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Quark cluster signatures in deuteron electromagnetic interactions
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A suggestion is made for distinguishing 2N and 6q short-range correlations within the deuteron.
The suggestion depends upon observing high momentum backward nucleons emerging from inelastic
electromagnetic scattering from a deuteron target. A simple model is worked out to see the size of
effects that may be expected.
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I. INTRODUCTION

When the constituents of a nucleus are far apart, a
description in terms of neutrons and protons is accurate.
The question is what happens to the material inside the
nucleons when the pieces come close to each other. We
shall consider a way to help resolve this issue using elec-
tromagnetic scattering &om a deuteron. In particular, we
shall be interested in semiexclusive Ineasurements where
a backward (relative to the incoming photon) high mo-
mentum nucleon emerges &om the reaction.

One view of what happens when the nucleons come
close to each other is that they never do. A repulsive
force keeps them apart. One may additionally suppose
that even if the nucleons are pushed close together they
maintain their nucleonic character and behave as recog-
nizable neutrons and protons. This viewpoint we shall
refer to as the two-nucleon, or 2N, model for the behav-
ior of nuclear material at short interparticle distances.
(Note that it is not possible to take a neutron —three
quarks in an S state with the correct spin, isospin, and
color and precisely overlap it with a proton. The Pauli
principle at the quark level prevents it. )

An alternative viewpoint is that if two nucleons come
suKciently close together, the quarks within them reor-
ganize or mix into a new state where each quark is in
the lowest energy spatial state, and the color-spin-Havor
part of the quark wave function is uniquely fixed by the
requirement that it be a totally antisymmetric colorless
state of the desired spin and isospin [1]. The six quarks
may thus lie top of each other. This quark cluster model
is also an extreme viewpoint, and we refer to it as a six-
quark or 6q model.

In neither the 2N model nor the 6q model do we be-
lieve that the backward nucleon comes Rom the nucleon
or the quark that was struck [2]. Rather, the backward
nucleons come from debris that remains after the item
that was struck is driven strongly forward. For exam-
ple, to describe backward proton production in the 2N
model, it must be the neutron that is struck, breaking
up the bound state, with the proton emerging with the
Fermi momentum it had at the moment of breakup. The
high momentum of the backward nucleon is a tag ensur-

ing we are seeing a strongly correlated system that has
the highest probability of being an unusual configuration.
We shall show that there are features of backward nu-
cleon production that are characteristically difFerent for
2N and 6q models and allow us to adjudicate between
them. We have previously commented [3, 4] upon using
neutrino production of backward protons [5—8] to similar
ends.

In the 6q model, emitting a backward proton begins
with one quark being struck and driven forward. The
proton is formed out of the remaining five quarks, plus
possible higher Fock components, and we refer to the
process of forming hadrons as the "kagmentation" of
the five-quark residuum. This terminology follows com-
mon usage for the production of hadrons from any color
nonsinglet @CD object, quark and gluon jets being the
most familiar. In the present case, we persist with the
"fragmentation" nomenclature even though recombina-
tion may be the process chiefly at work. In any case, the
6q model can produce a backward proton spectrum which
agrees with data from neutrino reactions, for backward
hemisphere proton momentum above about 300 MeV [3].
However, so can the 2N model, with enhanced high mo-
mentum components [9]. To distinguish the models, we
need indicators that are independent of quantities that
are unknown or implementation sensitive, and which give
predicted results which are distinct for the 2N and 6q
models. For weak interactions, cross section ratios for
neutrino and antineutrino initiated backward proton pro-
duction are a suitable choice [4]. Similar opportunities
exist for electromagnetic interactions.

