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Effect of relativistic kinematics on the quark-quark interaction obtained
from the proton form factor
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We have recently shown, assuming nonrelativistic kinematics, that the parametrized elastic charge
form factor data for an N-particle system may be used to determine the underlying two-particle
interaction. We now extend the validity of our formalism, using the prescription of Mitra and
Kumari, to include relativistic kinematics, and apply it to a constituent quark model of the proton.
We show analytically that, for a dipole 6t to the form factor, the essential features of the quark-
quark potential do not depend on the form of the kinematics. This provides an explanation of our
earlier somewhat paradoxical 6nding that the small r singularity in the potential, which is predicted
by first order +CD, is reproduced by a totally nonrelativistic inversion of the form factor data.
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Traditionally, the two-body potential assumed to gov-
ern the dynamics of a given many-body system has been
fitted &om two-body scattering and/or bound state data
[1,2] mediated by theoretical considerations. Alternately,
the interaction can be derived by inverting the scattering
or spectral data [3]. However, for larger systems, for ex-
ample the p-shell nuclei, an effective interaction is often
obtained by a least squares fit to the binding energies of
several similar systems [4,5]. Recently [6], we derived a
new method by means of which the underlying two-body
interaction governing the dynamics of particles in an N-
body system can be deduced &om the elastic electric form
factor of that system. We applied this method to various
parametrized fits (e.g. , dipole and Gari-Kriimpelmann
[7]) to the form factor data of the proton, so obtaining
quark-quark interactions consistent with these data in a
consituent particle model.

Our method, which is described in detail in [6], as-
sumes that the N-body wave function is well approx-
imated by the first term in a hyperspherical harmonic
(HH) expansion. This is known as the hypercentral ap-
proximation (HCA). The assumption that the leading
term in the HH expansion of the wave function is much
larger than any higher term implies the dominance of
collective (monopole) dynamics over more complicated
correlations. The presence of a hard core in the poten-
tial tends to generate higher correlations, whereas they
are more or less absent in systems subject to interactions
which do not exhibit short range repulsion.

In constituent quark models, the potential is generally
assumed to consist of an attractive Coulomb-like term
(predicted by first order /CD) and a linear confining
term (consistent with a constant energy density in the
flux tube connecting two interacting quarks) [2,8]. The
three-quark system examined in the nonrelativistic quark
potential model (NRQPM) would therefore appear to be
ideally suited as an application of our form factor in-
version formalism. However, relativistic corrections ap-
pear even in leading order in Q2 [9], which places some
doubt on the interpretation of results obtained by our
method. Nevertheless, we were able to derive interac-
tions whose features can be easily understood in terms of

a constituent quark + meson cloud model of the nucleon.
First, the potential so obtained is attractive and singular
at small r, as predicted by /CD. This result is rather sur-
prising, since first order /CD is applicable in the highly
relativistic regime, whereas our original method is en-
tirely nonrelativistic. Second, in a quark + meson cloud
model, we would expect the imprint of the confining na-
ture of the quark-quark interaction on the form factor to
be washed out by the presence of the mesons, which are
unconfined. Our results indeed display this feature.

For a full analysis of the form factor data, even within a
constituent quark model, two types of relativistic correc-
tion need to be taken into account. First, the recoil kine-
matics of the electron-target system needs to be analyzed
relativistically. In the current work we have used the
transformation of Mitra and Kumari (MK) [10] to obtain
the rest &arne form factor G& (Q2) &om the measured(RF)

form factor Ga(Q2). The MK prescription, which is a
modification of the earlier treatment of Licht and Pag-
namenta (LP) [11],is derived by considering the Lorentz
transformation of the coordinates of the wave function
before Fourier transforming to obtain the form factor.
The difference between the MK and LP approaches is
that, in the former, the initial and final states are treated
symmetrically. As a result, the MK prescription correctly
predicts the Q2& ) asymptotic behavior of the form
factor of an N-particle system, whereas the LP approach
predicts a Q( ) fallofF at high Q . Recently, both MK
and LP approaches were used to investigate whether the
discrepancy regarding the relation between the charge ra-
dius and the triplet scattering length aq of the deuteron
could be resolved by using relativistic kinematics [12].
Second, the quark dynamics needs to be made relativis-
tic by using the proper kinetic energy operator and by
treating the interaction covariantly. Although we are cur-
rently working on the problem of establishing a formal-
ism for handling relativistic dynamics within the hyper-
central approximation, the work is incomplete and we
will therefore not present it in this paper.

In our original approach, we exploited the fact that
the charge density p(y) for an N-body system can be
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expressed in terms of the hyperradial coinponent @(r) of
the wave function according to r ~ I@(f„r)I' - Q ~ G~ (Q') Ja-. (Qr) Q dQ,

0 2

where f =
N i and D = 3(N —1). (See Appendix

C in [6].) For N = 3, Eq. (1) reduces to

(2)

Equation (2) can be expressed in the form

52 u" (r)
3m~ u(r)

15 E
4&2

where the proton mass M~ is given by M~ ——3m& + E
and where the reduced wave function is defined by

can also be exploited to obtain vP(r) from G&( )(Q2).(RF)

Assuming the validity of the HCA, the hypercentral
potential is then given by

1 d&(~)
y dy

rl@(r)l' d„
y2

which is known as the Weyl &actional integral, and which
has the solution [13]

oodp ~
I@(r)I' - —

„d„ (4)

