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A theoretical approach to the investigation of spin-dependent structure functions in deep inelastic
scattering of polarized leptons off polarized nuclei, based on the effective meson-nucleon theory and
operator product expansion method, is proposed and applied to deuteron and *He. The explicit
forms of the moments of the deuteron and *He spin-dependent structure functions are found and
numerical estimates of the influence of nuclear structure effects are presented.
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I. INTRODUCTION

The large body of experiments on deep inelastic lepton-
nucleon scattering performed in the 1970s and 1980s,
which resulted in the amazing agreement of the data
with the quark-parton model and the confirmation of the
phenomenon of logarithmic violation of Bjorken scaling,
provided the basis for the foundation of quantum chro-
modynamics (QCD) as the theory of strong interactions.
However, the latest experimental results in this field seem
to display deviations from the predictions of the quark-
parton model (“free QCD”) and perturbative QCD [1,2].
In this context, it should be stressed that basic theorems
(sum rules) of QCD require the knowledge of the spin
structure function (SSF) g7 (z) of the neutron.

This has been recently extracted by deep inelastic scat-
tering of polarized leptons off polarized nuclear targets,
e.g., deuteron [Spin Muon Collaboration (SMC) [3]] and
3He (E142 experiment [4]) and these data, combined
with earlier data of the European Muon Collaboration
(EMC) on the proton [1], are being currently used to
check the predictions of QCD [5,6].

The Bjorken sum rule has been computed from E142
data and, using the result fol g5 (z)dz = 0.126 + 0.010 +
0.015 obtained by the EMC Collaboration [1], the value
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Jo (g% — g7) dz = 0.148+£0.022 has been found [4], to be
compared with the theoretical prediction of 0.1873-0.004.
At the same time, the SMC estimated for the first time
the first moment of SSF of the “isoscalar” nucleon: M,, =
fol gl¥ dz = 0.023 & 0.02 % 0.015, and combining again
these data with the EMC proton data, the Bjorken sum
rule was found to be fol (g% — g7) dz = 0.20+0.05+0.04.

New experiments are planned at DESY (7], CERN (3],
and SLAC [4], also aimed at an improved measurement
of this fundamental prediction of QCD.

It is worth stressing here that all information on the
neutron SSF have been and will be obtained by analyz-
ing deep inelastic scattering (DIS) off polarized nuclear
targets, in particular 2H and 3He. Therefore such infor-
mation can in principle depend upon nuclear structure
effects, which however are considered to provide only a
minor correction.

As a matter of fact, the possibility to measure the near
free isoscalar nucleon structure functions by using po-
larized 2H target is motivated by the fact that typical
nuclear effects in the deuteron are small and are predom-
inantly determined by well-known spin-orbital structure
of the deuteron wave function (cf. Refs. [8,9]). At the
same time, the interest in polarized 3He targets stems
from the observation [10] that since the dominant com-
ponent of the 3He wave function is a fully symmetric
S wave with the two protons in a spin singlet state, a
polarized 3He can be associated to a large extent with
a polarized neutron. It should however be pointed out
that the precision required by a significant check of the
Bjorken sum rule would demand a quantitative estimate
of all possible nuclear effects. For example, in the case
of 3He, the small S’ and D wave components of the re-
alistic three body wave function generate a proton con-
tribution to the 3He polarization and asymmetry, which
has to be subtracted in order to obtain information on
the neutron properties. Recently, the proton contribu-

tion to the process 3ﬁe(é’, e’)X has been quantitatively
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evaluated by full convolution approach, where not only
Fermi motion [11] but binding as well [12] were taken
into account by generalizing the usual convolution ap-
proach (see, e.g., Ref. [13]), by introducing the concept
of spin dependent spectral function [14,15], and nuclear
effects have been indeed found to be small. Relativistic
light cone calculations have been performed in Ref. [16]
using the spin dependent spectral function of Ref. [15];
the obtained results practically do not differ from the
nonrelativistic ones obtained in Ref. [14].

The underlying reason for the applicability of the con-
volution model is the existence of two typical momentum
scales in deep inelastic processes, which leads to the fac-
torization of the amplitude of the reaction into two pieces,
depending, respectively, on the “large” external momen-
tum, i.e., the structure function of the nucleon, and the
“low” typical momenta of nucleons in the nucleus, i.e.,
the momentum distribution of the nucleons [17]. A rigor-
ous method to analyze such a factorization is based upon
the Wilson operator product expansion (OPE). A theo-
retical approach to investigate deep inelastic scattering
on nuclei by using the OPE method within the effective
meson-nucleon theory with one-boson-exchange (OBE)
interaction has been suggested in Refs. [18,19]; these cal-
culations have been performed within well-defined ap-
proximations, such as the leading twist approximation
in the OPE and the lowest order approximation on the
meson-nucleon coupling constant. Such an approach al-
lows one to derive a convolution formula which includes
binding effects and, at the same time, preserves the
energy-conservation sum rule.

In this paper the model is extended to deep inelastic
scattering of polarized leptons off polarized nuclear tar-
gets. To this end, the set of operators, providing the basis
for OPE, is extended by considering the axial operators
in terms of nucleon fields interacting with meson fields.
Using the nonrelativistic reduction, an explicit form of
the operators relevant to describe polarized deep inelas-
tic scattering are found. Particular attention is paid to
the investigation of the properties of the physical nucleon,
e.g., the physical mass, the meson cloud, the renormal-
ization constants, and the SSF’s which appear in the cal-
culation. The explicit expressions for moments of SSF
of the lightest nuclei, the deuteron, and 3He, are found
and the inverse Mellin transform reconstructs the corre-
sponding nuclear SSF in the form of convolution of the
nucleon SSF and effective distributions of the nucleons
in a nucleus. The obtained formulas are generalized to
the case of heavy nuclei and found to be similar to those

Wi (P4, 4, S) = i€uro ¢ (G1((Io, Q%) 8% +

where p4 denotes the 4-momentum of the target, qq
stands for the time component of the 4-vector ¢ (in the
rest frame of the target we use the notation go = v), and
S is the polarization four-vector, normalized as §-S = —1
and satisfying the relation S-p4 = 0. In what follows we
will consider deep inelastic scattering off polarized targets
with spin one-half (the nucleon and 3He) and one (the

used in the conventional convolution approach [12]. As
an example of applications of the method, the SSF of the
polarized deuteron and 3He are numerically estimated
and compared with recent- experimental data.

The paper is organized as follows. In Sec. II the basic
formalism is presented. The antisymmetric part of the
Compton scattering amplitude is defined in terms of the
axial twist-two operators in the OPE method and their
explicit form in the nonrelativistic limit is computed. In
Sec. III the moments of the spin-dependent structure
function g () for the physical nucleon are evaluated in
terms of the corresponding moments of bare nucleons and
meson cloud contribution. The moments and the SSF
gP(z) and giHe(a:) are calculated in Sec. IV, where an
extension to complex nuclei is proposed and a formal
comparison with the conventional convolution approach
is illustrated. Preliminary results for A = 2 have already
been presented in Ref. [20]. The results of numerical
calculations are presented in Sec. V and the conclusions
in Sec. VI, respectively.

II. BASIC FORMALISM
A. Kinematics and notation

The spin-dependent structure function can be deter-
mined experimentally by measuring the asymmetry in
the reaction with polarized particles

I+4A— 1+ X.

In the one-photon-exchange approximation the relevant
part of the cross section can be written in terms of the
antisymmetric parts of the leptonic L,, and hadronic
W, tensors:

d?o a? /
dE'dQ ~ Q* MLE

where [pv] are the antisymmetric indices, E and E’ are
the initial and final energies of the lepton, Q2 = —¢? is
the square of four-momentum transfer, a stands for the
electromagnetic fine structure constant, and M, is the
mass of the target.

The leptonic tensor is obtained from quantum elec-
trodynamics and the antisymmetric part of the hadronic
tensor W, is expressed in terms of two independent spin

structure functions G »:

LWk, (2.1)

((pa-q)S7 —(S-9)pi]

Gz(QO,Qz)) , (2.2)

M3

I

deuteron), in which case the vector S may be computed
in quantum field theory as the mean value of the canoni-
cal spin operator defined by Noether’s theorem [21].1 We

'For example, its components are Sx = (0,0, 0, (0.)) for the
nucleon and Sx = —(i/Mp)exuv,EH¥E* pY,, for the deuteron
with total momentum pp and polarization 4-vector £¥.
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choose the quantization axis in the opposite direction to
the photon momentum, ¢* = (,0,0, —|q|).

In order to measure the SSF G; and G, appearing in
Eq. (2.2), one has to consider the difference between the
cross sections corresponding to parallel and antiparallel
electron and target spins, respectively, for one has

d?c d?o
dE'd} (- dE'dQ

th

402 E’

= W [(E+E'COS€)G1 -

Q2G2/MA] , (2.3)
where 0 is the electron scattering angle. In the Bjorken
limit (Q%2 — oo, v = o0, T = Q?/2paq is fixed),
which will be considered from now on, the functions
G,,2 are predicted to depend only upon z, yielding the
“true” dimensionless spin-dependent structure functions
91(z) = vG1(v,Q?) and g2(z) = v2Ga(v, Q%) /M4.
Defining the asymmetry A (z) as the ratio

%0 /dE'dQ (11) — d?0 /dE'dQ (1))

A1) = s jamran (1) + dojamraa(ry) ° Y
one obtains
Ay (z) = —Z;ZES) , (2.5)

where F3(z) is the usual spin independent structure func-
tion. The asymmetry (2.5) and, consequently, the SSF
are the main objects of experimental and theoretical in-
vestigations.

