BRIEF REPORTS

Brief Reports are short papers which report on completed research or are addenda to papers previously published in the Physical Review. A Brief Report may be no longer than four printed pages and must be accompanied by an abstract.

Prolate-oblate band mixing and new bands in ¹⁸²Hg

K. S. Bindra,^{1,2} P. F. Hua,³ B. R. S. Babu,¹ C. Baktash,⁴ J. Barreto,³

D. M. Cullen,^{4,*} C. N. Davids,², J. K. Deng^{1,†} J. D. Garrett,⁴ M. L. Halbert,⁴ J. H. Hamilton,¹ N. R. Johnson,⁴ A. Kirov,³ J. Kormicki,^{1,5}
I. Y. Lee,^{4‡} W. C. Ma,¹ F. K. McGowan,⁴ A. V. Ramayya,¹ D. G. Sarantites,³ F. Soramel,^{2,§} and D. Winchell^{4,∥}

¹Physics Department, Vanderbilt University, Nashville, Tennessee 37235

²Physics Division, Argonne National Laboratory, Argonne, Illinois 60439

³Chemistry Department, Washington University, St. Louis, Missouri 63130

⁴Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831

⁵ UNISOR, Oak Ridge, Tennessee 37831

(Received 18 May 1994)

In-beam γ -ray spectroscopic studies of ¹⁸²Hg have revealed five new bands. The 2⁺ state of the prolate band has been identified at an energy of 548.6 keV and is higher than in 184 Hg. A two parameter band mixing calculation results in an interaction energy of 83 keV between the prolate 2⁺ and the oblate 2^+ states. Several additional new bands are seen including some which are interpreted as quadrupole vibrational bands built on the excited prolate minimum.

PACS number(s): 27.70.+q, 29.30.Kv, 23.20.Lv

In even-even Hg isotopes with A = 180-188 an oblate $(\beta_2 \sim -0.15)$ ground state band is found to coexist with an excited prolate ($\beta_2 \sim 0.25$) band at low spins and low excitation energies [1]. This coexistence can be explained in terms of shape competition at low excitation energies between a large proton gap at Z = 80 favoring slight oblate deformation and a neutron shell gap present for N = 102-108 favoring large prolate deformation in the single-particle levels.

Recent studies of 186 Hg [2] and 184 Hg [3] have revealed several new bands in these isotopes. In ¹⁸⁶Hg, Ma et al. [2] reported a negative parity, odd spin band, with deformation ($\beta_2 \sim 0.35$) intermediate between normal prolate deformation and super deformation. In ¹⁸⁴Hg, an odd spin band with a large moment of inertia similar to the band in ¹⁸⁶Hg was also observed. However, the deformation of this band was not measured.

In the case of 182 Hg, only the 2^+ level of the oblate

^{||}Present address: Physics Department, University of Pennsylvania, Philadelphia, PA 19104.

band and the prolate band from the 4^+ to 12^+ states were known earlier [4]. The 0^+ and 2^+ members of the prolate band were not known. The earlier studies of ¹⁸²Hg revealed that the energies of the high spin members $(4^+ \rightarrow 12^+)$ of the prolate band are lower in energy relative to ¹⁸⁴Hg and ¹⁸⁶Hg. These studies have led to the suggestion that the oblate-prolate energy difference in $^{182}\mathrm{Hg}$ is still smaller than that in $^{184}\mathrm{Hg}$ and $^{186}\mathrm{Hg}.$ Dracoulis *et al.* [5] reported that the prolate-oblate energy difference in 180 Hg is higher relative to 182 Hg, establishing a clear minimum in the prolate-oblate energy difference at N = 102. Even in ¹⁸⁰Hg, the 2⁺ and 0⁺ members of the prolate band are not observed. Because of the interactions between 2^+ and 0^+ members of the oblate and prolate bands, the energies of the 2^+ and 0^+ states of the prolate band may be altered significantly from the values calculated by using the rotational formula and high-spin members of the band. Any conclusion about the prolateoblate energy difference based on the high-spin members may be questioned.

