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Neutron removal in peripheral relativistic heavy-ion collisions
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We investigate the relativistic Coulomb fragmentation of Au by heavy ions, leading to one-,
two-, and three-neutron removal. To resolve the ambiguity connected with the choice of a specific
minimum impact parameter in a semiclassical calculation, a microscopic approach is developed based
on nucleon-nucleon collisions ("soft-spheres" model). This approach is compared with experimental
data for Au at 1 GeV/nucleon and with a calculation using the "sharp-cutofF' approximation.
We find that the harmonic-oscillator model predicting a Poisson distribution of the excitation prob-
abilities of multiphonon states gives a good agreement with one-neutron removal cross sections but
is unable to reach an equally good agreement with three-neutron removal cross sections.

PACS number(s): 25.75.+r, 24.30.Cz, 25.70.Mn

Experiments with relativistic heavy-ion beams have
accumulated evidence for the population of two-phonon
giant-dipole resonances (GDR) both directly via the ob-
servation of neutron [1,2] or p decay [3,4] and indirectly
via the measurement of neutron-emission cross sections
[5]. Theoretical descriptions of these processes were
based on a semiclassical approach [6]. In the present com-
munication we review some specific aspects of semiclas-
sical Coulomb-excitation calculations: First, we discuss
the difFerences between perturbation theory and a har-
monic oscillator model in calculating two-phonon-GDR
excitation cross sections. We then show how one can
avoid the ambiguity connected with the choice of a spe-
cific lower integration limit in the semiclassical calcula-
tion when integrating over impact parameter. This is
done by performing a Glauber-type transparency cal-
culation. To check the validity of our calculations, we
compare our results to measured 1n- to an-removal cross
sections from Au bombarded with several projectiles
at relativistic energies [5]. The key question that we

try to answer is whether our improved calculations are
able to solve the puzzle contained in the fact that In-
removal cross sections could be reproduced reasonably
well, whereas 3n-removal cross sections (which are dom-
inated by 2-phonon GDR excitation) were underesti-
mated. This amounted to a deficit in the 2-phonon GDR
of roughly a factor of 2 [5]. Similar deficits were observed
also in the exclusive experiments (see Ref. [7] for a de-
tailed discussion of this subject).

Two difFerent approaches have been used in the liter-
ature to describe the excitation probabilities and cross
sections in relativistic Coulomb excitation, namely, first-
and second-order perturbation theory [8—10], and a har-
monic oscillator model [6,11]. As we will show in more
detail below, the two models represent two extreme as-
sumptions: in perturbation theory, the multiphonon exci-
tations are assumed to be completely independent of each
other, whereas in the harmonic oscillator model they are
assumed to be coupled up to infinite order. Our choice of
one of these extremes will be guided by comparison with
experimental data for Au.

P(E, b) = ' = —N(E, b)o.~(E),

where b is the impact parameter, cr~(E) is the photo-
nuclear cross section for a photon with energy E, and
N(E, b) is the number density of equivalent photons with
energy E, as given in Ref. [6].

To calculate the probability of exciting a double-
phonon state, i.e. , a state composed of two GDR states,
one can use second order perturbation theory. Apart
from a small interference term, the excitation probabil-
ity of a state with energy E is a simple product of the
probability to excite an intermediate state with energy
E' and the probability to go from this state to the final
state, summed over all intermediate states. A drawback
of this method is that for small impact parameters 6, for
which the probability is large, the loss of probability for
one-phonon excitation due to the two-phonon (and higher
order) excitation is not accounted for, i.e. , unitarity is vi-
olated. This problem can be eliminated by incorporating
higher order corrections, but a proper treatment of this
procedure depends strongly on the model assumed for the
nuclear states. As a conclusion from the above consid-
erations, we expect perturbation theory to overestimate
single-phonon excitation probabilities.

