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New symmetry in many-body efFective Hamiltonians: An example of rotating nuclei
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A general class of many-body Hamiltonians containing one- and two-body interactions that obey
at least one dichotomic symmetry are considered. A rich subset in that class with several important
physical applications (such as, e.g. , in nuclear super8uidity and/or particle number nonconserving
Hamiltonians) are studied from a unitary-group structure point of view. Those Hamiltonians are
shown to obey a symmetry called further on 7 symmetry. A corresponding Casimir operator is
constructed together with its eigenvalues and the implied classi6cation of the spectra is illustrated
on a nuclear-physics example with a single-j shell Hamiltonian. The most general form of a 7-
symmetric Hamiltonian is discussed.

PACS number(s): 24.80.Dc, 21.10.Re, 21.60.Ev

There exist numerous problems in physics that involve
many-body Hamiltonians with one-, two-, three-. . . body
efFective interactions leading to nonscalar energy opera-
tors as, e.g. , in theory of deformed atomic nuclei and in
applications of atomic, solid-state, and particle physics.
One of the main difIiculties encountered is that the so-
lution methods, usually approximate, drastically change
&om one form of the interaction to another. Here we
would like to follow an algebraic approach based on the
unitary-group properties of the Hamiltonians in question.
A known advantage of such an approach is the relative
simplicity of the underlying algorithms which may be
viewed as practically independent of the actual form of
the (many-body) interactions. A disadvantage is often
related to the dimensionality of the Hamiltonian matri-
ces which too often and too quickly become prohibitively
large. Needless to say, any symmetry that may arise,
ofFers at the same time a better physics insight and fa-
cilitates the solution. In this paper we would like to in-
troduce a symmetry called further on P symmetry. This
symmetry is obeyed by many efFective Hamiltonians used
in various branches of physics —yet seemingly not used in
literature.

For particle-number conserving interactions P symme-
try leads to a block-diagonal structure of the Hamilto-
nian, each block characterized by the particle number
JV and 'P-quantum number associated with 'P symmetry.
For an important class of the particle-number not con-
serving Hamiltonians P symmetry leads to another type
of conservation law whose knowledge may be equally use-
ful. To render our presentation more specific we will focus
on a nuclear-physics context.

In majority of the nuclear-structure calculations ad-
dressing, e.g. , the phenomenon of collective rotation and
pairing, the efFective Hamiltonians used have the form

'8 = R(l) + 'R(2) + 'R(rot),

in which the one-body and two-body interaction terms
'R(1) and 'R(2), respectively, are expressed as

'R(1)+'R(2) = ) h pc+cp
aP

1+— v~p. &pc c~ chic& .
'-p .8

(2)

Usually h p represents an average field Hamiltonian and
v p.~g a residual interaction, for instance, pairing. In this
work we consider an important two-dimensional rotation
problem within either cranking or particles-rotor approx-
imations which are quite standard in nuclear physics.
Therefore

+(rot) +cranking = ~Jx

= —ur) (j ) pc+cp
cxP

or

(I —j.)''R(rot) = Rp ppgpp
2

Here and in the following we denote the collective-
rotation axis 0 and the corresponding one-body angular
momentum operator j .

We would like to emphasize that the rotation term,
although of great importance in, e.g. , high-spin nuclear
physics, does not need to be included; all conclusions of
this study apply equally well for Q(rot) = 0. We are
going to demonstrate that most of the standard forms of
'R(1) with dichotomic symmetry operators such as "sig-

nature, " R = exp(iver j ) or "simplex" S = frR (vr par-

ity) and many-forms of 'R(2) as, e.g. , monopole pairing,
obey P symmetry which so far has not been exploited in
analyses of spectra. We will also present the most gen-
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eral form of an efFective Hamiltonian satisfying such a
symmetry. Parity, an obvious dichotomic symmetry im-
portant in many applications may easily be incorporated.
In fact in an extension of the present algorithm to "real-
istic" nuclear Hamiltonians, parity and P symmetry lead
to a further simplification; each block of a given 7 quan-
tum number splits into two subblocks of opposite parities.
Corresponding results will be published elsewhere.