Since any structure function, either spin independent
or spin dependent, can be represented as a linear com-
binations of helicity amplitudes, it is instructive to per-
form further analysis in the helicity basis. For a thorough
analysis of helicity amplitudes in case of targets with an
arbitrary spin we refer the interested reader to [22]. We
define the amplitudes Ax aq,2r A1 @S

Ax M M= el;*W[uu] (S)EK’ ’ (26)
where A, X’ and M, M’ are the spin projections of the
photon and target, respectively, along the z axis, &}
is the polarization vector of a helicity A photon, ¢4 =
(0,1, %1, 0)/\/57 eo = (—1d],0,0,v)/4/Q* , and the
other notations are self-explanatory. A simple calcula-
tion shows that the structure function g; in the Bjorken
limit is defined by the amplitudes (2.6)

QZ
Ay 12 =Fg oz 92 (2.7)
and it reads
01 = —3 (i = Ao i), 28)

Actually, the amplitudes (2.6) may contain the sym-
metric part too, which involves the structure functions
F(z,Q?) and, for spin one targets, b;(z, @?) [22]. In our
case this part is irrelevant, since it does not contribute
to the asymmetry (2.5) and to the SSF.

The SSF, as well as the hadronic tensor W,,;, can
be directly calculated, via the optical theorem, from the
imaginary part of the amplitude for forward Compton
scattering of virtual photons off hadronic targets

1
Wi = é;lmT[#u]. (2.9)
In what follows the Compton amplitude T7,,; for nuclear
targets and its relation with SSF through Egs. (2.6) and
(2.8) will be obtained.

B. The Compton scattering amplitude for nuclear
targets

To establish a direct connection between SSF and the
amplitude Ty, we decompose the latter in the same form
s (2.2), viz.,

T[p,u] = €uvroq

A 1 {al(n:, QZ)Sa

2($Q)

+1(pa- ST~ (S-qpal} 23— o (210)

where the Compton spin-dependent structure functions
a,2(x) are related to the Compton helicity amplitudes
ham,yam and the deep inelastic SSF by the following
relations:

harmoamr = €8 T (S)eXs, (2.11)

ai(@) = =3 (hot 4+ — ho o), (2.12)
1

g1(z) = —Im ay(z). (2.13)

Using the dispersion relation for the function a;(z) and
Eq. (2.13) we get the expression for a;(x) in terms of
the moments of the SSF ¢,

(%)nﬂ /oldyy" ai(y).  (2.14)

The integral on the right-hand side (RHS) in Eq. (2.14)
is the n+1 moment M, 1(Q?) of the SSF. We will use Eq.
(2.14) to obtain the structure functions from the explicit
expressions of the nuclear Compton amplitude T,

The computation of the amplitude Tj,,) requires the
treatment of two relatively independent questions: (i)
the analysis of the properties of the time ordered product
of electromagnetic current operators at high momentum
transfer (Q? — oo), which characterizes the short dis-
tance physics and (ii) the determination of the vectors of
the nuclear ground state |p4 ), which essentially charac-
terizes the large distance physics. This is seen explicitly
from the expression of the amplitude (2.10) which is of
the form

oo

ay(z) =4 E

n=0,2, -

Ty = i / d*¢ exp(ig€) (pa MIT [Ju()J, (0)] [pa M).

(2.15)
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The behavior of the T product of the electromagnetic
currents may be established in a general form directly
from Eq. (2.15). In the Bjorken limit (Q? — oo) the
main contribution in the integral (2.15) comes from small
space-time intervals, £2 — 0. In this limit the argu-
ments of electromagnetic currents coincide and T' prod-
uct contains singularities. A consistent method to ana-
lyze these singularities is based on the Wilson operator
product expansion [23]. According to the OPE on the
light cone [24], the product of two arbitrary operators A
and B factorizes into two pieces when their arguments are
separated by a small space-time interval; the first piece
contains singularities (the c-number coefficient functions,
or Wilson’s coefficients) and the second one appears as a
set of regular local operators, which are well defined in

, > 2 \"* Aoy
T[uu] = 1,6puAan Z Cn,t(Q2) (@) q}lq : "q#n(pAMlot{ # #"}(0)|pAM)7

t;n=0,2,---

field theory. Then the local operators are expanded in a
series

A()B(0) ~ Y Ca(€®)éu, -~ £, O 7#(0).  (2.16)

The operators O¥1 ¥~ are defined to be symmetric and
traceless in all Lorentz indices p1 - - - . The quantity n
is the Lorentz spin. Another quantity, the twist, defined
as 7 = d, — n (d, is the canonical dimension of the
operator O,,) plays an important role in the theory of
deep inelastic scattering processes.

Namely, only the lowest values of 7 contribute to the
matrix elements of the Compton amplitude [17]. There-
fore in the leading order of the twist (7 = 2), the RHS of
Eq. (2.15) can be rewritten as

(2.17)

where t tags the fundamental fields of the theory under consideration and éfaul"'“ "}(0) are the relevant twist-two
operators constructed from these fields. The transformation properties of the amplitude Tj,,) restrict the Lorentz

spin, (n + 1), in Eq. (2.17) to take only odd values.

It is worth emphasizing that in (2.17), due to the factorization in the OPE, the coefficient functions C,, are related
to short distance, “subhadronic,” physics (depending on the large momentum g), whereas the matrix elements of the
operators O{?#1#n} characterize the large distance physics (depending on typical nuclear momenta).

In order to separate the part contributing to g;(z), it is convenient to rearrange the symmetric Lorentz indices

o1+ Un} so as to obtain two operators, one with no definite symmetr é“{“l"'“"}, and the other with mixed
Yy y

symmetry [25], viz.,

n

Olomipun} — [ Holpapn} o
n+1

=1

Then g, gets contributions from O{#1#n} only. The
mixed symmetry operators enclosed in the square brack-
ets of Eq. (2.18), define the twist-2 part of g(z),
the so-called Wandzura-Wilczek contribution [25,26]. In
this paper we consider the amplitude T}u.) defined by
Egs. (2.10) and (2.17) with only the first operator from
Eq. (2.18), that is, the part concerning the structure
function g;(z) only. The structure function g,(z) is ex-
pected to be very small, (in the parton model it is exactly
zero), and will not be considered here (for the investiga-
tion of nuclear effects in g3 () see, for instance, Ref. [27]).

The form (2.17) for the amplitude (2.15) near the light
cone is valid in the framework of any renormalizable field
theory [23,24]. Thus, the problem of its analysis is for-
mulated now as a consistent calculation of both the co-
efficient functions C,; and the matrix elements of the
twist-two operators O7{#1#n} sandwiched between nu-
clear ground state vectors |p4s). So far there does not
exist a realistic field theory by which one could compute
simultaneously both pieces, since if one of them is calcu-
lated in a more or less self-consistent way, then the other
one relies on phenomenological approaches.

For example, within perturbative QCD, because of
asymptotic freedom it is possible to analyze the prop-

Z éui{ul-"o'ﬂi+1"'lln} —n- O”{“l"'“"}] ) . (2.18)

erties of the Wilson’s coefficients C,, ;(a,, @%) by com-
puting directly, at least in principle, the corresponding
Feynman graphs up to the desired order in a, [28].

Making use of the renormalization group equations, the
Q? dependence of these coefficients may be established
as well. However, in practical calculations of the struc-
ture functions and comparison with experimental data
one needs the matrix elements of the operators O.(0),
which are related to the nonperturbative region of QCD
and, hence, are parametrized from the experimental data.
Since the basis of operators in OPE, Eq. (2.17), and the
Wilson coefficients are target independent, all informa-
tion about the target is contained in the unknown matrix
elements. Therefore in the treatment of the “QCD moti-
vated” models of nuclear effects in deep inelastic scatter-
ing, one is forced to introduce parameters, which neither
can be computed theoretically from QCD, nor can be
fixed from independent experiments [29].

The problems related to the short and large distances
are formally solved, in the case of deep inelastic scatter-
ing, within nonasymptotically free theories with spinor
fields (nucleons) interacting with the massive bosons
(mesons) via pseudoscalar and vector couplings [30,31].
These field theoretical models with a renormalizable in-
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teraction allow a perturbative investigation of the Wil-
son’s coefficients and of the corresponding matrix el-
ements, by summing the leading logarithmic correc-
tions. These examples can be considered as an idealized
meson-nucleon theory, since the realistic models necessar-
ily involve phenomenological corrections, such as vertex
meson-nucleon form factors, effective coupling constants
and meson masses [32,33]. In realistic meson-nucleon
models, the exact results of Refs. [30,31] serve as a hint
for a formal approach and further phenomenological ad-
justments. It is obvious that the target independent Wil-
son’s coefficients are not calculable within such a theory
and they ought to be parametrized from experiments, for
instance, from the experiments on deep inelastic scatter-
ing off free nucleons.

We apply the effective meson-nucleon theory and the
OPE method to deep inelastic scattering off nuclei (cf.,
Refs. [34,18,19,27]). This theory allows one to describe
fairly well the NN interaction at relatively small ener-
gies, the nuclear bound states |p4 ), the binding energy
and other properties of light nuclei [35]. Then, the axial
twist-two operator O?{#1'#n} for the system of interact-
ing nucleon and meson fields may be written down in the
form

OZ{"i"'“"}(O) = (%)

x{:]\—/'(O)’y°’75 37;1 - 3(‘_"" N(0):},
(2.19)

where N stands for the nucleon spinor fields. Note the
implicit presence of the meson degrees of freedom, via in-
teraction, in the definition of the operator OF#*"#}(0).
In order to obtain the explicit expressions of the oper-
ator (2.19) and calculate its matrix elements, we need
the Hamiltonian of the system. In order to achieve self-
J

Il

by M+ m

n=0,2, -

(0) 4

where v = v0 + v, and 0_ = 8o — 9,.

