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Non-Markovian approach to the damping of giant monopole resonances in nuclei
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The collisional relaxation rates of the giant monopole vibrations in nuclei are calculated using a
semiclassical transport equation with a memory dependent collision term. Calculations show that
depending on the mass the collisional damping accounts for about 10—20% of the experimental
damping widths.

PACS number(s): 24.30.Cz, 24.30.Gd, 25.70.Ef

Semiclassical transport models of the Boltzmann-
Uhling-Uhlenbeck (BUU) type are often employed for
studying nuclear collective vibrations [1]. Although these
models give a good description of the average resonance
energies, they are not realistic for describing the colli-
sional relaxation rates. This is due to the fact that in
the BUU-type models, the binary collisions are treated in
a Markovian approximation by assuming that the dura-
tion time wg of binary collisions is much shorter than the
time scale 7„of the collective vibrations and the mean
&ee time wp between collisions, wg (( &,7g. As a re-
sult, the phase space of the 2p-2h, states for damping is
severely restricted by an incorrect energy conservation
factor. In fact, as a result of the Markovian approxima-
tion, the collisional width of collective vibrations vanishes
at zero temperature in the linearized limit [2]. In partic-
ular, the Markovian collision term gives rise to vanishing
collisional width for the monopole mode at any tempera-
ture. Therefore, for a proper description of the collisional
relaxation rates, it is necessary to improve the transport
models by incorporating the memory efFects associated
with collective vibrations into the collision term [3—5].

A derivation of the collision term by including the
memory eKects in the semiclassical &amework has been
carried out recently, and the model has been applied
to estimate the collisional relaxation rates of the giant
quadrupole and the giant dipole vibrations [6] (also, see
[7,8] on the memory effects in the Boltzmann-Langevin
model). According to this model, the small deviations of
the phase-space density around equilibrium,

|9bf(r»'t) = f(r»'t) fp(e) = &(r p t)
E

are determined by a linearized transport equation,
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where fp(e) = (exp[(e —e~)/T]+1) and the transition
rate is given by

—i~abR' = W e ' 'Ay((u)
27r 2

with Z(~) = [b(Qt ld) b(Ae+~)]/~& +e es+e4 el
—e2, and Ay(w) = ys(w) + y4(~) —yx(~) —g2(w). Here
W is the transition rate of the BUU collision term and
y~(~) = y(r, p; tu) denotes the time Fourier transform of
the distortion function y(r, p; t). In the collision term of
Eq. (2), collective phonons with energy Ru can be emitted
and absorbed during binary collisions [9], which strongly
modifies the collisional relaxation rates as compared to
the Markovian limit. In the Markovian limit, which is
appropriate for slowly varying disturbances in time, the
factor Z(u) is approximated by its zero frequency limit
Z(m ~ 0). In this case, the collision term of Eq. (2)
goes over to the linearized form of the standard BUU
collision term. This can be seen by noting that Z —+
2Bh(es+ e4 —Ey —e2)/O'e2 and by carrying out one partial
integration with respect to e2 in Eq. (2).

We define the relaxation rate associated with an
isoscalar harmonic vibration with a mean &equency 0
as

I

1 f drdpybK f drdpzdp2dpsdp4WZ(O)(&y) f, f, (1 —fs)(1 —f4)
f drdp yh f 4 f dr dp y2 (0/Oe) fp

(4)

where y = y(r, p;0). It is possible to derive a sim-
ilar expression for the relaxation rate of the isovector
vibrations by considering the proton and the neutron
degrees of freedom explicitly. In Ref. [6], these expres-
sions have been used to estimate the relaxation rates of
the giant quadrupole and the giant dipole vibrations by

I

parametrizing the distortion of the momentum distribu-
tion in terms of the Legendre functions as y = p P2(6)
and y = pPq(8), respectively.

Using Eq. (4), we can also calculate the relaxation
rates of the giant monopole vibrations [10]. In the scaling
model description of the monopole mode with a velocity
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field P = r /2, the Fermi surface remains spherical but
oscillates radially with the monopole frequency. There-
fore the relaxation rate, and hence the collisional width
1 = h/r, can be estimated by taking y = p for the
distortion function in Eq. (4) to give~

SO(

I dr dpqdp2dpsdp4WZ f~o f2o(l —fso) (1 —f4o)

jdr dp e2(B/Be) fo

(5)

In the Markovian limit, i.e. , 0 —+ 0, the collisional width
vanishes at any temperature. When the collective en-
ergy hO and the temperature T are small compared to
the Fermi energy, hO, T « ~~, the two-body transitions
in Eq. (5) are concentrated in the vicinity of the Fermi
surface. In this case, utilizing an approximate method
developed in condensed matter physics, the momentum
integrals in Eq. (5) can be evaluated analytically [11].For
an isotropic cross section and uniform nuclear density p,
we find

