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Description of low-lying vibrational and two-quasiparticle states in 16 Er
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The energies and wave functions of nonrotational states below 2.3 MeV in Er are calculated
within the quasiparticle-phonon nuclear model. It is shown that the wave functions have a dominat-
ing one-phonon component. The contribution of the two-phonon configurations to the wave function
of K g 0+ and 4+ states below 2.3 MeV is less than 6%. The existence of the double-p vibrational
state with K = 4+ at 2.0—2.2 MeV in Er is predicted. The calculated excitation energies and
B(E2) and B(E3) values for transitions from the ground state are found to be in agreement with
experimental data. Large spectroscopic factors of one-nucleon transfer reactions are explained by
the large two-quasiparticle components of the one-phonon terms of the wave functions.

PACS number(s): 21.60.Ev, 21.60.Jz, 27.70.+q

I. INTRODUCTION

The lowest excitation in doubly even well-deformed
nuclei has been extensively studied experimentally dur-
ing the recent decades. At higher energies, our knowl-
edge is still fragmentary. A rich amount of experimen-
tal data especially regarding p-ray transitions between
excited states has been obtained in Er. The nu-
cleus Er has received a great deal of attention be-
cause its levels are populated in decay of three radioac-
tive parents of quite different spins: ~ssHo (0 ), ~ss Ho
(7 ), and Tm (2+). The spins and parities of many
levels up to excitation energies of 2.3 MeV have been
obtained from these studies [1—5]. Vibrational levels
have been studied through the (n, n'p) reaction [6] and
the Coulomb excitation [7]. The levels of ~ssEr have
been studied in [8] by using single-nucleon transfer re-
actions such as Er(d, t), Er( He, n), Ho( He, d)
and Ho(cr, t). These single-nucleon transfer experi-
ments were performed in order to determine the two-
quasiparticle components of the wave functions of excited
states. The excited 0+ states have been investigated in
[9] by using the (p, t) and (t, p) reactions. Several calcula-
tions for Er have been carried out and published in [10,
11] and other papers. Much less detailed calculations for

Er compared with Gd, Hf, and especially Er
have been made.

The quasiparticle-phonon nuclear model (QPNM)
[12—18] is used for a microscopic description of the low-
spin, small-amplitude vibrational states in spherical nu-
clei not far &om closed shells and in well-deformed nu-
clei. Ground state correlations in these nuclei are very
small. The energies and wave functions of the vibrational
and two-quasiparticle states in ~ssGd [19], ~ssGd [19],

Er [15, 20], and other nuclei have been calculated in
the QPNM. The p-ray transitions between excited states
in Er, Gd, and ~s Gd have been calculated in [19,
20].

In this article, the energies, wave functions, and El,
E2, and Ml transition rates between excited states in

~ssEr are calculated within the QPNM. The results of
present calculations are compared with the correspond-
ing experimental data. The energies, wave functions, and
p-ray transition rates obtained in this investigation are
presented in Sec. II. The specific properties of the ex-
cited states in Er are discussed and conclusions are
presented in Sec. III.

II. NONROTATIONAL STATES AND p-RAY
TRANSITIONS BETWEEN EXCITED STATES

1BBE

The energies and wave functions of nonrotational
states are calculated within the QPNM in the same way
as in Ref. [20] with the wave functions consisting of one-
and two-phonon terms. The random phase approxima-
tion (RPA) equation for the K = 0+ states is given in
[14, 18], for the K = 0 and 1 states in [21], and for
other K states in [13,15, 18].

The calculations are performed with the Woods-Saxon
potential for A = 165 with quadrupole Pz ——0.28, hex-
adecapole P4 ———0.01, and p equal to zero equilibrium
deformations. The isoscalar constants Ko of the particle-
hole (ph) multipole interactions are fixed to reproduce
the experimental energies of the first K„z nonrotational
states. The calculations are performed with the isovec-
tor constant v&" ———1 5KO+ for the ph interactions and
the constant G"" = Ko" for the particle-particle (pp) in-
teractions. We have used the constants of the multipole
interaction, phonon basis, and effective charges for Er
which are close to Er [20].