(%) (o M| :F ()G (@) v 156 N(0): [pa M),

consistency, this Hamiltonian has to provide simultane-
ously the equation of motion for the interacting fields and
the target ground state:

N =i[H,N],
H |pa) = Malpa).

Equation (2.21) for the nuclear ground state has been
solved within the nonrelativistic limit using effective
Hamiltonians containing =, o, w, p, 7, and § mesons
[one-boson-exchange (OBE) approximation] [32,35].
Consequently, the operators (2.19) are also to be calcu-
lated within the nonrelativistic limit. The strategy of our
calculation is therefore as follows: (i) we choose the ap-
propriate covariant Lagrangian, giving the classical equa-
tion of motion for interacting meson and nucleon fields;
(ii) these equations are reduced nonrelativistically and
the effective nonrelativistic Hamiltonian is obtained; (iii)
using the same procedure of nonrelativistic reduction, we
compute the explicit form of the operators (2.19).

The procedure of nonrelativistic reduction of classi-
cal equations of motion for the interacting meson and
nucleon fields has been established in a number of pa-
pers and could be found in details, for instance, in Refs.
[36,37].

Below we perform explicitly the calculations with
pseudoscalar-isovector coupling, the pion-nucleon inter-
action. The result is generalized to the case of other
kinds of couplings. Introducing the isospin formalism
we redefine the Wilson’s coefficients in Eq. (2.17) as a
diagonal (2 x 2) matrix in the isospin space with the
proton and neutron coefficients on the main diagonal,

(é’n) 5 = Ch,aba8, @, B = 1,2, and use them into the
o
definition of the operators (2.19).

The contribution of the operators O {#1-#n} (2.19) to
the Compton helicity amplitude then becomes

(2.20)
(2.21)

T (f;,—”)+ (OF)a:

(2.22)

We perform the nonrelativistic transition of the fields N(0), following the method described in Refs. [36,37], and,
using the equation of motion (2.21), we compute their nth 8_ derivatives. The resulting operators, being composed
from interacting nucleon fields, explicitly involve the meson degrees of freedom. Skipping some rather cumbersome
details of calculations we write below the explicit nonrelativistic form of the operators O} as a sum of operators up
to second order in the coupling constant g,:

01A1 = OIAV,n + OIAV‘n,n + OIAV N,n» (223)
dp:1d, A
ONn=m" —:;I—)I;—ZN,(,I)(Pl,Pz) [E"(Phpz)]Axl BZU'T(PI, 51) Cn a(p2, s2), (2.24)
v
1 dpldpz dk _
ONm =mn oz [ P1TP2_CF__ (N (k) b (k) — NP (k) b (k
Nnm,n m m (271')9 2w(k)( n ( ) ]( ) n ( ) J( ))

x [Z*(p1,p2) o - k] at(p1,81)Cn 77 a(p2, s2) + Hoc., (2.25)

81 82
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2 dp1dp2dp dk
0N = _pmnIr / P1dp2dp
™ am? (2n)?  2w(k)

N = [2*(p1,p2) o K], ,, (N (k) + NP (k)
x[o K], ,,: at(p1,51)Cn7? a(pz, s2)at (p, 53) Tja(p + k, s4) : +H.c,,

(2.26)

where m is the mass parameter of the Lagrangian, the mass of bare nucleons, 7; are the isospin matrices, af(p,s)
(a(p, s)) is the creation (annihilation) operator of a bare nucleon, proton or neutron, with spin s and momentum

P, b;'-(k) (bj(k)) creates (annihilates) the jth pion with momentum k; w = /m2 +k? (m, is the pion mass),
[2’\] o83 = X: ¥ Xaa; Xs is the Pauli spinor, and the operator ¥ is the nonrelativistic analogue of the four-vector

spin operator for the spin—% particles

750 - (P1+P2), A=0
2 (p1,p2) =4 o (1 - Bk ) (2.27)
+ 3 (U"Plpé + 0 -p2p} — P1-P20> —i[p1 X Pz]A) y A=1T,Y, 2
The functions N in Egs. (2.24)—(2.26) depend only upon momenta and are of the form
2 2 n
N _ P1” + P2 P1, + P2, '
~ (P1,P2) T =+ ) (2.28)
1 wi(k)]™
N® (k) =+ 1+ —1 .
(k) ) - , (2.29)
< 1 1 wi(k) k. 1"
N# (k) = —N& — = 1+ 2| -1 )
(k) o (k) ¥ oK) k2 5 , (2.30)

where wy = w + k,. The operators (2.24)-(2.26) are the
basic result of nonrelativistic OPE method within the
OBE approximation. Their matrix elements will deter-
mine the polarized deep inelastic scattering of leptons on
those nuclear targets, e.g., the two and three nucleon sys-
tems, which are well described within the effective meson-
nucleon theory with OBE potential.

Note that our method is based upon perturbation the-
ory within the effective meson-nucleon theory. Since the
effective meson-nucleon coupling constants are large, it
can be argued whether a perturbation expansion can be
applied at all. We simply follow here the customary use
of perturbation theory in the effective meson-nucleon the-
ory [32,33], justified by the success of OBE model. The
price one has to pay in such an approach is the use of
some phenomenological ingredients. For example, since
the nuclear forces are strongly repulsive at small dis-
tances, the physics at such distances is mocked up by
a short-range repulsive core, which is handled partly by
introducing meson-nucleon vertex form factors. Thus, in
the calculation of the corresponding matrix elements the
uncertainties of the nuclear force at very short distances
are insignificant. Analogously the short distance contri-
butions to the nucleon and nuclear structure functions
are hidden into the Wilson’s coefficients, which are the
new “effective constants” in the effective meson-nucleon
theory [18,19,27,34].

From the QCD point of view this situation corresponds
to the picture when hadrons, viewed as a core of valence
quarks surrounded by a sea quark-antiquark pairs and
gluons, are approximated by a core of bare nucleons with

a correlated color neutral quark-antiquark pairs, the me-
son cloud. In OPE such a picture means that much of
detailed dynamics of the quarks is embedded in the coef-
ficient functions C, (Q?), the influence of the meson cloud
is rather included into the matrix elements of the oper-
ators O°{#1#n}  In case of the effective meson-nucleon
theory a preliminary investigation of the twist behavior of
eq. (2.17) is hindered by the fact that all the renormaliza-
tion effects are included into the effective constants of the
theory (coupling constants, meson masses, vertex form
factors, etc.), so that the renormalization group equa-
tions are here, in a sense, inapplicable. The use of the
twist-two as a leading term in Eq. (2.17) is to be regarded
as an assumption and it should be verified a posteriori,
by looking at the quality of the final results and, possibly,
by investigating the higher twist corrections.

III. MOMENTS OF THE NUCLEON
STRUCTURE FUNCTIONS

As mentioned above, the nonrelativistic expressions for
the operators (2.24)—(2.26) and the Compton amplitude
(2.22) involve, in particular, the bare (unknown) param-
eters, i.e., the mass parameter from the Lagrangian of
the theory and the Wilson’s coefficients C,,(Q?) which
are not calculable within our approach. Whereas the
mass parameter may be fixed by introducing into the
Lagrangian a corresponding counterterm, the coefficients
C,(Q?) are to be related with the SSF of the physical
nucleons. Therefore we first investigate the ground state
and the SSF of the physical nucleons.
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A. Nucleon ground state

For the investigation of the nuclear ground states in the effective meson-nucleon theory it is convenient to use the
Tamm-Dancoff method.

For a physical nucleon with an isospin index a, momentum q, and a given z projection of the spin s, the Tamm-
Dancoff decomposition is given by

| N)a,a = V1= ZN‘P0|N)q, a8t ‘Pllﬁw)q, as T, (3.1)

where Zy is the normalization constant defined by the condition (N|N) = 1 and |N) and |Nw) represent the basis
vectors of the states with one bare nucleon, and with one bare nucleon and one meson, respectively. The coefficients
@; in the expansion (3.1) are the operators in the momentum space and define the corresponding wave functions

‘PO'N>q, o8 = aL(q1 s){O>, (32)
_ dkdp o . ;
P1NTa, 00 = [ GosPLY (i dal (@, )5 R)[0). (3:3)

The explicit expressions for the wave functions ¢, is found from the condition that the |N) is the state of the
physical nucleon , which means that it obeys Eq. (2.21) with the physical nucleon mass,? viz.,

O] igx o- k], .
oite’ (B, k,q) = — (21)°5®) (p + k — q) 2 Lokl o [7] o (3.4)

2my w(k)+/2w(k)

In particular, as it can be seen from (3.4), in the nonrelativistic approximation there is no interaction between the
nucleon and the pion with the angular orbital momentum ! # 1. Finally one can find the mass counterterm ém and
the renormalization constant Zn that are of the form

g2 dk  3k? 92 dk  3k?

m = " 4m? (211-)3 2w2(k)’ 2N = 4m? (27r)3 2w3 (k)"

(3.5)

B. The matrix elements

Now we are in the position to compute the matrix elements of the operators (2.24) and (2.25) with nucleon ground

state vectors (3.1). The operator (2.26) is of two-body origin, hence it does not contribute to the nucleon matrix
elements.

