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Using the general framework of quantum field theory, we derive basic equations of quantum field
kinetics. The main goal of this approach is to compute the observables associated with a quark-
gluon plasma at different stages of its evolution. We start by rewriting the integral equations for the
field correlators in different forms, depending on the relevant dynamical features at each different
stage. Next, two versions of perturbation expansion are considered. The first is best suited for
the calculation of electromagnetic emission from chaotic, but not equilibrated, strongly interacting
matter. The second version allows one to derive evolution equations, which are generalizations of
the familiar +CD evolution equations, and provide a basis for the calculation of the initial quark
and gluon distributions after the first hard interaction of the heavy ions.

PACS number(s): 12.38.Mh, 12.38.Bx, 25.75.+r

X. INTRODUCTION

The most ambitious goal of the RHIC and LHC pro-
grams is to discover a new state of the quark-gluon
plasma (QGP). Evidence for a QGP will require a self-
consistent analysis of many signals from all stages of
the collision: initial "hard" processes (7 ( 1/2 fm/c),
the QGP itself, and the "cool" hadronic gas (w 10—
30 fm/c). Thus, a continuous description for all 7 is of
more than of academic interest. This is a difBcult task,
and currently, each stage is described using a diferent
approach. Here, we primarily wish to design a formal-
ism that allows one to describe all stages of the collision,
including the transient ones, using the same technical
tools.

The existence of a QGP is inseparable from the process
of the creation of the matter it consists of. It is essen-
tially a quantum process. Therefore an exact definition
of the initial state of the system, and of the observables
in the expected final state, is required. Two diKculties
arise: (i) It is unclear how the stable nuclei of the initial
state are built up from quarks and gluons, and (ii) the
expected final state is imperfectly understood. Thus, the
theory should be adaptable enough to deal with these
uncertainties. It must bridge the logical gap between
the language used to describe stable nuclei and a QGP,
as is done phenomenologically in using an intermediate
free parton language. More specifically, in describing a
transition between the initial state of two stable, well-
shaped nuclei, and a system of free quarks and gluons,
we encounter one of the most painful problems of quan-
tum Geld theory: Initial and final states of the system
cannot be described in terms of the same language. Be-
fore the initial collision, the system is confined and the
vacuum is dominated by quark and gluon condensates,
while afterwards all the condensates are destroyed and
the quark-gluon dynamics is calculated with respect to
the perturbative vacuum. This vacuum itself is a product
of the collision.

We may begin the study with the assumption that a

high multiplicity of quarks and gluons has already been
created. However, this "plasma" may remain out of ther-
mal and chemical equilibrium for a long time, and may
not reach it at all [1]. In this case, the calculation of even
relatively simple signatures such as dilepton and photon
emission is a nontrivial problem. An overview of the
many publications on this subject reveals that the QGP
has generally been treated as a totally equilibrated sys-
tem, and that calculations are essentially based on detail
balance relationships.

Therefore, we may conclude that any reasonable theory
should rely neither on detail balance and thermal equilib-
rium, nor even on the existence of the same ground state
for all stages of the QGP evolution. The theory should
explicitly follow the temporal sequence of the stages, and
allow for smooth transitions between them. The proto-
type of such a theory was designed by Keldysh [2] for
nonequilibrium condensed matter systems with the aim
of deriving a quasiclassical kinetic equation.

The version of the Keldysh technique presented below,
and named "quantum field kinetics" (QFK), takes an in-
termediate position between the theory of scattering and
quantum field theory of the many-particle systems. It
contains both as its limits. On the one hand, it allows
one to calculate the inclusive cross sections and rates of
emission since the summation over all unobserved states
is implicit. Also, it provides the proper balance between
"real processes" and "radiative corrections" which results
in the cancellation of infrared divergences, and makes it
unnecessary to introduce artificial intermediate cutoBs.
On the other hand, QFK allows one to calculate local
observables for many-particle systems. As a by-product
it recovers microcausality, precisely in the form which
was used in axiomatic field theory.