A suggestion for a ratio to examine in the electromag-
netic case, particularly at fixed backward proton momen-
tum and varying Bjorken x, is given in Sec. II, along with
some numerical estimates of the differences between the
two models. Section III contains a series of comments,
starting with some remarks about when and if one might
expect a 6q configuration to dominate, and related mat-
ters, and continuing with comments on electron energy
needs and possibilities at various (existing or proposed)
accelerators or facilities, including CEBAF, ELFE, Her-
mes, LEP, and Fermilab. Also remarked upon in Sec. III
is an observation regarding decreases in average Bjorken
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x with increases in backward nucleon momentum, which
was originally made in the context of the 2N model, but
is an example of something that should be reasonably
true for most any model. We conclude in Sec. IV.

II. SIGNATURES
OF SHORT DISTANCE CORRELATIONS

A. Ceneral

The cross section for inelastic electromagnetic scatter-
ing of a lepton from a stationary target is (in the scaling
region and neglecting o'l. /oz )

do

dx dy

where E and E' are the incoming and outgoing lepton
energies, v is the difference between thein, y = v/E, x =
Q /2mN v, and I"2 (whose Q dependence will generally
be tacit) is

The neutron structure function I"2 is (we shall sup-
pose) known. The test we propose is to ineasure the cross
section for backward nucleon production at a variety of
x and o. and examine the ratio

0 meas

+2-(&)

Here, o, is the measured differential cross section and
K is the factor

24vr n, mdiv E
)2

4

The signature of a two-nucleon correlation model is
that this ratio is independent of x for any fixed o, and
pT . Of course, how useful this signature is depends upon
how different we may expect the result to be for a 6q
cluster. This we shall see in the next section.

E2(x) = ) e2xq;(x), (2)
C. Backward nucleons from 6q clusters

where e; is the quark charge in units of proton charge
and q; is the distribution function for a quark of Bavor i.

B. Backward nucleons from 2N correlations

We will speak of observing a backward proton for the
sake of definiteness; observing a backward neutron is es-
sentially similar.

Some things change in the above formula when a back-
ward proton is observed. The neutron, which is the
struck particle, is not at rest in the laboratory kame.
Then the momentum fraction of the struck quark rela-
tive to the neutron is not x but rather (,

m~E —+ p„k = mivE(2 —n). (4)

Also, if we want a backward proton, there is a further
factor of the probability density for finding the proton
with its observed momentum at the moment the neutron
was struck. Thus

2' =
dx dy do! d pT

4mo. m~ E 1+ 1 —y

x(2 —n) &..(() ~@(n,p~) ~',

where pT is the transverse momentum of the backward
proton and we used the light-cone wave function normal-
ized by

)2 —Ck

where n = (E~ + p')/m~ is the light-cone momentum
&action of the backward proton with p positive for a
backward proton. One should also replace m~E by its
corresponding I orentz invariant,

Here V;~ ~ is the distribution function for a valence quark
in a six-quark cluster, the sum is over quark Havors, and
Dp jSq is the fragmentation function for the 5q residuum,
i.e., the probability density per unit z and pT for finding
a proton coming &om the 5q cluster. It is tacit that
the correct 5q cluster, either u d or u d, is chosen.
Argument z is the &action of the residuum's light-cone
longitudinal momentum that goes into the proton,

)
2 —x (IO)

the factor (2 —x) comes because D~ysz is probability
per unit z in its definition and we quote the differen-
tial cross section per unit o.. The formula is written for
high backward proton momentum, where we can expect
the 5q residuum and hence the actual 6q initial state to
dominate.

Neither E2 nor Dp/zq can be said to be known. How-
ever, since a large &action of the short-range part of the
baryon number two state may be in a six-quark cluster,
we should make the best guess as to what these functions
might be and see how large a difFerence it could make ex-
perimentally to have significant 6q cluster contributions,
at least in given regions of phase space.