Schematically the matrix elements for a nucleon at rest are as follows:

M.E. ~ 4., (N|po Z O?\'r,n‘P0|N>a,s, (1-2Zn) (IA + renorm.) (3.6)
tan (N, 7|01 ) OF 201N, Ta, (recoil) (3.7)
a5, IV, |1 Z o,t,,,,ntpOU\’r)a,,, + H.c. (interaction). (3.8)

The four different matrix elements given by Egs. (3.6)—(3.8) are known, respectively, as the impulse approximation
(scattering off bare constituents), the renormalization and recoil contributions, and the term of pure interaction origin
(self-energy-like correction). The contribution of these matrix elements with given isospin to the helicity amplitude
(2.22), sandwiched between the states a, may be explicitly written in the form

?In Eq. (3.1) we keep only the first two terms. The next term, 2| N#w), in spite of being proportional to g2, does not
contribute to the nucleon SSF, as it can be seen from Egs. (2.24)—(2.30) and (3.1)—(3.3).
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RIS (§)+ (@), { () 7}

n=0,2,--

. oA g2
J Cn ) s
+ (T 73 aa 41’773\, {

(3.9)
dk 2k2-k2 [ 1 ~
(2m)® w?(k) (Zw(k) - N )(k))} (3.10)
@2 [ dk N,g+>(k>uf‘2‘(‘;)} , 611)

B (é"),m am% | (2m)®

where a@ = 1,2 corresponds to the matrix elements on
proton and neutron, respectively.

The physical meaning of the obtained result becomes
clear if Egs. (3.9)—(3.11) are depicted in terms of Feyn-
man diagrams. Figure 1 represents the helicity amplitude
for the proton. It can be seen that the proton ampli-
tude is determined not only by the proton Wilson co-
efficients C,, 1, but by the neutron coefficients C, 2 as
well as multiplied by a factor of 2 which comes from
the relation between the pion-nucleon coupling constants:
grtN = V2gron. From Egs. (2.13) and (2.14) it is easy
to show that in the present approach the Wilson’s coef-
ficients in the OPE are proportional to the moments of
SSF of the bare nucleons [proton (p) on neutron (n)]

C"n,1(2) =2 Mn+1(g¥(n))a (312)

with
1

Ma(f) = / de 2" f(z).

(1]

Relations (3.9)—(3.13) determine the moments of SSF of
the physical nucleons in the effective meson-nucleon the-
ory. Accordingly, the moments should be parametrized
in order to describe the scattering off free physical nucle-
ons, and they should be replaced by this parametrization
whenever they appear in nuclear matrix elements. The
first (n = 0) moments of the nucleon SSF play an impor-
tant role in deep inelastic scattering of polarized parti-
cles, since they define some integral relations among the
SSF, known as sum rules. As n = 0 the interaction term
in Egs. (3.10) and (3.11) vanishes [see also Egs. (2.27)-
(2.29)] and one obtains

ME™ (g;) = ME™) (1= Zy)

(3.13)

r
The second term on the RHS of Eq. (3.14) is the con-
tribution of recoil diagrams, which is partially canceled
by the renormalization term [38]. The remaining part is
the additional counterterm to renormalize the composite
axial operator (2.19). For n = 0 the operator (2.19) is
the spin operator for the spinor fields and its matrix el-
ement, (3.14), is the mean value of the spin projection
over polarized states of the physical nucleon. Equation
(3.14) demonstrates that the spin projection of the phys-
ical nucleon differs from the mean value of the spin pro-
jection of the bare nucleons. This is expected, since the
interaction between the core and the meson cloud, with
orbital momentum ! = 1, slightly redistributes the spin
among the constituents. The total angular momentum
of a meson-nucleon system, is a sum of the orbital mo-
mentum ! = 1 and the spin s = 1/2, so that both parallel
and antiparallel polarizations of the core contribute to
the nucleon polarization. From the point of view of the
present approach, the orbital moment of the meson cloud
affects the spin distribution of bare nucleons inside a po-
larized physical nucleon. The effects of the meson cloud
on unpolarized deep inelastic scattering on nucleon have
been investigated in Refs. [39,40] and are known as the
Sullivan processes.

Another interesting consequence of Eq. (3.14) may
be derived by analyzing the difference between the first
moments of SSF of the proton and neutron, the Bjorken
sum rule. In this case one finds that the Bjorken sum
rule on free nucleons may be computed by considering
the bare constituents and the meson cloud corrections:

/ % (2, @) — g} (=, @) d=
= M2(Q?) - M2(Q?)
= [M}(Q?) — M7(Q?)]

P (n) ™ (P) 2 dk k2
+ (Ml +2M, ) x|1- g,,2 / 3,3 » (3.15)
3m% J (27)3 wi(k)
2 dk 2k2 — k?
Ix 2 S (3.14) ,
am% J (2n)® w3(k) where the RHS of Eq. (3.15) is the BSR for bare nucleons
0 o+ FIG. 1. The dressing diagrams for the he-
JEERIy <. licity amplitude corresponding to the forward
// Y Va2 / AN Compton scattering off the proton. Black
- £ . .
a ) A A dots denote the scattering off a bare nu-
14 p p p p p n p cleon and the dashed line the pion propaga-
tor. The first diagram is the contribution of
0 . the impulse approximation and renormaliza-
o T tion terms, the second and third diagrams
RN R represent the recoil effects and the last two
/ \ \/_2 / \
—o ——— diagrams are the self-energy-like interaction
p p p p n p terms.
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corrected by the interaction with the meson cloud. Ex-
plicit numerical estimates of the role of the meson cloud
in polarized deep inelastic scattering processes on nucle-
ons is ambiguous and requires a proper investigation. In
fact one needs a consistent procedure for the regulariza-
tion of integrals appearing in Eq. (3.15) and for the in-
clusion of the vertex form factor into the meson-nucleon
vertex. Also, some assumptions about the properties of
the bare nucleon core are necessary. The role of the or-
bital momentum of the virtual pions in determining the
spin of the nucleon has to be investigated as well. These
problems are beyond the goal of the present paper and
will be considered elsewhere.

IV. NUCLEAR MATRIX ELEMENTS

In the previous section we explained in details the ba-
sic formalism and apply it to the physical nucleons. The

basic idea of the calculations of nuclear matrix elements
remains the same: once the nonrelativistic expressions
for the axial operators have been established in terms of
nucleon and meson fields, the vectors of nuclear ground
states are to be defined in the same manner, i.e., making
use of the same nonrelativistic Hamiltonian which has
been used to derive Egs. (2.24)-(2.30) and (3.1)—(3.3).
In what follows we keep the terms up to the second order
in the meson-nucleon coupling constant g, which corre-
sponds to the usual approximations in nuclear physics in
deriving the potential and Schrodinger equation, g2 ap-
proximation. In this sense the present approach pretends
to be self-consistent. The condition of a consistency is
that the Hamiltonian, with OBE interaction, should in-
deed describe the real nucleus. We choose the realistic
OBE potentials, such as the Bonn [35] or Reid [41] ones,
which give a good description of light nuclei.

Below the explicit expressions for the moments of the
2H and 3He SSF’s are derived.

A. The deuteron

The vectors of the deuteron ground state in the Tamm-Dancoff approximation are given by a relation similar to

Eq. (3.1); viz.,

o8
NT A7 8182 €
wo [INN) = 93'** (p1,p2) (27)*6(p1 + P2) al, (P1, 81)WGL(P2, s2) |0},

o1 |[NN7) = 3°2*%7 (p1, pa, k) (27)%6(p1 + P2 + k) al,(p1, s1)a}(p2, 52)b} (k) |0),

(4.1)

(4.2)

where €*? is the Levi-Civita tensor which describes the isospin function of the deuteron and the nucleon spins sy, s,

and orbital momentum in ¢g!*?

(P1,P2) are summed to the total angular momentum J = 1. The quantum numbers

a, B, and j are combined so as to give the total deuteron isospin 7' = 0. The physical meaning of the coefficient ¢q
can be understood by projecting the bare deuteron state onto the state with two nucleons located at points ry, ra in

coordinate space

dk,dk,

(1‘1, l‘2|<,00]§71Nz) =

x(0las(ki,51)a;(ks, 52)al (P1, 51)af (P2, 52)[0)-

(anys el mitikaTa (9m)35(py + P2) 05'** (P1,P2) Xor Xaa a3 7

exB

(4.3)

It is clear from Eq. (4.3) that ¢o(p, p) with spin, xs, and isospin, 74, functions is the conventional deuteron wave
function in the momentum space, obeying the Schrodinger equation with OBE potential [36]. In what follows a more
conventional notation for o will be adopted, viz., po(p,p) = ¥X,(p). For the function ¢, we have

81820 ] i n 1
©31°2% P27 (py, pa, k) = —(27)°6®) (p1 + p2 + k) Z:LN (k) /20 (k)
e eaa' X
X {800 (p17p1) 2 [0’ ° k]s 82 [Tj]alﬂ - (1 « 2)} - (4'4)

The renormalization constant for the deuteron state contains the nucleon contribution (3.5) and the exchange part,

Zp =2Zn + ZD, where

= dpdk
Zp=— P
D (271_)6 M

Ve (K)

(P) L9

TR(p + k). (4.5)

We proceed now with an analysis of the moments of the deuteron SSF. To begin with, let us define the isoscalar
nucleon SSF, g¥(z) = [¢¥(z) + g7(z)]/2- Then the nth moment of the deuteron solely depends on M, (g¥¥). Using

Egs. (3.9)—(3.11) we get
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2 dk 3
Mn+1(gl ) = n+1(gl ) {1 — In

am%, | (2n) w3(K) (NE9 (1) K2 + NS (1) (262 - K2) ) }

+Mn+1(g{"){ Iyt 9z /(2‘1:) 2wf‘(k) (2kf—k2)+nfn—72}. (4.6)