(6)

In Fig. 1, the dotted line shows the results of the an-
alytical approximation to the collisional width at zero
temperature as a function of the atomic mass number of
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nuclei. In the formula (6) we take the nuclear matter
parameters as p = 0.16 fm, v~ ——0.28c, e~ ——37 MeV,
and the total cross section 0 = 40 mb. For the mass
dependence of the resonance energies for the medium
weight and heavy nuclei (A & 70) we use the formula

Sn =312A '/'+20. 6A '/' M V

and for A ( 70 we take hO = 17.5 MeV.
In order to check the accuracy of the analytical ap-

proximation, we carry out an evaluation of the momen-
tum integrals in Eq. (5) by the Monte Carlo method
with the same nuclear matter parameters. The results
of the Monte Carlo calculations are shown in Fig. 1 by
the dashed-dotted line. This result indicates that the
analytical formula (6) provides a good approximation for
Eq. (5) in the nuclear matter limit, but it gives rise to
a very small collisional width. We can also incorporate
the surface efFects into the calculations in a local den-
sity approximation by parametrizing the nuclear density
distribution as

p(r) = po(exp[(r —B)t] + I)
where R = 1.12A / fm denotes the sharp nuclear radius,
po is Axed by the normalization, and t = 0.545 fm is
the thickness parameter assumed to be the same for all
nuclei. The integrands in Eq. (5) depend on r through
the Fermi energy

h2 3' 2
e~(r) = p(r)
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FIG. 1. The collisional widths of giant monopole reso-
nances at zero temperature are plotted as a function of the
mass number. The dotted line shows the analytical approxi-
mation (6). The dashed. -dotted line, the dashed line, and the
solid line show the Monte Carlo calculations of (5) with the
nuclear mater parameters and constant cross section, with the
surface effect and constant cross section, and with the surface
effect and energy-angle dependent cross section, respectively.
The experimental widths are shown by solid dots with error
bars.

In Ref. [6], the distortion function in the monopole mode
was incorrectly taken as y = const which gives zero collisional
width.

We repeat the Monte Carlo evaluation of Eq. (5) by
including the surface effect but with the same isotropic
cross section 0. = 40 mb as used above. These results are
indicated by a dashed line in Fig. 1. It is seen that the
surface effect increases the collisional widths, in particu-
lar of the lighter nuclei. The reason for this is that the
average Fermi energy becomes smaller due to the surface
effect, which increases the ratio hO/e~ as seen from the
approximate formula (6).

In addition to the geometric efFect, the nuclear sur-
face has a dynamical inHuence on the collisional widths,
as well. In the vicinity of the nuclear surface the ef-
fective cross section becomes larger as a result of the
reduced Fermi motion. In order to include this effect,
we employ an energy-angular dependent cross section as
parametrized in Ref. [1] and evaluate Eq. (5) for the col-
lisional width with the Monte Carlo method. The result
of this calculation is shown by the solid line in Fig. 1 as
a function of the atomic mass number. The calculated
widths including surface efFects with energy-angular de-
pendent cross section are about a factor of 2—4 larger than
those obtained with constant cross section, but account
only for a small &action of the experimental damping
widths of the giant monopole resonances, which are indi-
cated by solid dots in Fig. 1. We note that Monte Carlo
calculations of Eq. (5) performed with various inputs
have about 10% statistical error. The collisional widths
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PIG. 2. The collisional width for A = 120 is plotted as a
function of temperature. The dotted line and the full line
show the analytical approximation and the Monte Carlo cal-
culation with the surface eKect and energy-angle dependent
cross section, respectively.

increase with the temperature or the excitation energy
of the system. As an example, in Fig. 2, the collisional
width is plotted as a function of the excitation energy E*
which is related to the temperature through E* = aT2

with a = vr2A/4e~ for the mass number A = 120. In
this figure, the dotted line shows the result of the analyt-
ical approximation (6) and the full line shows the Monte
Carlo calculations of Eq. (5) including the surface effect
with the energy-angular dependent cross section. Note
that the Monte Carlo calculations do not show a T de-
pendence like the one in Eq. (6). This is due to the energy
dependent elementary cross section; with increasing tem-
perature the particles that collide have higher and higher
energies while the cross section stabilizes to 40 mb as in
the analytical estimate.

In summary, employing a memory incorporated trans-
port model we calculate the collisional relaxation rates of
the giant monopole vibrations in nuclei. The collisional
widths are small and depending on the mass constitute
about 10—20'%%uo of the total damping widths.
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