Estimates of E2 in a model where the nuclei are
treated as containing some &action 6q clusters have been

For the case of electromagnetic scattering Rom the 6q
state, we have basically the convolution of F2 with the
fragmentation functions of the five- (or more, in general)
quark residuum. Since the quarks in the residuum de-
pend on which Qavor quark was struck, we must write

dcr6q

dx dy do.' d pz'

=Z ) xe,.'V,"(x) ' D„„,(z, p ).
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R, =R,'(6) Ez (x) Dr use(z, pz )
(2 —*) (2 —~) F2-(&)

(12)

There is no reason for R& to be independent of x for
fixed n and p~ . We plot this Rq in Figs. 1 and 2 for
pT ——0 and specified o;. Some simple quark distributions
of Carlson and Havens [11] were used to get I'z„ in Fig.

given by Lassila and Sukhatme [10]. They chose their
quark distributions beginning with quark-counting rules
and then fine-tuned with physical logic to describe the
EMC data. For completeness, the three parametrizations
they present are recorded in the Appendix.

The fragmentation function is even less well known
since there is no complete body of data to check it
against. The counting rules suggest a cubic dependence,
as (unnormalized)

D„gqs(z) oc (1 —z),
for z —+ 1 and for zero pT. We shall use this form,
although we keep in mind the possibility that higher
order contributions or renormalization group considera-
tions could somewhat alter the power, as they do in many
parametrizations of the quark distributions in nucleons.

If the high momentum backward protons come &om a
six-quark cluster, then o, , = o6~ and the experimental
ratio Rq should be given by
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FIG. 2. Like Fig. 1 except that E2 is gotten from the
CTEQ [11] distribution functions, specifically from the set
CTEclrL for Q = 4 GeV . The horizontal dashed line is an
expectation from 2N; the other curves are for the 6q cluster.
The heavy curve is from LS parametrization A, the normal
curve is from parametrization B, and the dotted curve is from
parametrization C. The curves turn up as x -+ 0.6 (( -+ 1)
because the cTEg distribution functions all approach zero at
the upper limit faster than (1 —(), and the fragmentation
function we use goes to zero as (1 —z) 3
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1 and the cTEqzr, [12] distributions were used in Fig. 2.
The difference between what is seen and the horizontal
line expected &om a pure 2N correlation model is not
negligible. That the ratio goes to a finite value as we
reach the kinematic limit 2: = 2 —o. in Fig. 1 has to
do with the fact that both the 5q &agmentation function
and the dominant quarks in the nucleon approach their
end points cubically in our models. A dive to zero or
a Bight to infinity is not precluded in real life, and the
latter is seen in Fig. 2.

III. COMMENTS

A. Potential dominance of eq clusters

0.1 0.2 0.3 0.4 0.5 0.6

FIG. 1. A putative ratio R~ assuming the measured cross
section for backward protons in deep inelastic scattering
is dominated by six-quark con6gurations and using the LS
model [9] for the distribution functions of the six-quark clus-
ter. In general, Rq is the measured cross section (sans some
kinematic factors) divided by the neutron structure function
E2 . If backward proton production were dominated by two-
nucleon correlations, the plot would be horizontal, like the
dashed line. The plot is for fixed n = 1.4 (momentum 322
MeV for directly backward protons) and uses CH [10] distri-
bution functions to obtain Ez . The heavy curve is from LS
parametrization A, the normal curve is from parametrization
B, and the dotted curve is from parametrization C. The ver-
tical units are arbitrary as the fragmentation function D„g5~
is not normalized.

We expect that a correct description of the deuteron
would have a neutron and a proton treated as in the 2N
model when they are far apart. As they get closer, QCD
processes such as gluon recombination [13] will surely
occur and affect first the ocean parton distributions. It
is something of a simplification to think of a deuteron as
just a combination with a large &action pure 2N state
with a small fraction (perhaps 5%, from wave function
overlap estimates [14]) of the 6q state added in.

However, while a 6q cluster may be a small part of
the deuteron overall, it could be a large &action of the
short-range part of the deuteron wave function. In con-
trast to the EMC effect, where 6q cluster contributions
are necessarily diluted by the mostly ordinary collection
of nucleons in the target, here we can select events to
enhance 6q cluster effects. Observing a fast backward
proton is a tag that emphasizes the short-range part of
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the wave function, and if the 6q cluster is there, it could
dominate the cross section when the backward proton
momentum is large enough. The deviation &om what
is expected in a pure 2N correlation could indeed be as
large as shown in our figures.