Q ~ G~ (Q ) - r ~ Ig(f„r)I Ja ~ (Qr)r dr
0

and

Alternately, the fact that the quantities r 2 I@(f~r)l
and Q ~ G(& ) (Q2) are related to each other by means
of the Hankel transform of order 2 [14], i.e. ,

Vl f' = T~ 7'

The hypercentral potential is the first term in the ex-
pansion of the potential in terms of hyperspherical har-
monics. It is defined. as

f IY(L)(O) I V(ri2) dO

J' IY(i,j(O)l dO

where Y~L,j(O) is the lowest order hyperspherical har-
monic basis function consistent with the Pauli principle,
O is a set of angles and hyperangles, V(ri2) is the two-
body potential, and rq2 the relative coordinate between
particles 1 and 2. In the case of three particles in an S
state, Eq. (9) reduces to

+1
Vp(r) =—

As described in Ref. [15], the two-body interaction V can
be obtained &om the hypercentral potential V0 for three
bodies by using an Abel transform:

1 " d2 -
2 - dx

V(y) = —
2

x Vp(~x)
4y 0 dx2- y2

1+ —lim —x Vp(~x)
y ~—+0dx .

The MK application of the Lorentz transformation to
the wave function leads to the following relationship be-
tween the measured and the rest kame form factors:

Ga(Q') = (14)

G (Q') =
I
1+ Q & (RF)

I'
Q

4M~) — (1+,~~, )
(12)

for an %-particle system. This relationship has a unique
inverse, namely,

where p = 0.71 GeV, we obtain

G(RF) (kz)
&'+." )

where

1 1 1
pi p 4M

If we apply this inversion procedure to the dipole fit of
the proton form factor data, i.e. ,

,- A mathematical comment is appropriate at this point.
From Eqs. (12) and (13) it would at first appear that



51 BRIEF REPORTS 3515

G&( )(k2) is defined up to a finite value of k2 only,
namely, k = 4M&. However, it turns out that, for the
dipole parametrization, the singularity in the argument
of G@ in (13) is exactly canceled by the zero in the pre-
factor. More generally, if we assume that G@ —+ Q2
as we approach the singularity from the left, then this
cancellation also occurs.

Since the charge distribution associated with the form
factor (15) is

V (Me V)
+400-

-400-

0

o0

3 r (fm)

p(y) = &pe "",

OG@ (k) (1 1—6
Bk k2 —0 ~P 4MP)

(18)

This yields a value for the rms radius of 0.72 fm, as op-
posed to 0.81 fm for a purely nonrelativistic calculation.
The Darwin-Foldy term therefore contributes an addi-
tional 0.09 fm to the proton radius. Since NRQPM's
predict a much smaller proton size ( 0.5 fm) for the mass
spectrum to be consistent with experiment [8,17], we still
need to invoke the presence of mesons or attempt to ap-
ply a relativistic dynamical theory to resolve the discrep-
ancy between measured and calculated charge radii in a
constituent particle model.

Applying Eq. (4) to the exponential charge density
resulting &om the dipole form factor, we obtain the fol-
lowing expression for the hyperradial component of the
wave function (see [6]):

@(&)-

I

where Ki(+~) is a modified Bessel function.~3
The two-body potentials corresponding to both rela-

tivistic and nonrelativistic kinematics for the dipole form
factor have been calculated numerically using (ll), and
the results are shown in Fig. 1. The singularity at r = 0,
as well as the very flat behavior at large r, is evident for
both forms of kinematics. However, it is instructive to
examine the large r and the small r behavior of the po-
tential analytically too. Using (7), we can show (see [6])

it is clear that the efFect of using MK relativistic kinemat-
ics is simply to reduce the range of the charge distribution
with respect to that obtained purely nonrelativistically.
Obviously, this rather striking analytical result holds for
a dipole form factor only. However, the dipole fit is so
good (see, for example, Hohler et al. [16] for a compar-
ison) that parametrizations with even better y2 fits to
the data are unlikely to produce rest ft. arne charge distri-
butions which deviate much &om it. The mean square
radius of the dipole rest kame charge distribution is

-800-

FIG. 1. Quark-quark potentials derived from the dipole
form factor for nonrelativistic (~ ) and relativistic (0) kinetics.

that the long range behavior of Vp(r) is given by

n' 7~3'' 39 l
3 12' 16'2

)mq

whereas at short distances we have

(20)

( 3

(22)

Equation (20) shows that the nonconfining nature of
the potential derived from the proton form factor in a
constituent quark model is not altered by the use of rel-
ativistic kinematics, since no confinement occurs what-
ever the value of p'. In Appendix B in [6], where only
nonrelativistic kinematics was applied, we showed that
the leading term in Eq. (21) originates entirely in the
Q behavior of GE(Q ). However, we have now shown
that this term is independent of the form of kinematics.
This independence therefore provides an explanation of
why the singularity in the two-body potential at r = 0,
which is predicted by first order QCD, survives the use of
nonrelativistic kinematics, despite the fact that such
kinematics are surely inappropriate at small r. It remains
to be seen whether the use of a relativistic dynamics re-
sults in the correct order of the singularity, namely, 1/r
rather than 1/r

(
Vp(r) -+ V..„...„, + ~

——+ —p' lnp'r
~

. (,21)
3m' ( r2 3 )

Using (11),we find that the two-body quark-quark inter-
action has the following form at short distances:
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