Let us begin by formulating an algebraic context of our
physical problem in Eqs. (1)—(4). Knowing that Hamilto-
nian (1) commutes with a dichotomic symmetry operator
S (e.g. , R or S ) we will choose the single-nucleonic ba-
sis ((n) = c+)0)) in such a way that 8(n) = s [n), where
s = +i. Let the total number of individual-nucleonic
states in this basis be n. To simplify presentation, sup-
pose that n is even and that the numbers of the basis
states with s = +i and s = —i, n+ and n, respec-
tively, satisfy n+ ——n = n/2. Let us introduce an
auxiliary set of operators

We will also define a generalized pairing two-body inter-
action

'R(2) —+ 'R(pairing) = ) ) v pp c+c+,cp cp
cxn' pp'

.() ) van', pn' gnp

+ Vcx'n p'cx ga'p'r )

(8-)

) ) v~~', pp'g~p'g~'p ~ (8b)
«xa' p'p

where the summation indices obey the restrictions of Eq.
(5). Expression (8a) gives the standard monopole pairing
Hamiltonian as a particular case. Restricted to the above
(still quite rich) pairing interactions the original cranking
Hamiltonian in Eq. (1) takes the form

g~p = N~p = c~cp', (8~ = +1, sp = +~)+ (5a) & = ) .[~-p ~(~*)-p]g-p
ap

g~ipr = N~ipi = c~~cp, , (s~i = —x, sp~ = 'L), (5b)— + ) .[&- p —~(~*)-p ]g- p
~l PI

g~p& = B p, —c cpl,' (8~ = +'L~ spl = —x)
+ — + +. Q~~l PPl g~Pl g~lP

ace' pp'

~ $
gulp

= g$~lp = Q~l Qp, (S~l = —
2& Sp = +2) (5d)

With the above restrictions on the s-quantum num-
bers each set of operators contains n2/4 elements and
the whole ensemble in Eqs. (5a)—(5d) contains n oper-
ators.

It is now straightforward to prove that the operators
(gal) in (5) satisfy the commutation relations

[gkl~ gpq] —~lpgleq bkqgpl~ k~ l~ I ~ 0 = 1~ 2. . .
~
n

~ (6)

P=) gii, —) [P, g„,]=0; r, s=1, 2, . . . , n.
k=1

which are known to define an algebra of a unitary group
in n dimensions, U(n).

Let us observe a difFerence between our representation
of this H(n) algebra, that mixes c+c+ and c+c operators,
Eq. (5), and the one based exclusively on the N p

——c+cp
operators [1] which naturally obey the commutation re-
lations [N p, N~s] = bp~N s —h sN~p, . n, P, p, b

1, 2. . . , n, that are identical to those iii (6). Observe
A

also that the operators N p B p, and B p unrestricted
by the dichotomic symmetry conditions in Eqs. (5a)—
(5d) obey the commutation relations characteristic for
the generators of an SO(2n) group rather than those far
U(n), cf. Ref. [2]. An important physical consequence of
the above property is that the Hamiltonians constructed
out of generators (6) may, but do not need to conserve
the particle number, a feature that is very useful in some
applications.

It will be convenient to define a Casimir operator

in which the first two terms of Eq. (8b) having a one-body
character have been included in the one-body Hamil-
tonian, thus leading to its simple modification. The
particles-rotor form of the Hamiltonian can also be ex-
pressed in terms of gI, ~ generators. Because of the com-
mutation relations in (7) we may look for the solutions
which are at the same time the eigenstates of Q and 'P

&l@p) =&pl&p) and &14,) =S IC ) . (io)