We calculated the excitation energies and structure of
nonrotational states in Er and B(EA)g values for E2,
E3, E4, and E5 transitions &om the ground 0+, to ex-
cited I K states. The experimental data [1, 4, 5, 7—9]
as well as the results of our calculations in Er are
given in Table I. The calculated structure is given as
a contribution of the one-phonon Api and two-phonon
(Aj @jib, Azpziz) components to the normalization of the
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TABLE I. Nonrotational states in Er.

Calculation in the QPMNE„a(zw) Tb
(MeV) (s.p.u. )
0.8 5.0

Structure

(d, t)

nn633 T —521 T' 58%

pp523 T —411 T 4%

(d, t): 1.4 5.3

0.51.4

s(t, p) = o 16
s(p, t) = o.oo4

S(t, p) = 0.15
S(p, t) & o.oo2s

1.01.5pp523 T +411 $
is large
nn633 T +521 $ 4%

( He d)

(d, t):

1.8 2.8

0.31.9

1.8 0.4
S(t, p) =0.09S(t, p) = 0.14

s(p, t) =o.14 s(p, t) = o.o4

1.71.8
(d, t): nn633 T —642 T is large

from 166Ho K~ = 0
log ft=5.2 nn633 T —523 $

is large

3.01.8

(d, t):
(3He, n):
('He, d):

nn633 T +523 $
is large
pp523 T —411 $
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1.9 0.1

1.9 0.4

1.96 0.6

2.0 0.006
S(t, p) =0.014S(p, t) = 0.08

s(p, t) =o.oo12

(a,t):

(d, t):

1.96pp523 T +541 $
is large
nn633 T +660 T
is noticeable

2.0 1.0

( He, d):
(cx,t):

pp523 T +404 $
is large

2.5

0.12.0

nn633 T +521 $
is large

(d, t): 2.0 0.03

2.0

221:
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201:

541:

301

222:

211:
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331:
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322:
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Structure

221:98
nn523 $ —521 $
pp411 T +411 $
nn521 T +521 $
pp413 $ —411 $
nn633 T —651 T
321 97
(201,321): 2
nn633 T —521 T
pp523 T —411 T
nn642 T —521 4
201:94
(321,321):4
pp411 $ —411 $
nn512 T —512 T
nn521 $ —521 $
pp523 T —523 T
541:97
(221,321): 2
pp523 T +411 $
nn633 T +521 $
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nn642 T —512 T
pp411 $ —541 $
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(321,541$:2
nn523 $ —521 $
pp411 T +411 $
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(221,221):5
nn521 $ —521 $
nn512 T —512 T
pp523 T —523 T
pp411 $ —411 $
211:98
nn633 T —642 T
pp523 T —514 T
311:97312:1
nn633 T —523 $
nn633 T —512 T
pp523 T —402 T
761:100
nn633 T +523 $
331 97
pp523 T —411 $
nn633 T —521 $

431:79 432:20
nn523 $ +S21 $
nn512 T' +521 $
203:86 204:4
202:3; 205:2
(221,221):4
nn 633 T 633 T
nn521 $ —521 4,

441:76
(221,221):21
nn523 $ +521 T
pp523 T +541 $
nn633 T +660 T
651:99
nn523 $ +512 T
pp404 $ +411 T
771:100
pps23 T +4o4 j.
322:99
nn642 T —521 4
pp523 T —411 T
nn633 T —521 T
542.99
nn633 T +521 $
pp523 T +411 $
432:78 431:21
nn512 T +521 4.
nn523 $ +521 $
nn633 T —660 T
pp404 4 —411 4.
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6
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TABLE I. (Continued).

K 7l
l/
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2
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32

Q+
4
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33
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0+
5

1+
2

1+3

1+
4
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3+
4

Experiment
E
(MeV)

(2.oso)

(2.132)

2.160

2.196

(2.2)

(2.055)

(2.37s)

2.244

(2.464)

(2.293)

a(E&) g
(s p u. )

(d, t):

( He, d):
( t)-

(d t):

('He, d):
(cx, t)

(d, t):

(d, t):

Structure

nn633 g —521 $
is large

pp523 $ —541 $
is large
logft=5.6 from Tm
for I K„=3+24
nn633 f —651 g
is large

s(t, p) (0.03
S(p, t)=o.os

pp523 f —411 f
is large

nn633 f +521 f
is large

nn633 t —660 f'
is large

2.08 0.01

2.1 0.1

0.02

2.1

2.24 0.001

2.2 0.002

2.1 0.01

S(t, p)=0.001
s(p, t) = o.o4

2.2 0.01

2.2 0.3

2.2 0.8

2.2 0.3

2.2 0.02

2.2 0.01

0.1

2.3 0.6

2.3 0.05

2.4 1.0

2.4 0.02

2.5 0.5

Calculation in the QPMNE„a(EW) tb
(Mev) (s.p.u. )