It is possible and even likely that backward protons
will come &om some mixture of 2N and 6q states, with
a smooth transition between low backward momentum
protons that come mostly from 2N, to high backward
momentum protons that have significant contributions
&om 6q. The observed results will move with increasing
backward proton momenta &om a horizontal line on our
figures toward the curves shown for the 6q models. How
high a backward momentum is needed to get a signifi-
cant 6q contribution? We suggest 300 MeV/c is a good
starting point, based on existing backward proton data
from deep inelastic neutrino scattering and studies of the
backward proton spectrum in that process using 6q clus-
ter ideas.

We do not expect multiple internal scattering to be
significant in the deuteron case even in the 2N model. In
hadron-deuteron elastic scattering it is well known that
two 90 scatterings often give a bigger rate than one 180'
scattering. In the present case, the scattering that breaks
up the struck nucleon is necessarily almost forward, and
advantages of multiple scattering do not exist.

B. Possibilities at 4 or 6 GeV electron accelerators

Can an electron accelerator like CEBAF with a 4 or
6 GeV beam be useful? We believe so for the 6 GeV
beam. The question centers around how much backward
momentum is possible with an incoming electron of this
energy, and how much data we can get in the scaling
region.

Limits on backward proton momentum

—12
z

p = mN
20!

(15)

The maximum directly backward proton momentum
when an electron scatters from a deuteron is (3/4)m~,
or 704 MeV, but this is for the case of infinite incom-
ing energy. If the energy is finite, the magnitude of the
maximum backward momentum is reduced. For exam-
ple, with E = 4 GeV and Q = 1 GeV, the maximum
directly backward proton momentum is

p
' & 0.600mN ——564 MeV, (IS)

which is still a decent backward momentum. (For a 6
GeV electron beam and the same Q2, the maximum p'
is 609 MeV. )

These results were obtained with the help of

1
o. m~ & — my+ v — v +

2

(
4m~2

x 1+ 1—

and also, for no transverse momentum,

For v —+ oo, we recover the limits cited, for example, in
[3]. Now at finite energy and for a given Q2 we maximize
the limit on p by maximizing v. We have

Q2 Q2
v = E — (

4E sin (0/2) 4E (16)

For Q = 1 GeV and E = 4 GeV, we get n ( 1.77 and
p' as quoted above.

Much of the limitation actually comes because fixing
Q for a given incoming energy puts a lower limit on
Bjorken x. Since this is also the momentum 6.action of
the struck quark in the laboratory kame, it means that
the struck quark is not moving forward as fast as possible,
and the residuum is then not moving backwards as fast
as possible. For the 4 GeV beam and the present Q2

limit, x;„=0.14. If we went to infinite energy, but
maintained this value of x, a would still be limited by
o. & 2 —x;„=1.86.

2. Scaling windom

xmin
4EQ

2m~ (4E' —Q',.„)
(17)

The lower limit on W sets an upper limit on x. Apply-
ing the limit to the final state that comes &om striking
the neutron in the 2N correlation model gives

W = (p„+q) = m~+2mN v(2 —n) —Q & W,„,

for a given o; of the backward proton and letting p
m~. This leads to a limit, also reached for 180 scatter-
ing, that

xmax
2E 2mN. E(2 —n) —(W,.„—mg )

m~ [4E'+ (W',.„—m~2)]

The curves giving x „and x;„are shown in Fig. 3
for n = 1.4. The scaling region is the region between the
two curves.

For o. = 1.4, the scaling region includes only a short
span of x for electron energy E = 4 GeV, but the span
increases greatly for E = 6 or 8 GeV. The span for 8
GeV is over half of the maximum possible at any energy,
and not too much less than could be got at 15 GeV. For
increasing o, , which corresponds to increasing velocity of
the struck neutron away Rom the photon, larger energy
in the laboratory is needed to reach the scaling region.