A simple and transparent result is obtained under the
assumption of a harmonic vibrator model. In this case,
the excitation probability of multiphonon states is given
in terms of a Poisson distribution of the probabilities ob-
tained in first order perturbation theory [12]. In this
approximation the excitation of the one-phonon state is
modified to yield

p~ ~(s, b) = p(s, b) exp ( —p(b))' (2)

and the excitation probability of the double-phonon state
is given by

If first-order perturbation theory is valid, one can show
that the excitation of a GDR state with energy E yields
for the differential excitation probability the expression
[6)
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P( ) (E, b) = —, dE' 'P(E —E', b) P(E', b)

xexp —P b (3)

where the integral is over the energies of all intermediate
states. The exponential on the right hand side takes care
of the Aux of probability to higher order excitations. Of
course, the harmonic vibrator model is only a rough ap-
proximation to the nuclear states. To obtain Eq. (2) it
is implicitly assumed that all states contribute equally to
the unitarity condition. In other words, even high-lying
multiphonon states are considered to take out Aux from
the probability to excite the one-phonon state. Thus,
while the second order perturbation theory is expected
to overestimate the excitation probabilities, the harmonic
vibrator model is likely to underestimate them.

A choice between the two approaches is hampered by
the fact, however, that the usual way of semiclassical cal-
culations involves a more or less free parameter, namely,
the minimum impact parameter, the choice of which can
yield agreement with experimental data for either model.
The total cross section for relativistic Coulomb excitation
is obtained by integrating the excitation probabilities
over impact parameter, starting from a minimum value.
It is assumed that below this minimum value the interac-
tion is exclusively nuclear, whereas above pure Coulomb
interactions occur ("sharp-cutofF' approximation). It has
been found that with this approximation the Coulomb
cross sections are very sensitive to the parametrization of
the minimum impact parameter [1,3,5,8]. One commonly
used parametrization at relativistic energies is that of Be-
nesh et al. [13], fit to Glauber-type calculations of total
reaction cross sections, which we refer to hereafter as
"BCV." In Ref. [13] a detailed study has been made con-
cerning the parametrization procedure of the minimum
impact parameter. It was also found that the nuclear con-
tribution to the neutron removal channels in peripheral
collisions has a negligible interference with the Coulomb
excitation mechanism. This is a very useful result since
the Coulomb and nuclear parts of the cross sections may
be treated separately. Another parametrization is that
of Kox et al. [14], which reproduced well measured to-
tal reaction cross sections of light and medium-mass sys-
tems. We have used this parametrization previously [5]
and found reasonable agreement with the measured data
for 1n cross sections. It should be noted, however, that
the Kox parametrization of total interaction cross sec-
tions has been derived mainly from experiments with
light projectiles and that its application to heavy sys-
tems involves an extrapolation into a region where no
data points are available.

It is well known that at relativistic energies and grazing
impact parameters nuclei are partly transparent to each
other and that it is much better to replace the sharp-
cutofF approximation by a smooth transition &om purely
nuclear collisions at b &( b;„ to pure Coulomb collisions
at b )) b;„[11].Such a "soft-spheres" model can be
derived from Glauber theory and can be incorporated in
our semiclassical calculation by replacing N(E, b) in Eq.
(1) by

N(E, b'Ie zp( —epze f dz f d r p (r) pz(a —r)) (4)
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FIG. 1. Excitation probabilities of one-phonon (a) and
two-phonon (b) GDR states in Au due to relativistic
Coulomb excitation by a gold projectile at 1 GeV/nucleon,
as a function of the impact parameter. The solid (dashed)
curves are obtained using a "soft-spheres" ("sharp-cutofP')
model as described in the text.

where R:—(b, z), with z being the coordinate along
and b perpendicular to the beam direction. The quan-
tity oN~ is the nucleon-nucleon cross section, and pp
are the ground state nuclear densities of projectile and
target, respectively. The parametrization of the nuclear
densities has been taken from the droplet model [15] in
accordance with Shen et al. [16]. Since we are dealing
with nucleus-nucleus collisions at energies of the order of
one GeV/nucleon, we adopt a value of oNN = 40 mb in
our calculations.

In the following we will apply the soft-spheres approx-
imation to the case of Au where inclusive 1n- to 3n-
removal cross sections have been measured by Aumann
et al. [5]. Apart from the exponential function on the
right hand side of Eq. (4) which accounts for nuclear
transparency in near-grazing collisions, the calculation is
identical to the one described in [5].