For any particular problem, QFK-based calculations
always begin with the basic definition of observables in
terms of their Heisenberg operators, the Lagrangian of
the theory, and the density matrix of the initial state.
Several examples, motivated by the expected scenario in
heavy ion collisions and possible probes of the QGP, are
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described in Sec. II. One may express the observables
via field correlators with differently ordered field opera-
tors. The correlators are naturally arrayed in 2 x 2 ma-
trices, and we follow the original Keldysh idea of contour
ordering. The correlators obey a system of matrix equa-
tions of the Schwinger-Dyson type, which is easily derived
via functional methods. The equations are reviewed in
Sec. III C.

Starting with the initial form of the matrix equations,
it is straightforward to generate a formal perturbation
series for the probabilities of inclusive processes (instead
of amplitubes for exclusive ones) in powers of the coupling
constant. This series reproduces the Feynman expansion
diagram for diagram, except that now each vertex ac-
quires an additional dichotomic index. The way to sum
this perturbation series is always infI.uenced by the phys-
ically motivated renormalization conditions, which may
be different from case to case.

As a preliminary step for the future rearrangement of
the perturbation series, we begin, also following Keldysh,
with a rotation of the matrix basis. We introduce the re-
tarded and advanced Green functions of QCD along with
additional correlators which carry information about the
space of states and derive the equations they obey. In
Sec. IIID we show that the latter allow for a formal so-
lution which comes to be the first approximation of the
QCD evolution equations, if we renormalize the retarded
propagators according to the requirement of light cone
propagation.

It is important to note that instead of using the tradi-
tional method of the operator product expansion, we can
derive the evolution equations for the structure functions
of the deep inelastic scattering (DIS) using the language

I

of QFK. This language avoids the parton phenomenology
which is needed when DIS structure functions are used
for the computation of the quark and gluon distributions
in first hard collision of the two nuclei. Thus, QFK pro-
vides a firmer footing for the description of heavy ion
collisions.

In Sec. IV we discuss different versions of the perturba-
tion expansion. We show that the ordinary perturbation
series in powers of the coupling constant is adequate for
calculations of systems with slowly varying macroscopic
parameters. We describe the scheme using the example
of dilepton emission from the QGP. An expansion which
is suitable for the violent impact of relativistic composite
systems requires another kind of expansion, one which
preserves the leading light cone singularity of the propa-
gators.

II. SIGNALS FROM THE QUARK-GLUON
PLASMA

In this section we begin the design of a technique which
will allow us to calculate different observables associated
with the QGP. The latter should be defined unambigu-
ously at both the theoretical and apparatus levels. We
shall try to trace their origin using only the basic princi-
ples of quantum mechanics for as long as is possible. If
successful, we may then express the signals in terms of
the parameters of the emitting system. All the systems
we shall study are described by the standard QCD La-
grangian. In order to deal with electromagnetic probes
we include the interaction of charged quarks q(x) and
leptons g(x) with the photon field A~(x) in the total
renormalized interaction Lagrangian

&- (*) = &(*)~"&(z)& (*)+)..q'(*)~"& (x)q*(*)+g.).q'(*)t;,~"B (z)q'( )
q,i

+g„f s,B"B (x)B„(x)B'(x)+ (g„/4)f g,f hB"(x)B, (z)B„(x)B"(x), (2.1)

where B (x) is the gluon field, and g„is a renormalized strong coupling constant. Other notation is commonly used,
and requires no comment. The standard counterterms which will be used for renormalization are as follows:

CcT (z) = B"(g„„B—0„0„+An„n„)B"—(Zi —1)g„f~s,8"B"(x)B„(x)B'(x)
2

—(Z4 —1) "f g,f sh, B—q(x)B, (x)Bg(z)B"(z) + (Zg —l)q, (x)ip"O„q,(x)

+ (Zi p —1)g, q, (x)t;,p"B„(x)q~ (x). (2.2)

Here, all (Z —1)'s are considered as the small parame-
ters. In what follows we shall either use covariant gauges
in the lowest-order calculations when the ghosts do not
contribute yet, or shall work in the axial gauge B~n~ = 0,
where they are absent.