The fact that the Hamiltonian of interest, Eq. (9), has
been expressed in terms of a unitary-group generators
implies the possibility of constructing its eigenstates in
terms of the corresponding irreducible representations of
the M(n). An elegant scheme for such a construction
has been prapased by Gelfand and Zetlin [3]. We have
solved Eq. (10) by constructing first the matrix represen-
tations of the gzq generators in the Gelfand-Zetlin basis
(~GZ; p)) and then diagonalizing 'R. We will not repeat
the description here (for details see, e.g. Refs. [1,4]. Nev-
ertheless it will be useful to recall that for the antisym-
metric irreps, adequate for the multifermion systems,

gyyiGZ; p) = pA,, iGZ; p);

pA. may take only the values 0 or 1 and consequently
the eigenvalues passible of the P operator in Eq. (7)
are p = 0, 1, 2, . . . , n. The related p values label (n +
1) antisymmetric irreducible representations of the M(n)
group and it can be shown that the corresponding irrep.
dimensions are jV(p, n) = ( ) (see also Ref [5]). On.ce
the gI, ~ generators are calculated, the whole numerical
difBculty reduces to calculating the matrix elements hI, ~
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and vt, l, ) ) in Eq. (9).
It will be of advantage to discuss the physical interpre-

tation of Casimir operator 7 6rst. Following our notation
we have

i=)
k=1

gkk — gcxcx + gn'a'

= ) c+c g ) c c+, =A'+ —A gn, (12)
ex=1

where the A+ and Af operators satisfy

A'+—:) c+c, A'—:) c+,c

Their eigenvalues, A + and A, give the numbers of par-
ticles with s = +i and 8 = —i, respectively. It is straight-
forward to prove that P, A+, A, A—:A+ +A and 'R

in (1) all commute. One can thus infer from the propor-
tionality 'P (A+ —A' ) that the Casimir operator in-
troduced earlier characterizes the difference between the
numbers of particles occupying the states of the opposite
S symmetries. In other words, the irreducible represen-
tations, with the dimensions A (p, n) introduced above
contain those and only those basis vectors ~GZ, p) for
which AJV„= (JV+ —A„) are equal (to a common con-
stant). It then follows that for the systems with even
particle numbers A = (A+ + A ), the p eigenvalues
satisfy p = 0, 2, 4. . . while the systems with the odd par-
ticle numbers have p = 1,3, . . . .

Let us observe that a Hamiltonian expressible in terms
of the generators (5) may in general contain the interac-
tions which do not conserve the number of particles (for
instance, terms B+B+, B+B+B+, A B+, etc.).
In such a case a (p, n)-irreducible representation will gen-
erate matrix elements connecting states with diferent
particle numbers of the same parity and, necessarily, with
the same (A+ —A ). [Hamiltonians of this more gen-
eral form are not of interest in the context of Hamiltonian
(1) that preserves the number of particles. ] Knowing in
addition that A'+ and A commute with '8 and that
'P~GZ, p) = p„~GZ, p) while A+~GZ, p) = JV+~GZ, p),
we may always order the GZ states within a (p, n) ir-
rep. by grouping them according to a common particle
number, Af = A'+ +A, thus bringing the correspond-
ing total matrix into a block-diagonal form, each block
characterized by the particle number A'.

Let us mention that the most general form of a two-
body interaction which obey the P symmetry and pre-
serves the particle number is

'R(P symmetric) = ) ) v pp, c+c+,cp cp
n~' pp'

+ ++ g g 'U~p &pc cp chic&

~p

+ ++ g g vn'p~, p~b' c i cpi cJ~ col
& (14)

~'I pi ~tel

where, as before, the indices without a "prime" refer to

the 8 = +i and the indices with a "prime" to the 8 = —i
nucleon basis states. By exchanging the order of c&+cg

and cp, cg~ operators in the above Hamiltonian we may
express the two last terms in Eq. (14) in terms of the gen-
erators 5(a)—5(b) with once again a trivial modification
of the original one-body Hamiltonian. Any other (two-
body, three-body, etc.) interactions will obviously lead
to the same symmetry properties of the corresponding
many-body Hamiltonians if they can be expressed using
generators (6).