As input to our calculations we will use the experimen-
tal photo-neutron emission cross sections from Ref. [17].
A Lorentzian fit to the (p, xn) data is used to parametrize
the GDR in Au. The parameters are an excitation en-
ergy of 13.72 MeV, a width of 4.61 MeV, and a strength
of 128%%up of the dipole sum rule [17]. The Lorentz param-
eters for the isoscalar and isovector GQR are identical to
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those listed in Table V of Ref. [5]. With these parameters
we calculate the excitation cross sections der(E)/dE for
one- and two-phonon dipole and quadrupole excitations.
The respective neutron emission cross sections are given

by 0 „=I &~&) f (E)dE, where f (E) is the prob-
ability to evaporate x neutrons at excitation energy E.
For excitation energies below 27 MeV, f „(E) is taken
&om the experimental (p, xn) data [17], and for higher
energies &om a statistical decay calculation with the code
HIvAp [18]. Since the three-neutron emission threshold iri
gold is above the energy of the GDR state, this channel
is fed mainly by the two-phonon excitation mechanism,
while the 1n cross section is dominated by the excitation
of the GDR.

In Fig. 1 we plot the one- and two-phonon excitation
probabilities for gold-gold collisions at 1 GeV/nucleon as
a function of the impact parameter using the harmonic-
oscillator model [Eqs. (2) and (3)]. The solid curve is the
result of the soft-spheres model. We observe that this
model gives an excitation probability which is a smoothly
increasing function of b up to a maximum value, after
which it decreases exactly as the sharp-cutofF approxima-
tion (dashed curve), obtained with the BCV parametriza-
tion. We expect that the BCV parametrization of b

should yield similar results as the soft-spheres calculation
since it was derived in 6tting the complementary process,
the nuclear interaction, calculated also with Glauber the-
ory.

In Fig. 2 we examine how well we can reproduce the
electromagnetic 1n- and an-removal cross sections with
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our model. Again, the solid curve denotes the soft-
spheres calculation using the harmonic oscillator model.
This calculation is in good agreement with the 1n cross
sections. The dotted curve, which is from a sharp-cutoff
calculation with the BCV parametrization of b;„, de-
viates only insignificantly from the soft-spheres result,
as expected. This remarkable agreement tells us that
for practical purposes we can avoid the extra numerical
complication connected with the use of Eq. (4) and cor-
roborates the use of the BCV parametrization of b;„ in
sharp-cutoff calculations in the earlier work [11,19]. It
also indicates that, contrary to our previous choice [5],
the use of b;„given by Kox et al. [14] is physically less

justi6ed.
The dashed curve in Fig. 2 denotes a soft-spheres cal-

culation with perturbation theory used to calculate the
excitation probabilities. As expected &om the previous
discussion, the 1n cross sections are much higher than
with the harmonic oscillator approach and deviate con-
siderably &om the data. Since our model avoids an arbi-
trary choice of b;„as in Ref. [8], we conclude that the
harmonic oscillator model of multiple giant resonances is
appropriate for the case of large-Z systems and that the
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FIG. 2. Electromagnetic 1n- and sn-removal cross sections
(scaled to 1 GeV/nucleon) for Au obtained by subtract-
ing the nuclear cross section from the measured cross section
(from Refs. [5,19]) in comparison with theoretical calculations
from this work (solid curve: "saft-spheres" calculation with
the harmonic-oscillator model; dashed curve: same for pertur-
bation theory; dotted curve: "sharp-cutofF' calculation with
the harmonic-oscillator model using the BCV parametrization
of b; [13]).
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FIG. 3. (a) Impact-parameter distribution from an in-
tranuclear-cascade calculation [5] for the formation of Au
withaut (dashed curve) and with Coulomb excitation (solid
curve). The latter is obtained by multiplying the former dis-
tribution with the Coulomb excitation probability (dotted
curve). (b) Excitation-energy distribution obtained by fold-
ing the nuclear excitation-energy spectrum of Au from the
cascade calculation (histogram, approximated by the dashed
line) with the Larentz curve representing the GDR excitation
of ' Au.
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violation of the unitarity condition in the perturbation
theory approach leads to discrepancies with the experi-
mental data far beyond the error bars.