The Lagrangian (2.1) and (2.2) gives rise to the ordi-
nary S matrix in the initial state interaction picture,

The initial state for any system can be described by the
density matrix p@~D. It is formed due to strong inter-
actions only, and we shall specify it later. When the in-
clusive cross sections of photon and dilepton emission are
chosen as the observables, this density operator should be
augmented by the projector on the initial vacuum state
of photons and leptons,

S = TexP z d xZIIIg x ) (2.3) & = pwcD I3 lo.~)(o.~l (2.4)

which is considered to be a limit of the evolution operator
that governs the dynamics of Heisenberg observables.

and we assume that the QGP remains transparent for
photons and leptons throughout its history. The ampli-
tudes of the transition from one initial state lin) to a final
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one containing a photon or dilepton read as

(Xlc(k A)Slin) or @lb(2)a(1)slin) (2.5)

where c(k, A) and a(J) = a(kg, cry) and b( J) are the pho-
ton, electron, and positron annihilation operators. Sum-
ming the squared moduli of these amplitudes over a com-
plete set of uncontrolled states ]A), and averaging over
the initial ensemble, we Bnd the inclusive spectra of pho-
tons and dileptons,

= ) Spp;„Stet(k,A)c(k, A)S, (2.6)

k = "" "(—k)dkd4x 2(2~) s (2.8)

where A: ) 0, and the polarization tensor

hA~(x) bA" (y)

(2 9)

is the Fourier transform of the product of two Heisen-
berg electromagnetic currents averaged with the density
matrix p@gD..

) Spp;„Stat(l)bt(2)b(2) a(1)S. (2.7)
1 2

CJI i0'2

It is easy now to commute the Fock operators with S and
St. Due to the @ED vacuum projector in the density
matrix (2.4), only the commutators survive and Eq. (2.6)
takes the form

is a kind of photon Wightman function averaged. over
p~ D. The operator A(x) of the initial state interaction
picture and the Heisenberg operator A(x) are connected
via relations similar to (2.11). In the absence of radiative
corrections to the photon propagation, dynamical equa-
tions which will be derived in the next section will allow
us to rewrite the photon correlator in Eq. (2.12) as

~"o(k) = —&-t(k)~io (k)& ~-(k) = —~io" (k)/[k l

(2.14)

In order to derive Eqs. (2.8) and (2.12) we have assumed
that an explicit separation of long-range and short-range
scales is possible, and. have introduced the emission rates
per unit volume, instead of the inclusive cross sections.

The way we proceeded above demonstrates the very
simple and general principle of the formulation of the
problem: Observables like cross sections or the rates of
emission must be expressed in terms of specifically or-
dered products of the Heisenberg operators. If we change
the photon and lepton creation and annihilation opera-
tors in Eqs. (2.5)—(2.7) for those of quarks or gluons, and
replace the p;„ofthe QGP by a density matrix for the
two colliding nuclei, we obtain the starting point for a
computation of the quark and gluon distributions after
the first hard collision.

We now require a formalism which will allow us to cal-
culate these quantities. We are to keep in mind that all
the operators are driven by 2;„t,and that all the infor-
mation about the initial state of the system is hidden in
p;„.Nothing else is needed to solve the problem.

bSt bS
~10 (x y) = ' — = i(j"(x)j (y)) (2 »)

III. EQUATIONS OF lXELATIVISTIC QUANTUM
FIELD KINETICS

The Heisenberg current (as any other local Heisenberg
operator) can be written down in the two equivalent ways

j"(x) = StT[j "(x)S]—:Tt[j "(x)St]S (2.11)

o o X+, 2 Lp (ki k2) ydN+-
dkidk2d4x 4(2vr) s (2.12)

where k = ki + k2 and I""= k"k~ + k"k" —g" (k k
m2) is the polarization sum of the lepton spinors. The
electromagnetic correlator

~io(—") = ' f~'(* —u)—
x(Tt[A"(x)St]T[A"(y)S])e '"~ "l (2.13)

where j "(x) = (1/2) g,. e~[q, (x)p", q;(x)] is the opera-
tor of the electromagnetic current in the initial state in-
teraction picture. Relations such as (2.11) are extremely
important as they allow one to keep the initial order of
the operators through all stages of the calculations. This
order is strictly prescribed by the definition of the ob-
servables and may not be changed safely, except under
very special circumstances.