2.05 0.01
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pp404 $ —404 $
pp523 f —523 t
442.88
(221,221): 5
pp523 f +541 $
n, n523 $ +521 f
333 98
(221,311):1
nn642 g +S21 $
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nn642 t —512 t
nn642 g —S23 $
323:91
(201,321):3
(202,321):2
pp523 t —411 f
nn633 t —521 f'

205:95
204:2 203:2
nn633 f —633 $
nn512 t —512 g
nnS23 g —S23 $
pp4Q4 $ —404 $
212 99
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(321,331):2
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(221,211):1
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8
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4
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7
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4
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&ABLE 1. (Continued).

KV Experiment

{MeV)
B(EA) g
(s p.u )

Structure
Calculation in the QPMNE„B(EA)g

(MeV) (s.p.u. )
Structure

63

03

04

81

(2.318)
(2.633)

(2.6O8)

( 2.7)

(= 28)

(3.o75)

(2.494)

(3He, d):
(~ t):

( He, d):
(cx, t):
(d t):

('He, ~):

pp523 f +402 f
is large

pp523 t' +514 f
is large
nn633 t +505 $
is large

2.6

2.6

2.8

2.9

2.8

0.3

0.2

1.0

443:

763

303

304

305

nn512 f +521 $
pp404 $ —411 $
443:92
(201,441j:2
nn633 g +660 f
nn523 $ +521 g
nn642 g +651 $
763:100
pp523 $ +402 t
303:96
(221,321):2
nn642 $ —512 $
nn633 f —514 $
pp523 $ —404 $
304:95
nn633 + —514 $
pp523 T —404 4
305 89
(221,321):8
pp523 T —404 4.
nn633 $ —514 $
nn651 $ —521 $
881:100
pp523 $ +514 f
991:100
nn633 $ +505 $

35
15

53
20
11

94

18
16

4

25
22

16
7
7

100

100

Due to accuracy of the calculation the energies are given, as a rule, with one decimal digit.
The B(EA) g are equal to B(EA' 0 og s M I:AK ) and are given in single-particle units

2A+1 3
B(EA) g ..p = (O. 12A. / ) '(1O fm) ".

4m A+3

The structure is given by the one- and two-phonon contribution to the normalization of the wave function and the phonon is denoted by Ap, i,
where i is the root number of the RPA equation; the two-quasiparticle configurations are labeled through the Nilson asymptotic quantum numbers.

The (d, t) and ( He, d) denote that the large intensities for the (d, t) reaction were observed at the angle of 45 and those for the ( He, d) reaction at

the angle of 50 and the { He, d) and (d, t) denote that the large intensities were observed at the angle of 60 for the excitation of the corresponding

bands (Tables I and II in Ref. I8]).
The (t, p) and (p, t) reaction strengths are given relative to the ground-to-ground strengths S„(t,p) = S (t, p)/Sg s (t, p) and S„(p, t)

S„(p, t)/Sg, . (p, t).

wave function. The Pauli principle is taken into account
in the contribution of two-phonon components. Then,
we list the asymptotic quantum numbers Nn, Ag at K =
A+ 1/2 and Nn, AJ, at K = A —1/2 for the largest two-
quasineutron nn and two-quasiproton pp components of
the wave functions of the one-phonon state Api. All the
calculated nonrotational states with energies below 2.3
MeV and several other states are given in Table I.

The experimental and calculated El transitions to the
ground state and the calculated p-ray transitions between
excited states in 1 Er are given in Table II. The calcu-
lations are performed for reduced E1, E2, and M1 tran-
sition probabilities for which there are experimental data
for the intensities of the p transitions or B(E1) values.
In this table, experimental energy levels and I K„val-
ues of the initial and final states are given as well. The
experimental B(E1)values were taken &om Refs. [22, 23]
and B(EA) $ and B(M1) $ values are given in e fm2"
and pN fm " units, respectively. The experimental in-
formation involves the intensities of the p transition &om
the initial to Gnal states nf ——1,2, . . . . This information
is used to obtain the ratio of intensities. The experimen-

tal and calculated branching ratios of transitions &om
an initial to final nf ——2, 3, . . . states relative to the final
ny ——l state are given in Table II.