The lower set of curves in Fig. 2 shows the results for
the 3n channel using the same models as in the upper
part of the figure. We note that, as expected, pertur-
bation theory yields higher cross sections, which in this
case are closer to the measured data than those calcu-
lated with the harmonic oscillator model. Since we have
chosen, however, to use the 1n cross sections as the test
case, where the statistical accuracy is better and the nu-
clear contribution can be neglected completely, we are
left with the conclusion that it is not possible to repro-
duce 1n and 3n cross sections (i.e. , one- and two-phonon
excitation) with the same model and that the lack of two-
phonon excitation probability observed previously [1,3,5]
is not connected with an improper choice of 6;„.Includ-
ing the three-phonon excitation probabilities would not
explain these discrepancies, since they are very small.

Up to now it was tacitly assumed that in a peripheral
nuclear collision either a nuclear interaction or, in the
case of transparency, a Coulomb interaction may take
place. It is conceivable, however, that in the same colli-
sion both processes occur. For an estimate of the contri-
bution of such processes to the 1n to 3n channels studied
in the present work, we have modified our intranuclear-
cascade calculations of the nuclear processes [5] to take
into account also possible electromagnetic excitations.
We note that the only channel that needs to be studied
is the one-neutron knock-out in the intranuclear-cascade
step of the collision. The Au prefragment formed in
this process then feeds the 2n and 3n channels by evap-
oration. The inclusion of Coulomb processes proceeds
in our estimate in the same way as in the soft-spheres
calculation of the total nuclear interaction probability:
The impact-parameter distribution of Au formation
from the cascade calculation (upper part in Fig. 3) has
to be multiplied by the probability of Coulomb excitation
[dotted curve in Fig. 3(a)]. As a result, about 30'%%uo of the

Au prefragments are Coulomb excited and are thus
shifted towards higher excitation energies, which are ob-
tained by folding the nuclear-excitation energy distribu-
tion taken &om the cascade calculation with the I orentz

curve of GDR excitation (lower part of Fig. 3).
The net effect of the inclusion of nuclear-plus-Coulomb

processes is small: on the one hand, the nuclear part
of the 1n to 3n channels is depleted by 30'%%uo, since the
corresponding Au pre&agments have been shifted to
a different excitation energy distribution. On the other
hand, the 2n and 3n channels are fed by evaporation &om
this very distribution, yielding a net increase, e.g. , in the
3n channel of about 10 mb —a value that is less than
the accuracy of the cross sections of Ref. [5] and also
much less than the deficit of about 100 mb found in the
theoretical cross section for the 3n channel as compared
to the experimental one.

We conclude that an obvious modification of the
semiclassical theory of relativistic Coulomb excitation,
namely, the transition &om a "sharp-cutofF' to a "soft-
spheres" model, resolves ambiguities connected with the
choice of a specific expression for the minimum impact
parameter necessary in previous calculations. Once this
previously &ee parameter is fixed, one can make a deci-
sion which of two rather extreme assumptions, namely,
complete independence or complete coupling of the mul-
tiphonon excitations, is more appropriate. Our calcula-
tions show that the harmonic oscillator model describes
1n-removal cross sections for the interactions of relativis-
tic heavy ions with Au with good accuracy. The basic
discrepancy, however, that we and others have noted ear-
lier, which lies in a good description of one-phonon ex-
citation and a large deficit in the calculated two-phonon
excitation, persists. In a simple estimate we have shown
that this deficit cannot be attributed to a neglect of
nuclear-plus-Coulomb interactions. It is possible that
a coupled-channels calculation could be able to remove
this discrepancy. More generally, a truly microscopic de-
scription of multiphonon excitations would be desirable,
that circumvents the problems connected with the inad-
equacies of the presently used harmonic oscillator and
perturbation-theory models.
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aspect of nuclear-plus-Coulomb interactions.
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