Now the dilepton rate of emission (2.7) takes the form

A. Basic defi.nitiens

G io(x, y) = —i(q(x) q(y)),
&oi(x y)= i(q(y)q(x))
G-(* y)= —(T[q(*)q(y)])
G»(* y) = —i(T'[q(x) q(y)]) (3.1)

where T and Tt are the symbols of the time and antitime
ordering. They may be rewritten in a unified form

&~a(x, y) = —i(T.[q(»)q(»)]) (3.2)

in terms of a special ordering T, along a contour C =
Cp + C1, the doubled time axis, with T ordering on Cp
and Tt ordering on C1. The operators labeled by 1 are
Tt ordered, and. stand before the T-ordered operators
labeled by 0. Recalling that

q(x) = StT[q(x) S] =—Tt [q (x) S]S, (3.3)

In this study, the calculation of observables such as the
emission rate is based on work by Keldysh [2]. It incor-
porates a specific set of exact (dressed) field correlators.
These correlators are products of Heisenberg operators,
averaged with the density matrix of the initial state. For
the quark Beld they read
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»(2: y) = —'(T.[&(»)&(»)~.]) (3.4)

where, by definition, the internal variables of S lie on C0,
and those of St on Ci.

The boson Green functions are built in the same man-
ner; i.e. , for gluon field B(x) and photon field A(x), we
have

we may introduce the formal operator S = StS, and
rewrite (3.2) using the operators of the initial state in-
teraction picture

state that precedes these processes consists of two sta-
ble, well-shaped nuclei moving along opposite directions
of the light cone, and the density matrix for each of them
is the same as in deep inelastic e-p or pA scattering. At
this stage, the most interesting observables are the quark
and gluon distributions after the first interaction that de-
stroyed the nucleons. The QGP domain begins somewhat
later when the distributions are already chaotized, and
may be described by one-particle distributions. The most
general density matrix which simulates any given form of
a one-particle distribution is of the following form:

(* y) = —(T.[&(»)&(y )~.])
~»(~, y) = —i(T.[&(»)+(yii)+ ]),

(3.5)
(3.6)

E

u9i

—f~ (N,p}a.(N, p}a~ (N, p}
9 (3.10)

where the vector and color indices have been suppressed.
We do not consider the path C to be extended to com-

plex values of the time t or to be closed. Moreover, to
some extent we take a step backwards by restoring many
elements of the old-fashioned perturbation theory which
deals with retarded and advanced propagators, and in-
corporates microcausality in the sense of Yang-Feldman
equations [3]. The C-contour technique is only a conve-
nient trick to do this in an economical way. Similarly,
the T-ordered Green function is the sole carrier of phys-
ical information only under very special circumstances.
Indeed, by definition

Coo(x, y) = —iTr(pSfT[q(x)q(y)S]) . (3.7)

If the density matrix of the system, p, corresponds to
the exact stationary ground state, then in the presence
of an interaction the state vector can acquire only a phase
factor, and we obtain Feynman's Green function

—'T pT[~(*)V(y) ~]
(~)p

(3.S)

As we shall see in a while, the Green functions Grpp(x, y)
and Gz(x, y) even obey difFerent integral equations.