We carried out new studies of ¹⁸²Hg, in an effort to identify the 2^+ and 0^+ members of the prolate band and higher spin states and to search for the existence of the new band structures recently observed in 184,186 Hg [2,3].

Three experiments were carried out in our studies of ¹⁸²Hg. In the first two experiments, ¹⁸²Hg nuclei were populated by using the reaction ${}^{154}Gd({}^{32}S, 4n)$ at beam energies of 160-165 MeV. The target was 1.16 mg/cm² thick and enriched to 92.3%. The first experiment was performed at the Holifield Heavy Ion Research Facility

^{*}Present address: Department of Physics, University of Rochester, Rochester, NY 14627.

[†]Present address: Physics Department, Tsinghua University, Beijing, PRC.

[‡]Present address: Lawrence Berkeley Laboratory, Berkeley, CA 97420.

[§]Present address: Physics Department, University of Udine, Udine. Italy.

The second experiment was done in the Compact Ball, at the HHIRF, in which four of the 16 Comptonsuppressed Ge detectors were replaced by four BaF₂ detectors to enhance the multiplicity selection. In the above reaction a considerable fraction of the fusion cross section is associated with charged particle emission $[(^{32}S, p4n),$ $(^{32}S, 2p2n)$, and $(^{32}S, 2p3n)$] and fission, while only ~ 15% of the total cross section is in the $(^{32}S, 4n)$ channel of interest. In order to tag and remove the chargedparticle channels from the $E_{\gamma} \times E_{\gamma}$ matrix, a simple 4π charged particle sensitive system, named "The Tube" [6] was used. It consisted of a plastic scintillator tube, which surrounded the target and was segmented into four optically isolated cylindrical arcs. Three $E_{\gamma} \times E_{\gamma}$ matrices were constructed by requiring a total γ -ray multiplicity $M_{\gamma} > 4$ and that none, one, or two charged particles were detected, respectively. The multiplicity contained at least two Compton-suppressed Ge detectors. augmented by γ rays in the BaF₂ detectors, the Ge detectors whose anti-Compton shield also fired, or the plastic tube that fired in its γ -ray portion. Based on observed discrete gamma lines, the 0-particle matrix was found to contain 30% of the 1-particle tagged matrix and a small portion of the 2-particle tagged matrix. These observations are consistent with an average particle selection efficiency of 70%. A pure $(^{32}S, xn)$ matrix containing 5.4×10^7 events between 0 and 2 MeV was produced by subtracting the appropriate fractions of the 1-particle and 2-particle matrices from the 0-particle matrix.

A third experiment was a by-product of our experiment [7] on ¹⁸³Hg. The ¹⁸²Hg nuclei were produced in the ¹⁵⁵Gd(³²S, 5n) reaction at a beam energy of 160 MeV. In this experiment γ transitions belonging to ¹⁸²Hg were identified with a mass gate on A = 182 fragments at the

focal plane of the Fragment Mass Analyzer (FMA) at Argonne National Laboratory. Prompt γ rays emitted at the target position were detected with an array of 10 Compton-suppressed Ge detectors in coincidence with A= 182 reaction products at the FMA focal plane.

Several types of coincidence matrices were built for the analysis of γ - γ coincidence data. A large γ - γ coincidence matrix was used to establish the coincidences between the various γ rays. A multiplicity of > 4 was selected to enhance the 4n channel. In order to assign spins to the levels, a matrix was built employing the γ detectors close to 0° and 180° on the x axis and the other detectors close to 90° on the y axis. Ratios of directional correlations from oriented nuclei (DCO) were extracted from the latter matrix and were used to establish the multipolarities of γ transitions.

