23, 24]. In
nonrelativistic calculations a correlation was observed be-
tween Bt and a g [3, 25] as a result of on- and off-shell
variations of two- and three-nucleon potentials. The rel-
ativistic calculations of Fig. 1 differ in employing dif-
ferent relativistic dynamics and nucleon-nucleon poten-
tials. The trend of the relativistic calculations is iden-
tical to that of the nonrelativistic calculations. Hence,
the effect of including relativistic dynamics in the three-
nucleon problem cannot be distinguished from the effect
of varying the two- and three-nucleon potentials in non-
relativistic calculations.

Next we present results for some of the low-energy nd
scattering observables. We chose to exhibit five models
for nd elastic scattering covering a wide range of variation
of triton binding energy; they are the following.

Model A: nonrelativistic dynamics, triplet Y singlet Y,
Bq——10.65 MeV.

Model 8: relativistic propagator 8, triplet T-2 singlet
Y, Bg——8.34 MeV.

Model C: relativistic propagator A, triplet T-2 singlet
Y, Bq——8.14 MeV.

Model D: relativistic propagator C, triplet T-2 singlet
Y, Bg——7.91 MeV.

Model E: nonrelativistic dynamics, triplet Y singlet T-
2, Bq ——7.69 MeV.

Three of these models are relativistic and two non-
relativistic. Note that models A, B, C, D, and E pro-
duce triton binding energy in monotonically decreasing
order. We performed calculations for other combinations
of nucleon-nucleon potentials and propagators which fol-
low the general trend of results obtained with these five
illustrative models.

In Fig. 2 we plot the elastic differential scattering cross
section at nucleon laboratory energies, E, of 10, 22.7,
and 100 MeV. At lower energies the relativistic effect on
this observable is small and possibly could be ignored.
At higher energies (100 MeV) this effect is small at for-
ward and backward angles, but could be reasonable near
the minimum of the cross section. The nd elastic dif-
ferential cross section is mainly dominated by the spin
quartet state, and no specific correlation of the cross sec-
tion with the triton binding energy was observed. In
the following we consider several scattering observables
which are correlated with the triton binding energy.

It is most relevant to consider the nucleon-to-nucleon
polarization transfer coefBcient K& of nd elastic scat-
tering. In Ref. [13] it has been claimed that this ob-
servable at E = 10 MeV is very sensitive to the ofF-
shell behavior of the nucleon-nucleon S wave interaction.
A calculation based on Yamaguchi nucleon-nucleon po-
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FIG. 1. The B~ versus a g plot for vari-
ous trinucleon models: the present relativis-
tic models (o), the present nonrelativistic
models (+), and other nonrelativistic mod-
els taken from the literature (x) [24].
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tential did not reproduce the experimental results for
this observable whereas that based on a meson-theoretic
nucleon-nucleon potential [16] could explain the exper-
imental results. The correct oK-shell behavior of the
meson-theoretic potential was made responsible for this
[13]. More recently, it has been claimed [1, 14] that this
observable at E = 22.7 MeV is very sensitive to the
tensor force of the nucleon-nucleon interaction. A cal-
culation using the Paris nucleon-nucleon potential could
not reproduce the experimental results for this observable
whereas that using the Bonn-A potential could satisfac-
torily account for the experimental results. The "correct"
tensor force of the Bonn-A potential has been made re-
sponsible for this [1, 14]. In Ref. [15] it was pointed
out that K& is correlated with the triton binding en-
ergy Bt, (or the spin doublet nd scattering length a„g)
in a dynamical calculation and the experimental data
for K„" favors a three-nucleon model with the correct
triton binding energy. In the study of Ref. [13] the
meson-theoretic nucleon-nucleon potential yielded a B&,
and hence K„",closer to experiment than the Yamaguchi
nucleon-nucleon potential. In Refs. [1, 14] the Bonn-A
potential yields a B&, and hence K&, closer to experi-
ment than the Paris nucleon-nucleon potential. Let us
see if the inclusion of the relativistic dynamics changes
the above scenario.