There are numerous experimental data on 0+ excited
states in deformed nuclei. The description of several first
0+ states in deformed nuclei in the QPNM with ph in-
teractions cannot be considered to be satisfactory. The
role of the pp interaction in the description of excited 0+
states is essential since with the change of G the ener-
gies of several low-lying poles of the RPA secular equa-
tions also change. The B(E2) value for the excitation
of the I K = 2+01 state and the energies of the 0+2,
03+, and 04 states decrease at G = v 0 in comparison
with G = 0, and the structure of the 0+ states changes
as well. The RPA wave functions of the 0+ states are
a superposition of a great number of two-quasiparticle
configurations.

Let us consider the excited 0+ states in Er. The
experimental [9] and calculated (t, p) and (p, t) reaction
strengths are given in Table I relative to the ground-
to-ground strengths S (t, p) = S (t, p)/Ss, (t, p) and
S„(p,t) = S„(p,t)/Ss, (p, t). The calculated energies
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and (t, p) and (p, t) reaction strengths do not contradict
experimental data [9]. It is difficult to interpret the first
K„= Oi state as a P-vibrational state due to a rela-
tively small B(E2) value for the transition to the ground
state band. The dominance of the E2 reduced transition
probabilities &om the 0& state to the K = 2i state over
that to the ground state has been observed in Er and

Dy. According to our calculation, the ratio

B(E2;0+0„~2+2, )
B(E2;0+0„-+2+Os, )

equals 0.01, 0.9, and 36 for v = 1, 2, and 3, respec-
tively. The contribution of the two-phonon configuration
(221,221} to the normalization of the wave function of
the 02 and 03 states equals 0.05 and 0.04. The dom-
inance of the decay &om the 03 to the 2& state over
that to the ground state band is due to a very small
B(E2;0+Os -+ 2+Os, ) value.

We describe the energy and B(E2)$ value of the p-

vibrational 2i state. According to our calculations, the
first K„= 4i state in Er is predominantly hexade-
capole and, in agreement with the experimental data [9],
should be strongly excited in the (n, t) reaction. The
B(E2;4+4i ~ 2+2i) is equal to 115 e2 fm4. The first
K = 4+ (221,221} two-phonon pole has the energy
2.05 MeV. The higher K = 4+ poles are the following:
(321,321}3.37 MeV, (301,541}3.39 MeV, (201,441}3.6
MeV, and so on. The RPA energies of the hexadecapole
4+ states are 2.02 MeV, 2.34 MeV, 2.60 MeV, and so on.
The situation with a two-phonon (221,221} K = 4+
state in Er is very specific due to a small density of
the K = 4+ state near the (221,221} pole and a very
small value for the function, responsible for a coupling
between one- and two-phonon configurations. There-
fore, the two-phonon configuration 4+(221,221} in issEr
is weakly fragmented. According to our calculation at

——0.02185 fm MeV and Ko ——0.030 fm MeV
the second K„=42 state is a double-p-vibrational state

TABLE II. El transition to ground state and El, Ml, and E2 transitions between excited states in Er.

Initial state

or

Final state B(EA) $(e fm )

or

Branching ratios
W" (i —+ ng)

W"'(i —+ ny = 1)
I K„

0+0,
1 0»
0+0,
1 11
3 31

0+0.
4+41
4+ 42
3+32

3+24

1 02
4+4,
3 32

3 33

4+4,
1 03
1 04

E„
(MeV)
1.460
1.662
1.713
1.830
1.918

1.935
1.978
2.05
2.133

2.160

2.2
2.2
2.216

2.243

2.6
2.7
2.8

E2
El
E2
El
El
Ml
E2
E2
E2
Ml
E2
El
El
Ml
El
El
E2
Ml
E2
E2
El
E2
El
Ml
Ml
E2
Ml
Ml
El
Ml
E2
El
El

2+2»
0+Og,
2+21
0+Og,
2 2»