B. Density matrix of the initial state

pQcD = 10qcD)(0c}cDl. (3.9)

The various density matrices which we shall use later
for the computation of quark and gluon production in
the first hard AA collision, and for the rates of the pho-
ton and dilepton emission from the QGP, emerge &om
the following scenario for the heavy ion collision: In the
initial stages of a collision at RHIC or LHC energies
(w 0.1 fm/c), hard impacts take place. The initial

The choice of the density matrix specifies the physical
phenomenon under consideration. If the initial state of
the system consists of a only few excitations of the vac-
uum, then we have the density matrix of a pure state.
In this case we are dealing with the well-known picture
of scattering. Eventually, this situation is described by a
certain set of vacuum expectation values, and the corre-
sponding density matrix of the pure ground state is

where N labels the space cells at the hypersurface of
the initial data, and n~ (N, p) = a~t (K, p) a~ (N, p) is an
operator of the number of partons of type j and quantum
number p in the Nth cell. Thus, we completely neglect all
correlation effects in the initial phase space. Introduction
of the cells is necessary only for extended objects without
long-scale quantum coherence. For a single hadron they
are not needed.

The density matrix of the Gibbs ensemble of noninter-
acting quarks and gluons against a hydrodynamic back-
ground is of the same kind as (3.10), and obeys the ad-
ditional condition of being an entropy extremum. Intro-
ducing the local four-velocity of continuous media u" (x)
we may write

exp[( +NiiN + PNQ~)/TN] (3 11)pgeD = .".Sp(exp[( —Pivuiv + vs Q~)/T~])

G(o)o, (s) = 2vri(P+ —m)8(+so)b(s —m ),
(o) P+ m() =+..

D(p)o,"(a) = —2mid" (s)8(Sap)b(s ),
D(o)„.

( ) ~ ( )
0011 g ~ 09 (3.12)

where the projector di""(a) depends upon the choice of
gauge. Usually, the bare Green functions of the ensemble
are of the form

G»(s) = G~a(s) + Gp(s),
D~~(s) = D~~""(a) + Dp" (s), (3.»)

where the additional terms originating from the p;„,
Gp(s) = 2vri(P+ m)b(a —m )

Ã(") '+'( )+0(-") ' '( )1

Dp" (s) = —2vrid""(s)b(s )

X[()(ao)f'+'(s) + 0(—so)&( '(a)] (3.14)

where Pg and Qiv are the total four-momentum and
(baryonic) charge of free quarks and gluons at temper-
ature TN, and p, N is the chemical potential in a small
three-volume VN on the hypersurface of the initial data.

The explicit form of the "bare" field correlators which
are the basis of the perturbation theory is quite evident:
The "vacuum" field correlators are of the standard form
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manifestly contain the Fermi or Bose occupation num-
bers nial or f&+l, respectively. They are the diagonal el-
ements of the density matrix. All theorems of the Wick
type, which are necessary for the calculations, can be
proved easily for density matrices like (3.10) and (3.11).

C. Schwinger-Dyson equations for QFK

(
.

) (,)P+S+g [ '(* y)]Sg
SQ,P goh8„"(zp)

(3.17)

which is the functional derivative of the inverse Green
function of the quark field with respect to the "external"
gluon field 8(x).

The matrix of the photon correlators obeys similar
equations

Except for the matrix form, the Schwinger-Dyson
equations for the Heisenberg correlators remain the same
as in any other technique. An elegant and universal way
to derive them which does not rely on the initial diagram
expansion can be found in Ref. [4]. For the quark field
these equations are of the form

DAB = DAB + ) QAR o AIRS o +SB,
RS

where the electromagnetic polarization operator is

(3.is)

GAB —GAB + 5' GAR o ERS o GSB.
RS

'PAB(x, y) = —i(—1) + g„) (—1) + d(dilly"
R,S=O

Here the convolution sign stands for convolution in co-
ordinate space and for the usual product in momentum
space (providing the system can be treated as homoge-
neous in space and time). Indeed, the only tool used to
derive these equations was the Wick theorem for the or-
dered products of the operators. The type of ordering is
inessential [4]. Explicit expressions for the self-energies
are obtained automatically in the course of the derivation
of the Schwinger-Dyson equations. The quark self-energy
matrix reads

xGAR(x ()ERs B(( g' y)GsA(g x) (3.19)

and where the electromagnetic vertex

@A (
.