The moments of the deuteron SSF’s are determined by matrix elements similar to those in Egs. (3.6)—(3.8). In
the nuclear case all the operators (2.24)—(2.26) contribute to the corresponding matrix elements. While evaluating
the matrix elements, one obtains contributions corresponding to Egs. (3.6)—(3.8) computed with the deuteron wave
functions (4.1) and (4.2); representing the scattering off a bare nucleon and self-energy-like corrections (see also Fig.
2). These diagrams provide the contribution to the Fermi motion of “dressed” nucleons. Besides, there are terms
of a pure exchange origin which reflect the fact that nucleons in the deuteron are “off-mass-shell,” and terms with
renormalization and recoil contributions:

‘ 7 Mas1(g¥) — Mpya(g¥
% (fni—z) Mz (o?) = Z MWMT [(1 - gPD) (—%D— + +1(g_ ) s (g ))

M—:tl Mn+1(97')

/(27r)3N(1)(p’p)\I’ (p)2(12)(p)'I’,L\)4(P)

dpdk
PR32 (0)5:V2 (19 (5 ~ N009) ¥Ru(p+10)| (47)
where S is the total spin of the nucleons, S = %(0'1 + o2) (with its projection on to the z axis S,), Vr(k) is

the one pion exchange potential, (S,), = (1 — 3/2Pp), Pp is the D-wave probability in the deuteron, 2?’12)(p) =
1={(p,p) + =3 (P, p)] [see Egs. (2.24)—(2.27)] and N (k) is defined by

NO (k) = ki [( 2fr:N)n - (1 - 2:;,)"] . (4.8)

The expressions in Eq. (4.7) still contain the bare moments, M,,(g7). However they may be expressed through the
physical moments by making use of

(1 - gPD) ( n+1(91 )— n+1(91 )) =(S:)p ( n+1(91 ) = Mnia(91 ))
~ (Sha) - NP @ND (Mnsa(ol) = Mara (o) - (4.9)

In obtaining expression (4.9), we have used that fact that M,,(g¥) — M, (¢¥) ~ ¢2; then the moments of the deuteron,
up to g2 terms, contain only well-defined quantities, viz.,

- & - & e
a=25) ot R FIG. 2. The helicity amplitude for the for-
2 2 T 2 n ward Compton scattering off the deuteron.
- - - The notations are the same as in Fig. 1.
The first three diagrams represent the im-
pulse approximation with physical nucleons
1 1 plus renormalization effects, and the remain-
—Y— —— ing two diagrams are the deuteron recoil and
\\\ . \\\ x + 1 2 2 interaction terms, respectively.
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1/ Mp\"
3 (32) Maia(oD) = Mesa (o) A2

mpn
d . p? \"
+Mn+1(yf’)/ P m) (1+ P B )

(2m)® my = 2m%
dpdk _; 1 B, \" E, \"
N int il _ _ 4.10
+Mn+1(gl )/ (27‘_)6 fD (pak) kz [(1 + 2mN) (1 2mN) ] 9 ( 1 )
where
1Ay _ 1 +D S-p S-p D 4
@) =3 3 MURE) (7St 5 e ) TRE), (411)
M==1
. 1 .
B e k) =7 Y MUR(P) {5: Va(k)} LX(p + k), (4.12)
M==1

where {S;,V,} stands for the anticommutator of S, and V, and AZ, which is the difference between the renormal-
ization and recoil contributions, has the same origin as in the case of nucleons and reads as

1 dpdk _.p [ (S.) = . b
207 = 2M§ﬂ M/ R (p){ T ,V,r(k)}\I'M(P+k). (4.13)

Figure 2 illustrates the dressing of the moments of the deuteron. The sum of the first three diagrams gives the
impulse approximation, that is, the scattering off a physical, already dressed nucleon. Comparing these diagrams with
those in Fig. 1, it is seen that in the impulse approximation the helicity amplitude on the deuteron is determined by
the scattering amplitudes off free physical nucleons, which ought to be fixed from other experiments. In this context,
the present approach allows one to avoid the problem as to what amplitudes should be associated with “off-mass-shell”
nucleon in impulse approximation (see, for instance, Ref. [42]). In our approach the binding effects are taken into
account by terms which are of a pure exchange origin (Fig. 2, last diagram) which contain implicitly, via the potential
Vz(k), the contribution of the meson degrees of freedom. The fourth diagram is the recoil contribution terms.

Applying the inverse Mellin transform to (4.10) and omitting the AZ part, the deuteron structure function gP can
be obtained in the convolution form

Mp/m
P = [ Lo () (B + ), (119)

where the distribution functions f&*(y) and fift(y) are given by

fLA(y)=/ dp fJIJA(P)(S(y—l—&— P’ ) (4.15)

(27r)3 my 2m%,
. dpdk _; 1 k. k.
fot(y) = E2p_7r5§flx)n'c(p,k)Z; [6 (1 -—y+ 2mN) ) (l -y — sz)] 0(y), (4.16)

where f!4 corresponds to the impulse approximation, or Fermi motion correction, with “on-mass-shell” nucleons, and
fint accounts for the binding of the nucleon inside the deuteron.

Equations (4.10) and (4.14)—(4.16) are the basic result for the determination of the moments and the SSF’s of the
deuteron within the OPE-OBE approach. It will be shown later on that Egs. (4.14)—(4.16) lead, if proper assumptions
are made, to the phenomenological convolution model approach used in Ref. [12]. It is worth recalling here the problem
as to whether the so-called flux factor has to be considered in the convolution formula for polarized deep inelastic
scattering [13,43]. In our approach the nonrelativistic flux factor ~ (1 + p,/mxy) comes automatically, as it can be
seen from Eq. (4.11). :

Formulas (4.10)—(4.16) have been obtained for the pseudoscalar isovector coupling. In this case the deuteron wave
function P (p) appears to be the solution of the Schrédinger equation with the one pion exchange NN potential
Vx(k). Obviously, this wave function and the one pion exchange potential are not yet sufficient to describe the
properties of the deuteron. To this end it is necessary to take into account other mesons contributing to the OBE
potential, viz., the o, w, p, 7, and § mesons [32]. Including these mesons in our approach leads to contributions similar
to (4.10) and (4.16), except that the wave function ¥ (p) is replaced by the solution of the Schrodinger equation
with the full OBE potential. The convolution formula can be written in a more compact form by expanding the §
functions in (4.16) and retaining terms up to k2/m%;; one gets
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39P(0) = giA(@) — o gl ()] 2 ToREW (417
where
Mp/M
gt (z) = / i—yg{v (i—)f“(y), (4.18)

T

and (S, Vogg)p is the spin-weighted mean value of the potential of the nucleon in the polarized deuteron.
The second term in Eq. (4.17) is the correction to the impulse approximation due to the binding -of nucleons. It
can be seen that this contribution is small (~ (Vogg )/mn) and depends on the behavior of the nucleon structure

function gV () and its first derivative.

B. The ®*He

In this section the Compton helicity amplitude ki a4+ A pertaining to the scattering of the virtual helicity (+)
photon off the polarized (with projection M = :i:%) 3He nucleus will be presented. Using the Tamm-Dancoff decom-
position for the state vector |>He)q=o,1 and the operators O}(n), the following form for the helicity amplitude can
be obtained:

2Msg. ~— (1\"" S Hes dk g2 1
hy moem = T mN Z (;) /dV"He‘I’J& (P1, P2, P3) 2n)? 4—9”?—;5
N

n=0,2,---
3

9A6 (1 i 4 ) A6 6 [ 1 -
Xy {3k20§ )W (% - N,§+)(k)) + (2k, (@ . k) — k20§ )) TOCH 6 (E —N{ )(k))} (4.19)

=1
3 . .
+ (1 - ZSHe) ZNf(ll)(pl)E;F(pt)C'r(:) j' ‘I’J\Ije(plap% P3) (420)
i=1
+/_dk_ Z {Viij» Szi5} 1+N(3)(k) + ﬁa(k)é(k) UHe(p; + K, pi, pj — k) (4.21)
Gmp 2 |V S} (G + o oICD | Wi+ kopps — k) 1,

o g o 3 dp:
where S§;; = 1 (a?)Cf(:) + 0'9)0,(1’)), dVsge = [] #6(p1 + pa + Ps), and in Eq. (4.21) ¢, j list two nucleon pairs
i=1

exchanging a meson while the remaining kth nucleon interacts with the incoming lepton, k # %,j. In Eq. (4.19)
the reader may easily recognize the corresponding “dressing” part for bare nucleons, Egs. (3.10) and (3.11), which
being included into Eq. (4.20), gives the impulse approximation with the physical nucleons. The last term in Eq.
(4.21) and the term depending upon the renormalization constant Zsy, in Eq. (4.20) correspond to the recoil and
renormalization contributions, similar to those obtained in the deuteron case. The moments of the 3He SSF’s can
easily be obtained by recalling Eqgs. (2.14) and (3.13): the inverse Mellin transform gives the SSF in the convolution
form

giBe(z) = /, Homemn d?y [g‘f (%) fPue(¥) + 97 (g) f?ne(y)] ) (4.22)

where the effective distribution functions ff. (y) of nucleons in 3He contain contribution from the Fermi motion of
“on-mass-shell” nucleons (impulse approximation) and from the nuclear binding

e () = X" (v) + 0 (v), (4.23)
where
Py pn Pz Pf
fia (v) = /alene n}" (P1, P2, P3) & (y - m) , (4.24)
dVspedk . 0(y) k. k.
Pn(y) = [ ZHCX b - _ - )
int (y) / (277)3 nlnt (p17 P2, P3, k) kz 5 1 Y + sz (1 Y 2mN , (4 25)
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with the spin-dependent momentum distributions nﬁ '™ and nl:' being defined by

nP"(p1,P2,Ps) =, MEHTEF(p) {[L£7(0)]/2} T, (4.26)
M=%£1/2,i
nhr(PLpP2Ps, k)= Y M O3l (b1, P2, P3) Vir i Seij {[1 £ 73(5)]/2} Ule(p: + k, Pk, p; — K). (4.27)
M=+1/2,i#]

Equation (4.22) can be cast in a more manageable form by expanding the § functions as in the case of the deuteron

Msne/”"Nd
3He — _2 P E fP + n(f) f" ]
ae@= [ 2 [91 (y) )+ ot () )
d 2oPVEnp)one A .,  (07VEpE)He
4 oot (o) XV Cmm e _ (o) (o2 Gmmlone (4.28)

where (0:VEgg)sHe is the spin-weighted mean value of the potential of the nucleon ( i = p,n) in the polarized 3He.