The γ spectrum obtained by gating on A = 182residues is shown in Fig. 1. The inset in Fig. 1 shows the ordinate expanded for 200-700 keV. The transitions in band 3 (see Fig. 3) are labeled. A γ spectrum in coincidence with transitions in band 3 is shown in Fig. 2. This γ -ray spectrum was created by summing the coincidence spectra obtained by gating on the transitions in band 3. The 548.6-keV transition is in coincidence with transitions in the yrast band and 471.9- and 749.1-keV γ rays. These coincidence relationships can only be explained by placing it as a transition from the 2^+ member of the prolate band to the ground state. The 549-keV transition placed in band 6 and the 548-keV transition tentatively placed in band 1 are very weak. The much larger intensity of the 548.6-keV transition compared to the 749.1-keV transition which populates the level suggests that an unobserved highly converted 64.6-keV transition from the 4^+ level populates the new 2^+ level as well. The level scheme based on γ -ray coincidence relationships and transition intensities is shown in Fig. 3.

Band 1 in Fig. 3 is the slightly deformed oblate band. Two transitions have been tentatively placed into this band because one sees weakly the 577.8- and 548-keV

FIG. 1. The γ -ray spectrum obtained by gating on A = 182 residues. The inset shows the ordinate expanded for 200-700 keV. Many of the transitions in band 3 are labeled.

FIG. 2. γ -ray spectrum in coincidence with transitions in band 3.

FIG. 3. Level scheme of ¹⁸²Hg. The inset shows the systematics of 0^+ , 2^+ , and 4^+ members of the observed prolate band energies. Relative γ -ray intensities are shown.

transitions in the 351.8-keV gate but not in the 261-keV gate. Their energies are consistent with the energies of the transitions in the oblate bands in ^{184,186}Hg. The prolate band 4 is now extended to spin 20. The plot of aligned angular momentum for this band shows a gentle upbend around spin 14⁺, probably related to the gradual alignment of a pair of neutrons in the $i_{13/2}$ intruder orbital. The observed gentle upbend suggests that the interaction at the band crossing is strong. Similar behavior was observed in ^{184–188}Hg.

Band 3 consists of a series of stretched-quadrupole transitions and is the second most intense populated band. The interband transitions from this band to the excited prolate band (band 4) are weak and no reasonable DCO ratios could be extracted for these transitions. The spin of the bandhead was assigned based on systematics of 184,186 Hg and of other N=102 isotones and on the fact that it and the rest three states feed the 4^+ to 10^+ states in band 4. The moment of inertia of this band is extremely similar to those of the negative parity bands previously observed in ¹⁷⁸Os and ¹⁸⁰Pt [8, 9]. The transition energies of band 3 differ by a maximum of 2.5 keV from the transition energies of a similar band (band 8) in ¹⁸⁰Pt below the state with suggested spin 13. So if our spin assignments are correct, these are identical bands below spin 13.

The two additional bands (bands 5 and 6) observed in 182 Hg are very similar in decay properties to bands observed in 184,186 Hg, whereas band 7 is not. Since the DCO ratios for the interband transitions from these bands to other bands have large errors, we could not assign spins or parities for the bandheads. Only the stretched E2 nature of the in-band transitions can be determined. These bands most likely are some type of quadrupole vibrational bands built on the excited prolate band since they feed only this band. These bands emphasize the continued importance with decreasing N of this second minimum at normal prolate deformation.

The energy of the prolate 0^+ band head drops rapidly from 825 keV in ¹⁸⁸Hg to 372 keV in ¹⁸⁴Hg (see inset in Fig. 3). The earlier studies on 182 Hg led to the suggestion that the prolate bandhead energy also appears to be lower in energy with respect to heavier Hg isotopes. Dracoulis et al. [5] established the excited prolate band in 180 Hg, but did not observe transitions to the prolate 0^+ or 2^+ levels. In 180 Hg, fitting a rotational energy formula to the higher spin states $(6^+ \text{ to } 14^+)$ of the prolate band, Dracoulis et al. [5] calculated the unperturbed 0^+ bandhead energy of 453 keV. Assuming an ≈ 80 keV interaction strength, they concluded that the energy of the perturbed 0^+ in ¹⁸⁰Hg would be at 466 keV. These results are in good agreement with IBM calculations [10] and the theoretical calculations of Bengtsson et al. [11] using a Woods-Saxon potential. Thus a clear minimum is established at N = 102.