) (
1)R+S+P~[G '(* y)]RS

RSP X, g, Z (3.20)

ES' o G.G o (3.21)

is dressed by the strong interaction. The latter in turn
obeys the equation

ZAB(x, y) = i(—1)"+Bg„') (—1)"+' d$dqt q"
R,S=o

&&GAR(x ()rRB,s(& y'n)DsA, & (n x) .

(3.i6)
DAB = DAB+ ) DAR o IIRS o DSB,

RS
(3.22)

with a four-fermion vertex K.
The gluon field correlators also obey similar equations

The form the strong qqB vertex that appears is where the gluon self-energy has two terms:

IIPv, ab( )
. 2 ) (

1)A+B+R+S

R,S=o
dgd&T &"t G (x, g)r"' ((,~;y)GsA(~, x)

( ~ 1 ) AR (~ ~ ) RSB b'f'(~ I y) . SA (~ I') (3 23)

The three-gluon vertex (in coordinate representation) is
defined as

be;vP
~vP~

( ) (
1)R+S+P [ ( & y)]RS

bcf,RSP g„h8f(zp)

(3.24)

We have omitted the trivial term with the four-gluon
vertex in Eq. (3.23). The explicit coordinate expression
for the bare three-gluon vertex is

~~P~
( ) (

1)R+s+2 (o) (3 25)b~f, RSP

where the inverse Green function D~&~ denotes a lin-

earized differential operator of the wave equation for the
gluon in an external gluon field. The only importance
of three-gluon vertex in this form is that it displays its
local nature, VABC(x, y, z) 8ABSACS(x —y)8(x —z). In
momentum representation it may be written as

&~Bc,.b. (I i, p~, ps) = ig-~AB~Acf" [g —~(I i —S 2)'
+g~'(Iz —Ss) +g' (us —Si)~] .

(3.26)

The four types of operator ordering which enter
Eqs. (3.1) are not linearly independent; i.e. , there ex-
ists a set of relations between the field correlators and
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between the self-energies:

Gop + Gll —Glp + Gpl

~00 + ~11 — ~10 ~01
Doo + Dll ——Dlo + Dol

00 + II11 ——II]0 —II01 ~ (3.27)

These indicate that only three elements of the 2 x 2 ma-
trices G, Z, etc. are independent. To remove the overde-
termination let us introduce the new functions

G. t = Goo —Gol,
= Goo —Glo,

Gl = Goo + Gll,
~ret —~00 + ~01

—~00+ ~io,
~l ~00 + ~11 (3.2S)

GB, Z=B 'ZR, R= —1 1

(3.29)

In this new representation, the matrices of the field cor-
relators and self-energies have a triangle form

0 G d

Gret G1
Zl Z„t
Z.d. 0 (3.3O)

as well as their analogs for bosonic correlators. One of
the possible ways to exclude the extraneous quantities is
to use the unitary transformation [2]

in an integro-differential kinetic equation for the density
Gl in phase space. It is differential with respect to the
long scale, and integral with respect to the short scale.

In relativistic Boltzmann-type kinetic theories one
encounters speci6c difhculties: First, the phase-space
Wigner distributions are no longer positive definite, and
thus do not carry any direct physical information. Sec-
ond, for phenomena like heavy ion collisions, the two-
scale dynamics is not evident a priori. Thus, it is safer
to accept the integral equations (3.31)—(3.33) as they are;
however, in this form they are badly suited for practical
calculations. In a short while we shall show that the exact
equations (3.31)—(3.33) can be solved (at least formally).