C. Generalization to heavy nuclei

Let us generalize our approach to heavy nuclei. To this end, let us first discuss the unpolarized case. The comparison
will be carried up to a given order in (p/mp)™, namely, to n = 2.
Guided by the results for A = 2, one can write for a generic isoscalar nucleus A [18] 3

dFY (z) (V)a

Ff@) = @) -2 @ T

(4.29)

where

FA(z) = /FzN (g) Fi(v)dy, (4.30)

and

FiA(y) = / (1 + P ) n(p)s (y - [1 LB p—]) dp. (4.31)

mnN 2mN mN

In Eq. (4.29) (V)4 is the mean potential energy of the nucleon interacting with the lepton; it is linked to the
nuclear mean potential energy per nucleon (V) = (¥4|>°;_ ,vi;|¥a)/A by the relation (V)4 = 2(V). The well-
known relationships between the total energy per nucleon e4 = E4/A, the mean nucleon kinetic energy (T') =
(P4l ;t:|¥a)/A, and the mean removal energy per nucleon (E) are given by e4 = (T)+ (V) and (E) = 2|eq|+ (A —
2)(T)/(A —1).

Now we turn to the deuteron Egs. (4.11), (4.12), and (4.14)—(4.16). In the definition of the distribution functions
in impulse approximation, Eq. (4.11), it is easy to identify the nonrelativistic analogue of the nucleon spin vector
S, + (S - p)/2m%, which may be obtained by applying the Lorentz boost operator to the spin vector of a nucleon at
rest. In the nonrelativistic limit the spin vector is the same in any reference frame. Consequently, in the extreme
nonrelativistic limit it should be replaced by S, only. Furthermore, in the matrix element of (S - p)/my in Eq. (4.11)
only the z components of the scalar product (S - p) give a contribution as it can be checked by direct computation.
So that in this case the distribution function f!4(p) becomes

fIA(p)=;: >, MTE(p) (1+

Pz
M==%1 N

S, ¥R, (p). 4.32
) 5. vRu(p) (432)
Expanding the § function in (4.16) around the “on-mass-shell” y, §(y — 1 — p%/2m% — p,/my) = (1 —y) — 6'(1 —
y)(P%/2m% + p,/mn) and substituting in Eq. (4.16) the difference of two § functions by its first derivative we get

— int ~ 1 dp * Dz
AP = w e =g 5o [ gEee) (1+2) s.eke)
X [5(1 —y) =81 —y)(p?/2m% +p./mN +ep/mn — (T)/mN)] . (4.33)

3Note that in Eq. (16) of Ref. [18] the “plus” sign in Eq. (16) should be replaced by a “minus” sign.
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In deriving Eq. (4.33) we used the Schrédinger equation to express (S, V) through the deuteron binding energy ep
and the kinetic energy (T') of nucleons. It can be easily shown that Eq. (4.33) can be cast in the form

2
N/D dp E 5 (v my — E —p?/2my + p. 4.34
W= [ EstErPe.B) (1+ 25 )5 (u- | e , (430
where we have introduced the deuteron spin dependent spectral function
PP (p, E) = U3_,(P) Sz ¥R4=1(P) §(E — |ep)) (4.35)
giving the probability to find in the deuteron a nucleon with momentum p, removal energy E = |ep|, and spin

projection S,. In order to generalize Eq. (4.34) to a heavy nucleus, we notice that the quantity my — E — p2/2mp
appearing in the § function of Eq. (4.34) is nothing but the time component of the four momentum of an off-shell
nucleon in the deuteron, viz., po = Mp — \/p2 + m% ~ my — |ep| — p2/2my.

Formula (4.34) can therefore be generalized to the case of any nuclear mass number A > 2 by substituting the
“deuteron spin-dependent spectral function” PZ,(p, E) with the corresponding nuclear spin dependent spectral func-
tion [14,44]. Then Eq. (4.34) exactly coincides with the phenomenological convolution approach used in [14,12] (see

next section).

D. Comparison with the conventional convolution
approach

Using the concept of spin-dependent spectral func-
tion [14], the SSF of 3He has been recently calcu-
lated [12] within the so-called convolution approach in
which the lepton is assumed to interact with off-shell
nucleons with four momentum p = (po,p), with po =
M4 — /(E —mpn + M4)? + p2, where M, is the mass
of the target nucleusand E = My +my—~Ms+FE}_;
is the nucleon removal energy with M4_; being the mass
of the spectator A — 1 system and E%_, its intrinsic ex-
citation energy. Since in our calculations we have used
the results of Ref. [14], it is worth comparing the two
approaches from a formal point of view. To this end, we
start with the unpolarized case. Then we can use the
analogous of (4.17) for an isoscalar nucleus in the unpo-
larized case and take its generalization to any value of 4,
as we did in the previous section obtaining Eqs. (4.29)
— (4.31). The convolution formula for off-shell nucleons
reads as follows [13]:

F@) = [ (2) s (4.36)
where
fa) = [ (£2) PUel.2)6 (v £ ) apar |
mn
(4.37)
with p* = po + p, and P(|p|, E) being the unpolarized

nucleon spectral function. It can be seen that whereas
in Eq. (4.17) the binding effect is explicitly displayed
through the mean potential energy (V), in the conven-
tional convolution approach the binding effects are hid-
den in the definition of the light cone momentum dis-
tribution f4(y). Let us, however, write down the latter
in the order p?/m% as in Eq. (4.17). To this end, we
expand the § function in Eq. (4.37) around the point

p? P2

2m%, + my
p2/m%; ; we get

faw = [ (1+22) (e
o (v [rag e i) e

— [1 + ] and keep only terms of the order

+ (B) + <Tr>ni/ (4-1) 8y —1), (4.38)
where n(lp|)=/ P(|p|, E)dE and (E)

= [ EP(|p|, E)dpdE. Substituting (4.38) into (4.36) and
using the relationship (E) + (T') = 2(V') we recover Eq.
(4.29). Thus we have demonstrated that the convolution
formulas arising from the OPE and from the conventional
treatment of unpolarized DIS coincide up to the order
p?/m%; likewise we have shown that at this order the
binding effect in the latter approach arises from the av-
erage potential energy of the nucleon hit by the incoming
lepton. Let us turn now to the polarized case and let us
analyze the 3He case. The conventional approach yields

[12] He dy i i
@=3 / ((2)ew .

1_71,1)

(4.39)

where the light cone momentum distribution Gi(y) is
given by the following expression:

Gi(y) = / dE / dpPi(p, E)S (y—’%v’k) . (4.40)

where E = Mp+mpy—Msye+Ep- is the nucleon removal
energy (Ep- being the energy of the spectator np pair in
the continuum), pp = Msg. —[(E —my + Msg.)? + |p|2]%
is the energy of a bound “off-mass-shell” nucleon, and
Pﬁ (p, E) is the spin dependent spectral function (cf. Egs.
(9) and (16) of Ref. [12]). The integral of the spin de-
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pendent spectral function represents the spin dependent
momentum distribution
ni(e) = [ dBFi(p, ) (4.41)

By expanding the ¢ function in (4.41) around y —

2

[1 + P + £z—:| and considering the recoil of the two
2mN mn

body system nonrelativistically (Eg = p%?/4my), and

taking into account the differences between the proton

and neutron spectral functions (see [13]), it can be shown

that (4.22) and (4.28) are recovered.

V. RESULTS OF CALCULATIONS

A. The deuteron

For explicit numerical calculation of the nuclear SSF,
gP(z) and g;¥(z), one needs, as it can be seen from
Egs. (4.14) and (4.28), a suitable parametrization of the
isoscalar nucleon SSF g¥(z). Within the present ap-
proach this function contains all the information about
the Wilson’s coefficients and the influence of the meson
cloud on bare nucleon; moreover, according to the main
assumptions of the effective meson-nucleon theory, it in-
cludes all the dynamic at distances shorter than the core
of OBE potential. The parametrization of gI¥ should be
fixed from the experiment; in principle, there exist nowa-
days experimental data of g; on both the proton [1] and
the neutron [4] structure functions, but they are not yet
fully complete, especially at very small values of z. In
this interval some assumptions about the behavior of the
nucleon structure function are unavoidable. Moreover,
the choice of the isoscalar structure function g (z) de-
termines whether the Bjorken and Ellis-Jaffe sum rules
will be fulfilled or not. In this sense our results depend
on the parametrization of the nucleon SSF, however this
dependence is found to be insignificant (see below). We
have chosen here two different parametrizations of the nu-
cleon SSF, describing quite well the EMC data on pro-
ton and satisfying the Bjorken sum rule. We use the
parametrization from Ref. [45] as a basic input in all our
calculations, and in order to analyze the dependence of
the results from the chosen parametrization we use the
parametrization from Ref. [46].