Using the formulas with the scaling result for E2 re-
quires that we be in the scaling region. This will squeeze
the allowed range of x to be narrower than the kinematic
limits.

Scaling requires, at a minimum, that Q~ be above 1
GeV and that W (the photon plus single target nucleon
c.m. energy) be above 2 GeV, out of the resonance region.

The lower limit on Q sets a lower limit to z, since
for a given energy there is a maximum energy transfer v
possible. The maximum v comes for backward electron
scattering and leads to v (E —Q2/4E or
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FIG. 3. The scaling window for n = 1.4. Values of x
between the two curves can be reached in the scaling region
for a given incoming electron energy E, given in GeV above.
The lower curve is set by the requirement that Q ) 1 GeV
and the upper curve by the requirement that W ) 2 GeV.
The curves begin at E = 3.72 GeV for this n.

of protons. For the 6q model, if the valence configura-
tion dominates, as it should at high backward nucleon
momenta, then the ratio of neutron rate to proton rate
should be 3/2 and be independent of x. (One uses a
combinatoric argument to get ratios of proton and neu-
tron production &om u d and u d residua, and some
discussion of this appears in [4].) The result for the 2N
model is different, since one has

cr2~(p, d -+ an%) F2„(()
0 zN (p d m p p A ) F2„(()' (20)

so that the ratio should vary from about I at low ( to
about 4 at high (. Thus backward neutrons are always
produced more copiously, and there is an interesting com-
parison of observables if one has the capability of detect-
ing both flavors of nucleons.

We might also note that study of backward nucleons
&om a deuteron target is a study of the "target &agmen-
tation region" and is best and most easily carried out in
the rest &arne of the target, i.e. , the laboratory. Data
presented in the photon-target c.m. are not equally use-
ful.

Do we need to be in the scaling region'? Our formulas
for the 2N correlation are simplest to evaluate there, and
we do not know how to guess at forms for production off
the 6q component; so our comparison case is gone. But
&om the 2N viewpoint, the purpose of scattering off the
neutron is to &ee the proton nothing more. If all we
want is a yes or no on the 2N correlation model, we could
take a measured cross section for producing backward
protons and divide by a cross section for scattering off a
neutron at the correct values of the incoming variables,
and see if the result depends only upon o. and pT.

The disadvantage of doing this may be more practical.
Driving the struck particles forward forcefully separates
them greatly in momentum space from the backward pro-
ton and reduces the final state interactions, which we
have neglected in our discussion. As we leave the scaling
region, it can mean that the energy transferred to the
forward moving particles is low enough that we need to
rethink our attitude towards final state interactions.

C. Possibilities with electrons or muons at higher
energy

D. Falling (x) with increasing cx

Let us point out a piece of kinematics. Prom momen-
tum conservation one has 0 ( x ( (2 —n). Hence, unless
the x distribution has a bizarre shape, one expects that
(x) —the average value of x at fixed n decreases as n
increases. This was pointed out in Ref. [2] in the context
of the 2N model, and was initially suggested as a test of
that model. However, the result should be produced by
any model, and so finding the trend in the data is not
startling.

The two-nucleon correlation model does give a specific
result that (x) falls to zero linearly as 2 —o.. In contrast,
the six-quark cluster model may or my not fall quite lin-
early. It depends on the specific implementation of the
model.

The rest of this subsection attempts to show why the
two-nucleon result for (x) is independent of the internal
details of that model, but similar manipulations for other
models do not lead to such definite results. It has to do
with the way the cross section factors.

For the two-nucleon model, the structure of the for-
mula for the cross section differential in x and o. is

There is a number of existing or proposed accelera-
tors or facilities for example, ELFE, Hermes at DESY,
HELP at LEP, or Fermilab that can observe backward
nucleons from electron or muon scattering &om fixed tar-
gets. There is a clear advantage in not having to think
about the "scaling window. " It is virtually the full pos-
sible kinematic range.