D. Formal solution of the integral equations

The solution we shall look at for now is equivalent to
the rearrangement of the perturbation series for observ-
ables. It is useful when specific features of the nonequi-
librium system must be taken into account. First, let us
introduce two new correlators

Go = Gret Gadv = Glo G01 ) (3.34)

which coincide with the anticommutator of the quark
fields and thus disappear outside the light cone, and

~0 = ~..t —~ d = —~10 —~oi, (3.35)

which is the commutator of two fermion sources and has
the same causal properties as (3.34). The integral equa-
tion for Go may be derived by taking the difference of
Eqs. (3.31) and (3.33):

Applying transformation (3.29) to the matrix Schwinger-
Dyson equations (3.15) we may rewrite them in the fol-
lowing form:

GP + G,et o pret o GP + GP o gadv o Gadv

+G..to~ooC d . (3.36)

G'ret —Gret + Gret ~ret G'rety

G'adv Gadv + Gadv ~adv G'advy

(3.31)

(3.32)

The sum and the difFerence of Eqs. (3.33) and (3.36) give
corresponding equations for the off-diagonal correlators
Glo and Gol.

G']. —Gl + Gret 0 ~ret 0 G 1 + Gl 0 gadv 0 G'adv

+G, togloc d . (3.33)

I

G'01 G01 + Gret o ~ret G 01, , 10 + G01 ~adv +adv
10 10 10

—G to+01OG (3.37)

There are now two ways to proceed with a further
study of Eq. (3.33). If, as typical of condensed mat-
ter systems, one has two well-separated short- and long-
range scales, then it is reasonable to look for a kind
of differential kinetic equation [2]. The time and space
derivatives on its left-hand side (LHS) correspond to slow
variations of the collective parameters, while the short-
distance dynamics is absorbed into the collision term.
The existence of two separate scales here is considered
part of the external physical input. It must be either
self-evident, or be proved by a separate study (confirmed
by observations). In order to derive the quasiclassical
kinetic equation, one acts on Eq. (3.33) separately from
the left and from the right with the differential operator
of the free wave equation, and takes the difference of the
two resulting equations. Further, it is useful to trans-
form G 1 to Wigner variables, which effectively separate
the short- and long-range scales. This procedure results

Since Eq. (3.31) for the retarded propagator may be iden-
tically rewritten in the same form

G'ret —Gret + Gret ~adv G'adv + Gret ~ret G'ret

G, t o gadv o Gadv) (3.38)

we may use Eq. (3.37) and derive the corresponding equa-
tions for the T- and Tt-ordered propagators:

C..= G..+ G...o Z..t o C..
11 11 11

+Goo o Z q o G q„+G„to Zll o G g . (3.39)
11 00

This chain of routine transformations reduces the equa-
tions for all elements of the matrix correlator G~~ to
a unified form. On the one hand, this representation
shows that linear relations between the correlators (or,
explicitly, difFerent types of orderings) hold even for the
equations that the correlators obey. On the other hand,



3460 A. MAKHLIN

this representation of the equations singles out the role
of retarded and advanced propagators over all other cor-
relators. In order to understand why their role is special,
let us transform them further, and begin by rewriting of
Eq. (3.33) for the density of states Ci identically as

(1 —G„to Zret) o C i ——Gi o (1 + Keg» o Qeg»)

+G, togioQ g . (340)

SinCe Gret o ~ret o Gret Gret Gret &
lt is easy tO Show

that

dard perturbative expansion in powers of the coupling
constant. Equation (3.46) will be corrupted also.

A more careful examination of Eqs. (3.45) and (3.46)
shows that all four dressed correlators G~~ can be found
as the formal solution of the retarded Cauchy problem,
with bare field correlators as initial data and the self-
energies as the sources. Indeed, integrating the first term
of each these equations twice by parts, we find, for all four
elements of Gg~,

G,.(x, r) = J dr&~dr~"~G .(x.,.t)p"G. (t, g)g"

(1+Q..t o ~:t)(1—G... o g..t) = ] .