In our numerical calculations for the deuteron we use
the wave function obtained from the Bonn interaction,
yielding Pp =~ 0.0428 [35]. Figure 3 displays the numeri-
cal estimate of the ratio Rp = gP/g¥¥, which illustrates
the effects of nuclear structure on gP. The results pre-
sented in this figure, deserve the following comments: (i)
within the impulse approximation [curve 1; Eq. (4.14)
without fit], the ratio in the interval 0.2 < = < 0.7
is governed by the destructive contributions of the D-
wave admixture which generates a polarization of the
deuteron along the z direction even if the nucleons have
their spins aligned in the direction opposite to the po-
larization. Thus it can be concluded that the effect of
the D wave is the most relevant nuclear contribution
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FIG. 3. The ratio of the deuteron and the isoscalar nu-
cleon spin-dependent structure functions (SSF). Curve 1: the
impulse approximation; curve 2: impulse approximation plus
interaction term ({S., Vx}). Both curves have been computed
using the parametrization of the nucleon SSF from Ref. [45];
curve 3: the same as in curve 2, with the parametrization
of the nucleon SSF from Ref. [46]; curve 4: the same as
in curve 2, plus the contribution from the interaction term
({Sz, VoBg}) representing the total contribution af all mesons
considered in the one-boson-exchange (OBE) interaction. The
arrow indicates the value (1 — 2Pp) (see text).

within the impulse approximation; (ii) as for the inter-
action term, according to (4.17), the binding corrections
to the deuteron SSF is governed by (S., Vose)p. Let us
first of all estimate the contribution due to pions; a direct
numerical computation gives

(S.,Va)p ~ —5 MeV. (5.1)

[If model ambiguities given, e.g., by different choices for
the form factors and wave functions are considered, one
gets (S, Va)p ~ —(3-5) MeV.] It can be seen from Fig.
3 that the effects from binding due to m mesons is similar
to the one occurring in the unpolarized case, but signif-
icantly smaller. It can also be seen that the results are
not sensitive to the parametrization of the nucleon SSF
(cf. curves 2 and 3). We turn now to the estimate of
the contributions due to other mesons, although it could
be anticipated that the pions give the dominant contri-
bution to the binding effects, since the pion contribution
in the deuteron is the most significant one [37,47]. In
order to estimate the most general boson contribution to
the deuteron SSF one should, in principle, calculate the
matrix elements (S,, Vogg)p for all kinds of bosons con-
sidered by the Bonn potential model. To this end one
can use the Schrodinger equation to get

(S2,VoBe) = (1— 3Pp)ep — ({(T)o — 3(T)2),

where (T)g 2 are the mean values of the nucleon kinetic
energy in the § and D waves (for the deuteron wave
function of the Bonn potential we have (T')o ~ 10.2 MeV
and (T')2 = 4.4 MeV). Taking into account Fermi motion
and the full interaction effects by Eq. (5.2) results in a
EMC-like effect, as in the unpolarized case (curve 4 in
Fig. 3). By comparing curves 1 (only Fermi motion) and
4 (Fermi motion plus binding), it can be concluded that
the main nuclear structure effect in the deuteron SSF

(5.2)
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FIG. 4. (a) The weighted deuteron spin-dependent struc-

ture function xzgP(z); (b) the first moment
Mi(gP) = f:ﬂi/m’v g2 (z)dz versus the lower limit of integra-
tion Zmin. The dotted (solid) line corresponds to calculations
with the parametrization of the nucleon SSF from Ref. [45]

(Ref. [46]). Experimental data from Ref. [3].

comes from the presence of the D wave, with the binding
effect remaining a rather small correction. Note that all
curves in Fig. 3 are not shown at values of = smaller then
z ~ 0.2. The reason is that realistic parametrizations
of the nucleon SSF have nodes at small x, which lead to
“poles” in the ratio gP /gi¥ simulating nuclear effects. At
values of z smaller then these poles, all curves in Fig. 3
tend to the limit ( - gPD) as £ — 0 (this is a general
result for all kinds of parametrization no more singular
at the origin than 1/z).

Figures 4(a) and 4(b) display the calculations of the
absolute values of the deuteron structure function and
the comparison with the SMC experimental data: a good
agreement between our results and the experimental data
can be observed. The numerical estimate of the first mo-
ment of gP(z) within our approach, [ dzg{(z) = 0.03,
is also in an agreement with the experimental result
[ dzg? M9 (z) = 0.023 + 0.02 + 0.015 [3].

B. 3He

As is well known [10] the interest in polarized *He
targets stems from the fact that such a system can be
considered to a large extent as an effective polarized neu-
tron target. As a matter of fact, the two protons in 3He

are mostly in the singlet 'Sy configuration so that the
polarization of the 3He is mainly determined by the po-
larization of the neutron [11,10]. For such a reason DIS
experiments off polarized 3He are aimed at obtaining in-
formation on the neutron SSF’s. However, the nonvan-
ishing proton contribution to the total polarization and
nuclear structure effects could in principle hinder the di-
rect extraction of the neutron SSF. We have calculated
the 3He spin structure function giHe [Eq. (4.22)] using
the same approximation as in the case of 2H, i.e., by using
Eq. (4.28).

The interaction term, obtained using the Schrédinger
equation and a three-body wave function containing S, S’
and D waves, reads as

2 2 _
(05V£BE>3HG =2 (ngg - EPD) E3He

~2(3ms - 30n)

= 2p°8sme — 2T, (5.3)
(07 V3BE)*He = 2 (Ps + %Ps' - PD) €3He
~2((0)s + 3D~ (7o)
= 2p"Esne — 2(T), (5.4)

where Pi=[ni(p)dp/(2n)®, (T)j = [nj(p)P?/
2my dp/(2m)3, and €y, is the mean value of the binding
energy per nucleon in 3He.

The spin-dependent momentum distributions, the ef-
fective nuclear polarizations, and the mean values of the
kinetic energies have been taken from Ref. [12], where
these quantities have been calculated from the spin-
dependent spectral function obtained from the Reid soft
core interaction. The results are

(02VE8gE)sHe = 2.4 MeV, (5.5)

(07 V3gE)*He = —17.8 MeV. (5.6)

In Fig. 5 the ratio Rsyg. = g:He/g{‘ calculated us-
ing the proton and neutron spin structure functions from
Refs. [45,46] is presented, whereas in Fig. 6 the SSF giHe
is compared with the free neutron SSF. It can be seen
that, as in the deuteron case, the contribution of binding
effects is rather small. It should be pointed out that the
results presented in Figs. 5 and 6 can hardly be distin-
guished from the ones obtained within the conventional
convolution approach of Ref. [12] [Eq. (4.39)]. Accord-
ing to the conclusions of Sec. IV C this means that rela-
tivistic effects (terms of order larger than —ﬁ:;) are small,

as also demonstrated in Ref. [16]. Our results fully con-
firm the finding of [12], namely, that nuclear structure
effects in DIS of polarized electrons off polarized 3He are
those due to the effective proton and neutron polariza-
tions generated by the S’ and D waves of 3He wave func-
tions, so that the relation
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FIG. 5. The ratio of the *He and free neutron SSF

calculated within the impulse approximation (dotted) and
within the impulse approximation plus the interaction term
({Sz,VoBe}) (solid). Curves 1 (2): parametrization of the
nucleon SSF from Ref. [45] (Ref. [46]).

3
91He(x) ~ 2pp 97 () + pn 97 (), (5.7)

pp = —0.030 and p, = 0.88 being the effective nucleon
polarization, represents a reliable approximation of Eq.
(4.39) at z < 0.6. The smallness of the difference between
the free neutron structure function g7 (z) and giHe(m)
is due to the smallness of the nuclear structure effects
and is largely independent of the form of the chosen
parametrization for the nucleon SSF. For instance, us-
ing the parameters from Ref. [45], the results presented
in Figs. 5 and 6 change by 20%, i.e., by a quantity well
below the experimental errors, hence, Eq. (5.7) may be
considered as a good approximation for the extraction of
the neutron SSF.

VI. CONCLUDING REMARKS

The necessity of plausible and precise data on the neu-
tron spin-dependent structure function is obvious. Since
the information about the internal neutron structure is
predominantly obtained from nuclear data, usually from
the polarized deuteron and 3He, an appropriate nuclear
model for subtracting of the effects of nuclear structure
is requested.

In this paper a theoretical approach for the analysis
of polarized deep inelastic scattering off light nuclei was
proposed, which allows a self-consistent consideration of
the role of the Fermi motion and the meson degrees of
freedom. Since our model relays on the operator product
expansion method within OBE approximation, the nth
moment of nuclear SSF have been found as a product of
two n-dependent functions. The contribution of the im-
pulse approximation and of the nuclear corrections to the
moments have been separated in an explicit form. As a
consequence, the inverse Mellin transform yields back the
nuclear SSF in a convolution form with two distribution
functions: one of them describes the electromagnetic in-

0.2 ———

giHe(x)
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10° 10" X

FIG. 6. The SSF for *He calculated using the parametriza-
tion of the neutron SSF from Ref. [45]. Dashed line: the
impulse approximation; solid line: the contribution of the im-

pulse approximation plus binding effects. Dotted line: the
free neutron SSF.

teraction of the lepton with an on-shell nucleon, whereas
the other one describes the strong interaction of the hit
nucleon with the other nucleons of the nucleus.