2 21
2+2,
2+21
2+21
2+2

2 21
4 41
2+21
3 31
4 42
2+Og. s.
2+2

2+0,
0+Og, .
2+21
2+21
2 21
4
1 11
3 31

42
2+21
3 21
2 21
0 Og. s.
0+Og,

(MeV)
0.786
0
0.786
0
0.786
1.458
0.786
0.786
0.786
0.786

1.458
1.572
1.703
1.916
2.002
0.081
0.786

1.528
0
0.786
0.786
1.458
1.572
1.830
1.916
2.002
0.786
1.514
0.786
0
0

expt.
&(M1) & (V~)

1 x10

3 x 10

1 x 10
4 x 10

(8.9+ 0.5) x 10

calc.
1.1
30 x 10
95
7x10
7x10
0.03
60
115
500
0.001
0.75
10-4
3 x 10
4 x 10
2xlo '
3 x 10
0.08
9 x 10
0.05
0.11
7x10
70
10-4
0.01
5 x 10
0.12
6x10
3xlo '
10
2xlo 4

0.42
12 x 10
8 x 10

expt. [1]

1
10

2.3
0.06
0.07
4.75
0.47
1
0.89

0.011

1
15
0.14
0.09
1.15
0.4
1
1.28

calc.

1
0.07
1.0
0.02
0.01
0.005
10
1
1
0.1
0.003

1
0.15
3 x 10
10
0.004
10-4
1
0.02

The calculated energies.
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and the K = 43 and 44+ states are predominantly hex-
adecapole. These results are presented in Tables I and II.
According to our calculation at Kz

——0.0215 fm MeV
the Erst K„=4i state has energy of 1.97 MeV. The con-
tribution of the (441) and (221,221) components to the
normalization of the wave function is equal to 94% and
3'% and B(E2;4+4' -+ 2+2') = 8.7 e fm . The second
K = 42 state is a double-p-vibrational state with the
(221,221) component equal to 82%. The 4+(221, 221)
and 442 strengths are mixed between two levels with the
energies 2.30 and 2.35 MeV if K022 ——0.0207 fm MeV
In the last case, the energy of the K = 2i state
is 0.2 MeV higher than the experimental one. If we
use K& ——0.0225 fm MeV, then the first K = 4i
state is a double-p-vibrational one, but the energy of the
K = 2i state is 0.15 MeV smaller than the experimen-
tal one.

According to experimental data [1, 3, 4, 8], there are
several I = 2+, 3+, and 4+ states in Er. The in-
terpretation of these states, except the K = 2i state,
is not clear. The calculation in terms of the Nilsson
model with the pairing and Coriolis interactions has been
performed in [8]. Of course, our wave function of the
K" = 1+, 2+ 3+ and 4+ states can be used for further
Coriolis coupling calculations. About a dozen large cross
sections in the (d, t) reaction at forward angles indica-
tive of the I = 0 neutron transfer have been observed in
[8]. The only configurations in this mass region which
would be expected to have large I = 0 (d, t) cross sec-
tion are those formed by transferring a 400$ neutron. To
explain similar multiple strong l = 0 neutron transfers,
the LN = +2 mixing between the single-particle states
n400$ and n660$ and the states n402$ and n651 t has
been calculated in [8]. All the assignments made on the
basis of the comparison of calculated and experimental
cross sections are considered to be tentative.

The mixing between the neutron single-particle states
400t and 660$ and 402$ and 651$ has been investigated
in [24] in terms of the Woods-Saxon wave functions, with
pairing and quasiparticle-phonon interactions. It has
been shown that a strong mixing of these pairs takes
place in the Sm, Gd, and Dy isotopes at equilibrium de-
formation P2 ——0.30—0.33 and P4 ——0.04. A quasiparticle-
phonon interaction leads to an increase in an interval for
P2 where the AN = k2 mixing occurs as compared to the
single-particle model. There is no noticeable LN = +2
mixing at P2 ——0.28 and P4 ———0.01 used in our calcu-
lation. One has to change the parameters of the Woods-
Saxon potential to get the LN = +2 mixing at equilib-
rium deformation of the Er nucleus.