The results of this procedure corresponding to a model
space ofa j =

z shell, ie. , n=2j+1=12 with% =6
particles are illustrated below. We have diagonalized the
Hamiltonian of the particles-rotor form, i.e. , replacing
the cranking term in Eq. (9) by (I —j )2/(2J'). It is
convenient to slightly modify our notation by introducing

= (A+ -A'- ~ ) —n = A'+ -A'- .

Following the arguments presented above, it can be rel-
atively easy to show, using combinatorial arguments,
that various P blocks of the Hamiltonian contain for the
fixed-particle number N(= 6) submatrices of dimensions
d+=o 400) 8p +2 = 22—5 (two blocks), d~ —~4 ——36
(two blocks), and d~ —~s ——1 (two blocks). The energy
spectra in function of spin for the lowest solutions of each
block (yrast line for each P symmetry) are presented in
Fig. 1 for illustration. The related P = +2, +4, and +6
solutions are degenerated at I = 0 (cf. Fig. 1). It is worth
emphasizing that the difference between the energies of
the solutions of the opposite P values that are degenerate
at I = 0 (P splitting) should not be confused with the
signature splitting, whose illustrations are abundant in
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FIG. 1. Many-body solutions of the particle-rotor Hamil-
tonian for N = 6 particles within the single j =

~ shell. The
Hamiltonian parameters are J = 605 MeV for the rotor,
G = 0.33 MeV for the pairing, and the deformation y = 2.4
for the deformed j shell. The corresponding single-particle
energies are y[3m —j(j+1)j/j(j+ 1), according to standard
notation. Only the lowest solutions for each P value are given.
The P = 0 yrast line has been normalized to zero, to express
more clearly the relative positions of the excited bands. Note
the increasing excitation with increasing ~P~, a result easily
understandable in terms of the physical interpretation of the
P operator.
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FIG. 2. The expectation values of the monopole pairing
Hamiltonian for the solutions of Fig. 1. Note the decreasing
e8'ect of pairing @within the many-body solutions of increasing

~
P]. The physical interpretation of this effect becomes obvious

froin the physical interpretation of the P operator (see text).

the literature. In fact the P splitting for an even system
corresponds to two states of the same signature.

It will also be instructive to present an illustration of
the expectation values of the pairing Hamiltonian within
the many-body solutions of Fig. 1. The corresponding
results are given in Fig. 2. The two bands with P = +6
are unique in a sense that they correspond to maximally
aligned configurations (all 6 nucleons on 6 states with
either all of them with 8 = +i or all of them having
s = —i). Within J =

2 shell there is only one many-
body state for each configuration of this type and since
no nucleonic pair can be "pairing coupled" there, we have

('R(pairing)) = 0 independently of spin. The yrast line
corresponds to P = 0, i.e., to the configuration in which
maximum of the nucleonic states can interact via pairing.

An important prediction related to high-spin proper-
ties of nuclei at this point is the possibility of new types
of crossings between the rotational bands corresponding
to the same parity and the same signature but digering by
p-quantum numbers. Such bands should manifest cross-
ings with negligible band interactions. The above predic-
tion has an important qualitative character: P-quantum
number can be defined, e.g. , in terms of the standard
cranking model in nuclear-structure physics.

To summarize: We have discussed the symmetry prop-
erties of a typical effective nuclear Hamiltonian com-
monly used to describe rotating nuclei, &om the point
of view of the theory of representations of the unitary
groups. We have demonstrated the existence of a new
symmetry, called by us P symmetry, applicable to a still
very rich subensemble of general, usually non-R(3)-scalar
effective Hamiltonians. Although the formalism has been
developed with the nuclear-physics context in mind, it
may have much more applications in other branches of
physics, e.g. , those problems in which variable numbers
of particles are studied. The rotation term considered im-
portant in the nuclear-physics context may be neglected
for the applications other than nuclear, thus simplifying
the solutions. Extensions to a realistic (nuclear-physics)
context will be published elsewhere.
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