The present identification of the prolate 2^+ at 548.6 keV clearly establishes that the *perturbed* prolate 2^+ energy is higher than that of the *perturbed* prolate 2^+ in ¹⁸⁴Hg. A two-parameter band mixing calculation using the *unperturbed* 2^+ state energy yields an interaction strength of 83 keV, which is similar to those for ^{186,184}Hg.

The work at Vanderbilt University and Washington University was supported by the U.S. Department of Energy under Grants DE-FG05-88ER4047 and DE-FG02-88ER-40406. Oak Ridge National Laboratory is managed by Martin Marietta Systems, Inc. under Contract DE-AC05-84OR21400 for the U.S. Department of Energy. The work at Argonne National Laboratory was supported by the Department of Energy, Nuclear Physics Division, under Contract No. W-31-109-ENG-38.

- J. H. Hamilton, in *Treatise on Heavy Ion Science*, edited by Alan Bromley (Plenum Press, New York, 1989), Vol. 8, p. 2, and references cited therein.
- [2] W. C. Ma, J. H. Hamilton, A. V. Ramayya, L. Chaturvedi, J. K. Deng, W. B. Gao, Y. R. Jiang, J. Kormicki, X. W. Zhao, N. R. Johnson, J. D. Garrett, I. Y. Lee, C. Baktash, F. K. McGowan, W. Nazarewicz, and R. Wyss, Phys. Rev. C 47, R5 (1993).
- [3] J. K. Deng, Ph.D. thesis, Vanderbilt University, 1993.
- [4] W. C. Ma, A. V. Ramayya, J. H. Hamilton, S. J. Robinson, M. E. Barclay, K. Zhao, J. D. Cole, Z. F. Zganjar, and E. H. Spejewski, Phys. Lett. **139B**, 276 (1984).
- [5] G. D. Dracoulis, A. E. Stuchbery, A. O. Macchiavelli, C. W. Beausang, J. Burde, M. A. Deleplanque, R. M. Diamond, and F. S. Stephens, Phys. Lett. B 208, 365 (1988).
- [6] P. -F. Hua, D. G. Sarantites, L. G. Sobotka, J. L. Barreto, and A. Kirov, Nucl. Instrum. Methods Phys. Res. Sect. A 330, 121 (1993).

- [7] K. S. Bindra, A. V. Ramayya, W. C. Ma, B. R. S. Babu, J. H. Hamilton, L. Chaturvedi, J. Kormicki, R. V. F. Janssens, C. N. Davids, I. Ahmad, I. G. Bearden, M. P. Carpenter, W. Chung, D. Handerson, R. G. Henry, T. L. Khoo, T. Lauritsen, Y. Liang, H. Penttila, F. Soramel, C. Baktash, W. Nazarewicz, and J. A. Sheikh, Phys. Lett. B **318**, 41 (1993).
- [8] T. Kibedi, G. D. Dracoulis, A. P. Byrne, P. M. Davidson, and S. Kyucak, Nucl. Phys. A567, 183 (1994).
- [9] M. J. A. De Voigt, R. Kaczarowski, H. J. Riezebos, R. F. Noorman, J. C. Bacelar, M. A. Deleplanque, R. M. Diamond, F. S. Stephens, J. Sauvage, and B. Roussiere, Nucl. Phys. A507, 472 (1990).
- [10] A. F. Barfield and B. R. Barrett, Phys. Lett. 149B, 277 (1984).
- [11] R. Bengtsson, T. Bengtsson, J. Dudek, G. Leander, W. Nazarewicz, and J. Y. Zhang, Phys. Lett. B 183, 1 (1987).