The energies and wave functions of the K = 0
and 1 states are calculated in the RPA by taking the
isoscalar and isovector ph and pp and isovector ph dipole
interactions into account. The B(E1) values calculated
in [19,21] for the excitation of the I K„= 1 Oq states in

Gd, Dy, and Er are 3—5 times as large as ex-
perimental ones. According to [21], the total El strength
for excitation of the K = 0 states in Dy and Er
is 3—4 times as large as that for the excitation of the
K = 1 states. The strong correlation between the
B(E1) and B(E3) values takes place for transitions from

the ground state 0+, to the same band. According to our

calculation, the B(El;1 0„~0+Os, ) values for v = 1,
2, 3, and 5 are 3—12 times as large as experimental ones
[22, 23]. The first K = 2z state with energy 1.458 MeV
is the second nonrotational state in Er. There is a
gap between the 2+i and 2i states. We describe correctly
the energy, B(E3) value, and the two-quasiparticle struc-
ture of the 2i state. According to our calculation, the
energies of the 22 and 23 states equal 2.0 and 2.2 MeV.

The first K = 4i state with energy 1.572 MeV is
well described in the QPNM. There are several I = 3
and 4 states. Interpretation of these states is not clear.
According to our calculation of the branching ratios of
the E1, E2, and M1 transitions between excited states
and the comparison with the relevant experimental data
[1], the I = 3 state with energy 1.918 MeV cannot be
interpreted as the I K = 3 li state. It is possible to
consider this state as the I K = 3 3i one. The I = 3
2.216 MeV and I = 3 2.243 MeV states cannot be
interpreted as I K = 3 32 and 3 33 states.

The calculated energies of the two-quasiparticle states
with K:6i 5i and 63 are in agreement with exper-
imental ones, but the calculated energy of the K = 7
state is 0.5 MeV higher than the experimental ones. Pre-
dictions of the energies and structure of several nonrota-
tional states below 2.3 MeV in Er were made.

III. DISCUSSION AND CONCLUSION

Let us consider specific properties of the Er nucleus.
In the spectrum of nonrotational states there is a gap be-
tween the erst nonrotational excited state with K = 2i
and next K„= 2i and other excited states. This gap
equals 0.672 MeV. There is no such a gap in the spectrum
of other double-even deformed nuclei. Due to this gap,
the energies of the low-lying poles are the following: 2.14
MeV with K = 4+(221,221), 2.47 with 0+(221,221},
2.60 with 4 (221,321), 2.70 with 2 (221,541), and 2.97
MeV with 2+(221,441). The energy of other poles is
larger than 3 MeV. Therefore, the contribution of the
two-phonon configurations to normalization of the wave
function of the K g 0+ and 4+ exited states with ener-
gies below 2 MeV and in the range 2.0—2.3 MeV is smaller
than 3% and 6%, respectively. Due to this gap, the con-
tributions of the two-phonon configurations in Er are
smaller than in other doubly even nuclei in the rare-earth
region.

Let us consider the situation with the two-phonon
states in doubly even well-deformed nuclei. A state is de-
termined as a two-phonon state if the contribution of the
two-phonon configuration to the wave function normal-
ization exceeds 50%. The energy centroids of the two-
phonon collective states in deformed nuclei have been
calculated in Ref. [25]. It has been shown that due to
a shift of the two-phonon poles, the density of levels in
the energy region of the first two-phonon poles is large.
Therefore, the two-phonon states should be strongly &ag-
mented. Based on the QPNM calculations of the energy
centroids of two-phonon states it has been concluded in
Ref. [25] that collective two-phonon states cannot exist in
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well-deformed nuclei. This prediction is fulfilled in many
cases.

The investigation of low-lying states in doubly even
well-deformed nuclei has shown that the one-phonon
states below 2.5 MeV are weakly fragmented. Therefore,
the lowest two-phonon states are not strongly fragmented
in several specific cases. An effect of three phonon terms
in the wave function has been taken into account in
Refs. [19,20] as an additional shift of two-phonon poles.
Therefore, a contribution of the two-phonon configura-
tion to the wave function of low-lying states was calcu-
lated instead of fragmentation of the two-phonon state.

The nuclei Er, Er, and Dy are most favor-
able for observation of the K = 4+ double-p-vibrational
states in the energy range 2.0—2.3 MeV. Much atten-
tion has been paid to Er. Experimental investigations
[26—28) have established a large double-p-vibrational
component in the first K = 4i state in Er. Ac-
cording to the multiphonon method [29], sdg interactive
boson model (IBM) [30], and self-consistent-collective-
coordinate method [31], the first K = 4+i state in issEr
should be a two-phonon state. According to the QPNM
calculation [20], the contribution of hexadecapole (441)
one-phonon and double-p-vibrational (221,221) compo-
nents to the normalization of the wave function of the
4+i state in i Er equals 60% and 30%, respectively. The
calculated energies of the K = 2i, 4i, and 4& states
and B(E2;2i ~ 0+, ) and B(El;4+i ~ 4i ) values are
in good agreement with experimental data analyses of
Ref. [32].