At Fermilab, to take one case, experiment E665 scat-
tered 490 GeV muons &om deuterium and xenon targets
in a streamer chamber so as to be able to observe back-
ward charges. A later version of experiment E665 has ca-
pability to observe backward neutrons, and uses carbon,
calcium, and lead as its heavier targets. There is some
rate advantage in measuring backward neutrons instead

y(g)
I@( ) I (2I)

f dxxP(x, n) = (2 —~)h)j dx P(x, n)

where (() is independent of o.. We can easily turn this
into

(22)

(x)~
(*)-=.

=

The sort of result that can be derived in the corre-

(23)

where ( is defined earlier. An elementary calculation
gives
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(24)P(zn) = = D z=
dxdn 2 —z ( 2 —x)

The factor g(z) is for the quark knockout and D(z) is
the &agmentation function. The first is a function of x
since it involves distribution functions of quarks in the
six-quark cluster, and the six-quark cluster is standing
still in the laboratory. Argument z is defined earlier.
The neatly derivable result is for average o. at; fixed x:

or

fo
*dn n P (T, n) = (2 —*)(.)f dn P(x, n)

(25)

sponding way for the six-quark cluster appears less use-
ful. We envision one quark being struck and driven for-
ward, and the residuum that remains fragments" (or
recombines) into a nucleon, which often goes backward,
plus other stufF. The difFerential cross section is struc-
turally

&ee neutron or proton, respectively. A high momentum
backward nucleon acts as a tag isolating events where
the initial mat;erial in the deuteron was tightly bunched.
The x dependence or lack of x dependence of the ratio is
a signal that is distinct for the extreme cases of a pure
2N or pure 6q cluster. We have presented simple model
estimates of the size of efFects that may be seen, showing
that factors of 2 difFerences &om maximum to minimum
may be expected in the 6q case, whereas no maximum to
minimum difFerence is expected in the 2N case.
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(n)*
(26)

This result for the six-quark cluster contribution re-
quires averaging over all n, and while the optimist; may
expect the six-quark contributions to dominate at high
o., no one expects them to do so at moderate o.. So this
result seems untestable.

For (x) details would have to be worked out for each
special case. However, remembering the general result
that (x) decreases with increasing n and is zero kine-
matically when o. = 2 makes it likely that one will get
something like the 2N result.

IV. CONCLUSION

Study of the deuteron should be pursued since
deuterons are our chief source of information about neu-
trons and we should understand this source. Further,
the behavior of the deuteron state at short range gives
information about the short-range dynamics of strong in-
teraction @CD.

We have suggested a measurement to learn what the
short-range wave function of the deuteron is. Namely,
examine the shape of the measured difFerential cross sec-
tion for electroproduction of backward protons or neu-
trons &om a deuteron target, and take its ratio to what
would be expected for deep inelastic scattering &om a

AP PENDIX.
DISTRIBUTIONS FOR SIX-QUARK CLUSTERS

We apply the notation [6q) or 6q to label the situation
when the neutron and proton are melded and lose their
individual identity. This notation emphasizes the fact
that standard @CD quark parton model considerations
should be applied to this interesting multiquark object.
Therefore, for a generic [nq) state the sea, valence, and
gluon distribution functions (times z) are written

U„(z) =A„(1—z) ",
V„(z) = a„"~'(1—z)'-,
G„(z) = C„(l —z)'", (A1)

where z is the &action of the total cluster momentum.
The coefficients and powers are determined in [10] by ap-
pealing to standard normalization and momentum con-
servation considerations along with input information
from experimental study of the n = 2 (pion) and n = 3
(nucleon) situations. As a result, three cases were devel-
oped to illustrate the sensitivity to small changes in the
power of (1—z), i.e., (as, bs) = (11,9) for case A, (11,10)
for case B, and (13, 10) for case C. For completeness we
give (As, Hs) = (1.429, 1.762) for case A, (1.478, 1.850)
for case B, and (1.725, 1.850) for case C.
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