In Fig. 3 we plot nucleon-to-nucleon polarization
transfer coefficient KJ of nd elastic scattering at E~ =
10 MeV for the nd models A, B, C, D, and E. The results
at 22.7 MeV for this observable are shown in Fig. 4. We
find that K" is sensitive to both the nucleon-nucleon po-
tential models as well as to the dynamics employed. How-
ever, the minimum of K" at about 8, = 110 degrees
is found to be correlated with the triton binding energy

10

0.1

B,C,D

0.01

FIG. 2. The nd elastic differential scattering cross section
in mb/sr at diferent incident nucleon energies.
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Though we exhibit here in the figures results for five
specific models, we performed and studied the numerical
calculations for several more models. The general trend
found in the case of these five models was observed in all
cases. It is well known that the present S-wave separable
potential models do not give a good description of the
nd scattering at low energies. In spite of this, we have
drawn some general conclusions which should be valid in
realistic situations. We summarize these conclusions in
the next section.
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FIG. 7. The nucleon-to-deuteron polarization transfer co-
I

efficient K of nd elastic scattering for E„= 10 MeV. For
other details see caption of Fig. 3.

value of triton binding energy.
It has been pointed out in Ref. [15] that though an S-

wave separable potential model gives a good description
of the polarization transfer coefficients of nd elastic scat-
tering, tensor and higher partial waves of nucleon-nucleon
potentials are needed for their accurate description. For
an S-wave model one should have for the nucleon-to-
nucleon polarization transfer coefficients

= —K Sin ~~b = (16)

The differences
I I

LK = —K —K" sin8~ b (17)

LK' = —K + K„"cos0~ b, (18)
are good measures of the effect of noncentrality of the
nucleon-nucleon potental. However, to quantize such ef-
fects &om a study of LK and LK' high precision experi-
mental results are needed. As the functions AK and LK'
are supposed to carry informations about the tensor-force
and higher partial waves of nucleon-nucleon interaction,
experimentalists are encouraged to provide accurate data
for these observables. In the absence of these interac-
tions both LK and LK' are identically zero. Numerical
calculations employing meson-theoretic nucleon-nucleon
potentials are essential for an accurate description of the
polarization transfer coefficients. However, as the exper-
imental polarization transfer coefficients have large error
bars, both the differences LK and LK' are small with
even larger errors [15]. Consequently, an S-wave treat-
ment of the problem for drawing general conclusions as
has been done here is justified.

IV. CONCLUSIONS

In conclusion, this is the first systematic study of rela-
tivistic effect on the trinucleon bound state and scatter-
ing employing combinations of Yamaguchi- and Tabakin-
type potentials for the singlet and triplet nucleon-nucleon
channels and four types of relativistic three-particle scat-
tering equations.

We find in the calculations employing relativistic dy-
namics that Bq is correlated to a g as in nonrelativistic
model calculations with variation of nucleon-nucleon po-
tentials on- and off-shell. Hence it will be difficult to sep-
arate the effect of such variation of potentials &om that
of introducing the relativistic dynamics. This confirms
the existence of a shape-independent approximation to
these observables even after inclusion of the relativistic
effect [23].

We observe that the nucleon-to-nucleon and nucleon-
to-deuteron polarization transfer coefficients of nd elas-
tic scattering are very sensitive to the details of potential
model and relativistic dynamics. This sensitivity should
be highly reduced once different models yield the same
triton binding energy. In view of this it is highly im-
probable that the results for nucleon-to nucleon polar-
ization transfer coefficient, K„", favors the weak tensor
force of the Bonn-A potential as has been concluded by
Clajus et al. recently [14]. Froxn a study of the nd elas-
tic differential cross section, mainly dominated by the
spin quartet state, no specific correlation with the triton
binding energy was observed. However, the low-energy
spin-correlation function is found to be correlated with
the triton binding energy.

Of course, there are other observables for the three-
nucleon system, which should be directly sensitive to
relativistic effect, such as the charge form factors. Be-
cause of the presence of the possible large effect of meson-
exchange currents and of the non-nucleonic components
in the nucleus, such observables are not easily tractable,
and it has so far been difficult to draw model independent
conclusion &orn studies of these observables [1,2].

We are aware that there is an inherent Bexibility in de-
ciding on the relativistic dynamics, in treating the spin
variables relativistically, and in deciding the correct form
of two- and three-nucleon potentials. We are far &om ex-
hausting all possibilities. But the tendency of the existing
shape-independent approximation is so strong that we do
not believe the present conclusions to be so peculiar as to
be of no general validity. Hence, a relativistic &amework
may reduce the still existing discrepancy between theory
and experiment, but this may not enhance our knowledge
of the three-nucleon system.
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