According to the present calculation, the double-p-
vibrational strength with K = 4+ in Er is concen-
trated on one or two levels at energy 2.0—2.2 MeV. When
the energy and B(E2;0+Os, ~ 2+2i) value of the p-
vibrational state are correctly described, as is shown in
Tables I and II, the second K = 42 state at the energy
2.05 MeV should be the double-p-vibrational state. It is
expected that a more rigorously calculated e8'ect of the
three-phonon terms on fragmentation of the two-phonon
4+(221,221) configuration in the Er is small.

The situation with the K = 4+ double-p-vibrational
state in Dy is not yet clear. According to the present
calculation, the largest part of the 4+(221,221) strength
in Dy is concentrated on one or two levels in the energy
range 2.15—2.30 MeV. The results of calculations depend
on the constants ~o and Ko and truncation of the space
of the single-particle levels. By fitting the constants Ko
and Ko and using a full single-particle space it is possible
to obtain fragmentation of the 4+(221,221) state in the
energy range 2.1—3.0 MeV.

There are many nonrotational states in Er. The
p-vibrational and first K:Oi 1i and 2i octupole
states are collective states. There are many collective or
weakly collective states. In most cases it is difBcult to
separate nonrotational states into collective and weakly
collective states. Only the K„= 6i, 7i, 9i, and 8i
states are pure two-quasiparticle ones. The experimental
data in Er demonstrate richness of the properties of
nuclear excitations. Most of the experimental data are

fairly well described in the QPNM. The predictions were
made for energy and structure of the nonrotational states
below 2.3 MeV.

Satisfactory description of the first quadrupole and oc-
tupole states in deformed nuclei has been obtained in the
IBM and the QPNM. As has been shown in Ref. [33],
there is an essential difFerence between the IBM and the
QPNM in describing the states above the first quadrupole
and octupole states in well-deformed nuclei. This differ-
ence is due to the fact that in the IBM the quadrupole
or octupole strength is strongly fragmented but belongs
to one unique d or f boson. The QPNM quadrupole
or octupole strength is due to a large number of one-
phonon states with a diferent quasiparticle structure.
The two-quasiparticle components of the wave function
of the excited state in Er are demonstrated by one-
nucleon transfer reactions and P-decay measurements.

On the basis of the calculation of energies and wave
functions in Er performed in the QPNM we can con-
clude the following.

(1) Fairly good description of energies and structure of
the most nonrotational excited states has been obtained.

(2) Large intensities in the (d, t), ( He, o.), (sHe, d), and

(n, t) reactions are explained by the corresponding large
two-quasiparticle configuration of the one-phonon terms
of the wave functions.

(3) The wave function of excited states with an energy
below 2.3 MeV is dominated by the one-phonon term.
The contributions of the two-phonon components to the
normalization of the wave functions in Er are smaller
than in Gd, Gd, Dy, and Er. The small an-
harmonicity of the nonrotational states with an energy
below 2.3 MeV is a general property of the well-deformed
doubly even nuclei in the rare-earth region.

(4) We predict the existence of the K = 4+ two-
phonon (221,221}state at energy 2.0—2.2 MeV. The exis-
tence of the K = 4+ double-p-vibrational state in Er
is due to a very small density of the K = 4+ states near
the (221,221)pole and a very small value for the function
responsible for a coupling between one- and two-phonon
terms in the wave function.

(5) There are no other two-phonon states, including
K = 0+ (221,221), below 2.5 MeV.

(6) Information on the large components of the wave

function of excited states can be obtained in experimen-
tal and theoretical investigation of p-ray transition rates
between excited states. This is a new information on the
nuclear structure in addition to that from inelastic scat-
tering, Coulomb excitation, one- and two-nucleon trans-
fer reactions, and P decays.

We hope that the present calculation will be useful in
experiments at a new generation of accelerators and de-
tectors. Of great interest is experimental study of excited
states of deformed nuclei at 2—3 MeV.
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