A generalization of the model to the case of heavy nu-
clei has been proposed and the comparison with the con-
volution approach based upon lepton scattering off bound
off-shell nucleons [13] was performed with the result that
up to order p?/m?%, the two approaches coincide. The
numerical calculations of the spin-dependent structure
functions for polarized deuteron and 3He show that the
nuclear corrections are relatively small and essentially de-
pend on the spin-orbital structure of the corresponding
nucleus, in agreement with the finding of Ref. [14], based
upon the conventional convolution approach. For the
deuteron the main effect of the nuclear structure is due to
the destructive role of the orbital motion of nucleons with
L = 2 and is of the order of magnitude ~ (1 - %PD). The
comparison with the SMC experimental results [3] shows
a reasonable agreement of our calculations with the data.
In case of polarized 3He the main nuclear structure cor-
rections come from the S’ and D wave admixtures to the
ground state wave function. Since they lead to a partial
depolarization of the neutron inside polarized 3He and
to an effective proton polarization, g:He slightly differs
from the free neutron spin-dependent structure function
g7. The binding effects in both cases are found to be
small. These results agree with those obtained within
the convolution approach [14,12,9].

To sum up, we can conclude that the convolution ap-
proaches so far proposed describe fairly well the peculiar-
ities of polarized DIS off polarized nuclei, so that nuclear
corrections can be estimated in a reliable way. In clos-
ing, we would like to point out that our method based
upon the OPE within the effective meson nucleon the-
ory, allows one to microscopically understand the origin
of the binding effect which is present in the convolution
approach. Moreover, since the expressions for moments
have been obtained explicitly, this allows one to estimate
the influence of nuclear effects on the Bjorken sum rule
via direct calculations of the first moments.



51 SPIN-DEPENDENT STRUCTURE FUNCTIONS OF NUCLEIIN . .. 69

ACKNOWLEDGMENTS

We would like to thank Dr. A. Efremov, Dr. S. Gerasi-
mov, Dr. S. Mikhailov, Dr. E. Pace, Dr. G. Salme, and

Dr. O. Teryaev for fruitful discussions. Two of the au-
thors (L.P.K. and A.Yu.U.) would like to thank INFN,
Sezione di Perugia, for warm hospitality and financial
support.

[1] EMC Collaboration, J. Ashman et al., Phys. Lett. B 2086,
364 (1988).

[2] NMC Collaboration, P. Amaudruz et al., Phys. Rev. Lett.
66, 2712 (1991); P. Amaudruz et al.,, Phys. Lett. B 295,
159 (1992).

[3] SMC Collaboration, B. Adeva et al., Phys. Lett. B 302,
534 (1993).

[4] E142 Collaboration, P.L. Anthony et al., Report No.
SLAC-PUB-6101/93, 1993 (unpublished).

[5] F.E. Close and R.G. Roberts, Phys. Lett. B 316, 165
(1993).

[6] J. Ellis and M. Karliner, Report No. CERN-TH-6898/93,
1993 (unpublished).

[7] K. Coulter et al., Report No. DESY/PRC 90/1, 1990
(unpublished).

(8] L.I. Frankfurt and M.S. Strikman, Nucl. Phys. A405,
571 (1983).

[9] L.P. Kaptari and A.Yu. Umnikov, Phys. Lett. B 240, 203
(1990).

[10] J.L. Friar, B.F. Gibson, G.L. Payne, A.M. Bernstein, and
T.E. Chupp, Phys. Rev. C 42, 2310 (1990).

[11] R.M. Woloshyn, Nucl. Phys. A495, 749 (1985).

[12] C. Ciofi degli Atti, S. Scopetta, E. Pace, and G. Salme,
Phys. Rev. C 48, R968 (1993).

[13] C. Ciofi degli Atti and S. Liuti, Phys. Lett. B 225, 215
(1989); Phys. Rev. C 41, 1100 (1990); 41, R1269 (1991).

[14] C. Ciofi degli Atti, E. Pace, and G. Salme, Phys. Rev. C
46, R1591 (1992); invited talk at VI Workshop on “Per-
spectives in Nuclear Physics at Intermediate Energies,”
ICTP, Trieste, May 3-7, 1993 (World Scientific, Singa-
pore).

[15] R.-W. Schulze and P.U. Sauer, Phys. Rev. C 48, 38
(1993).

[16] F. Coester (private communication); P. Sauer and R.-W.
Schulze (private communication).

[17] R.L. Jaffe, in Relativistic Dynamics and Quark Nuclear
Physics, edited by B.M. Jonson and A. Picklesimer (Wi-
ley, New York, 1986), p. 537.

[18] L.P. Kaptari, K.Yu. Kazakov, and A.Yu. Umnikov, Phys.
Lett. B 293, 219 (1992).

[19] A.Yu. Umnikov and F.C. Khanna, Phys. Rev. C 49, 2311
(1994).

[20] L.P. Kaptari, K.Yu. Kazakov, A.Yu. Umnikov, and B.
Kampfer, Phys. Lett. B 321, 271 (1994).

[21] N.N. Bogoliubov and D.V. Shirkov, An Introduction in
the Theory of Quantizated Fields (Wiley-Interscience,
New York, 1980).

[22] P. Hoodbhoy, R.L. Jaffe, and A. Manohar, Nucl. Phys.
B312, 571 (1989).

[23] K.G. Wilson, Phys. Rev. 179, 1499 (1969); W. Zimmer-
mann, Ann. Phys. 77, 570 (1973); C.G. Callan, and D.J.
Gross, Phys. Rev. D 8, 4383 (1973).

[24] R.A. Brandt and G. Preparata, Nucl. Phys. B27, 541
(1971).

[25] A. Manohar, in Symmetry and Spin in the Standard

Model, Proceedings of Lake Louise Winter Institute,
edited by B.A. Campbell, L.G. Greeniaus, A.N. Kamal,
and F.C. Khanna (World Scientific, Singapore, 1992), p.
1.

[26] W. Wandzura and F. Wilczek, Phys. Lett. 72B, 195
(1977).

[27] L. Mankiewicz and A. Schéafer, Phys. Lett. B 274, 199
(1992).

[28] F.J. Yndurain, Quantum Chromodynamics (Springer-
Verlag, New York, 1983).

[29] F.E. Close, R.L. Jaffe, R.G. Roberts, and G.G. Ross,
Phys. Rev. D 31, 1004 (1985); F.E. Close, R.G. Roberts,
and G.G. Ross, Nucl. Phys. B296, 582 (1988); N.P. Zo-
tov, V.A. Saleev, and V.A. Tsarev, Sov. J. Nucl. Phys.
45, 352 (1987); JETP Lett. 40, 965 (1984).

[30] V.N. Gribov and L.N. Lipatov, Phys. Lett. 37B, 78
(1971); Sov. J. Nucl. Phys. 15, 438 (1972).

[31] N. Christ, B. Hasslasher, and A.H. Mueller, Phys. Rev.
D 6, 3543 (1972).

[32] G.E. Brown and A.D. Jackson, The Nucleon-Nucleon In-
teraction (North-Holland, Amsterdam, 1976).

[33] G.E. Brown and W. Weise, Phys. Rep. 22C, 279 (1975).

[34] B.L. Birbrair, E.M. Levin, and A.G. Shuvaev, Nucl.
Phys. A496, 704 (1989); Phys. Lett. B 222, 281 (1989).

[35] R. Machleid, K. Holinde, and Ch. Elster, Phys. Rep. 149,
1 (1987).

[36] M. Rosa-Clot and M. Testa, Nuovo Cimento A78, 113
(1983).

[37) L.P. Kaptari, A.L. Titov, E.L. Bratkovaskaya, and A.Yu.
Umnikov, Nucl. Phys. A512, 684 (1990); L.P. Kaptari,
B.L. Reznik, A.I Titov, and A.Yu. Umnikov, JETP Lett.
47, 428 (1988).

[38] M. Gari and H. Hyuga, Z. Phys. A 277, 291 (1976); M.
Kirchbach and E. Truglik, Particles and Nuclei 17, 224
(1980); M. Chemtob, Mesons in Nuclei (North-Holland,
Amsterdam, 1976), p. 555.

[39] J.D. Sullivan, Phys. Rev. D 5, 1732 (1972).

[40] G.G. Arakelyan, K.G. Boreskov, and A.B. Kaidalov,
Sov. J. Nucl. Phys. 33, 247 (1981); L. Frankfurt, L.
Mankiewicz, and M. Strikman, Z. Phys. 334, 343 (1989);
E.M. Henley and G.A. Miller, Phys. Lett. B 251, 453
(1990); W.-Y. Hwang, J. Speth, and G.E. Brown, Z.
Phys. A 339, 383 (1991); W. Melnitchouk and A.W.
Thomas, Phys. Rev. D 47, 3749 (1993).

[41] V.R. Reid, Ann. Phys. (N.Y.) 50, 411 (1968).

[42] T. de Forest, Jr., Nucl. Phys. A392, 232 (1983).

[43] L. Frankfurt and M. Strikman, Phys. Lett. B 254, 254
(1987).

[44] J.A. Caballero, T.W. Donelly, and G.I. Poulis, Nucl.
Phys. A555, 709 (1993).

[45] A. Schafer, Phys. Lett. B 208, 175 (1988).

[46] A.E. Dorokhov and N.I. Kochelev, Phys. Lett. B 304,
167 (1993).

[47) W. Melnitchouk and A.W. Thomas, Phys. Rev. D 47,
3783 (1993).