Further, we have the two relations

(3.41)

x Q.~.(g, y), (3.47)

xo g (q, r) —f d id qo. &(. eTz. ((, q)

(] + pe~» o Qeg») = G(pI o Qad»

(1+Q„,0 ~ret) Qret o G(pI (3.42)
o-(~, r) -fdic,,'~'d»'."'&,.c(~, i)w"G-, N, n)w

where

G(pI(x) =i P —m, G(pI(x) = i P——m (3.43)

are the left and right difFerential operators of the Dirac
equation, respectively. Now, multiplying Eq. (3.40) by
(1 + Q„to Z«t) &om the left, we find the final form of
the equation we are looking for:

Gg ——G,et o G(o) o Gx o G(o) o G~g~ + G,et o Zg o G

(3.44)

(3.48)

At first glance it is ambiguous to use the local differential
operator Gp in Eq. (3.48) without indication of the
direction it acts in. Nevertheless, as follows from (3.42),

C„to G(o) o G~g~ —G,et o G(o) o G~g~

=(1+Q, toZ t)oQ g —Q, to(1+2 g oQ g )

Go+ G„to Zo o G &
——0,

Repeating these transformations for the other equations,
we obtain the corresponding forms that are most conve-
nient for subsequent analysis:

C&0 ——Gret o G(0) o G&0 o G(o) o G~g~

Gret 0 gy0 0 GBtdv01
(3.45)

G- = Gret o G ' o G- o G ' o Gaa~

+G„toZ»oG g .
00

(3.46)

While Eqs. (3.37) and (3.39) are standard integral
equations which have an unknown function on both sides,
after transformation the unknown function appears only
on the I HS, and we may consider Eqs. (3.44)—(3.46) as
the formal representation of the required solution.

At this point, the first and the most naive idea is
to ignore the arrows indicating the direction the dif-
ferential operators act in, and to rewrite Eqs. (3.45)
and (3.46) in momentuin representation. Then the first
term in each of Eqs. (3.45) will contain the expression
(p —m )h(p —m ), which equals zero. It reflects the
simple fact that the off-diagonal correlators Gqo and Goi
are solutions of the homogeneous Dirac equation. How-
ever, this approach does not appear to be suKciently con-
sistent: We would lose the identity between Eqs. (3.45)
and (3.37), and make it impossible to generate the stan-

and both directions lead to the same answer.
The corresponding equations for boson fields are ob-

tained by replacing G~~ —+ D~~ and E~~ —+ II~~, and

p"dZ„m Q dE„in Eqs. (3.34)—(3.48).
Equations (3.47) and (3.48) as well as their copies for

boson fields are the basic equations of relativistic quan-
tum field kinetics. They are identical to the initial system
of Schwinger-Dyson equations, but have the advantage
that the time direction is explicitly singled out. There
are two terms of different origin that contribute to any
correlator (and, consequently, to any observable). The
first term retains some memory about the initial data.
The length of time for which this memory is kept de-
pends on the retarded and advanced propagators. The
second term describes the current dynamics of the sys-
tem. A comparison of these two contribution allows one
to judge if the system indeed has two scales.

IV. PERTUKBATIDN THEDBY' FDK QUANTUM
FIELI3 KINETICS

Any reasonable diagram technique should aHow one to
assemble certain subsequences of the bare diagrams into
larger pieces, viz. , the irreducible elements of the skeleton
diagrams, such as exact Green functions, self-energies,
and vertices. The initial standard form of the Schwinger-
Dyson equations (3.15), (3.16) and (3.22), (3.23) is an
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example of such a selective summation. To derive these
equations we have employed the functional approach, but
any dressed Geld correlator, self-energy, or vertex con-
tains the infinite series of its perturbative expansion in
powers of the coupling constant. We can reconstruct the
formal perturbation series starting from the skeleton form
of the exact Schwinger-Dyson equations. However, it is
not expedient to proceed formally and we shall not at-
tempt it here. For example, an explicit series of radiative
corrections to the free asymptotic propagation is never
retained in the calculations. In the course of renormal-
ization this series is absorbed into the physical mass of
the Geld. The theory of deep inelastic e-p scattering that
is based on the operator product expansion (OPE) se-
lectively sums perturbation series in order to emphasize
the dominance of light cone dynamics, and introduces its
own irreducible elements, the structure functions. Just
as for the masses of free particles, they are taken from
the data, and one should not try to obtain them directly
from a perturbative expansion. Thus a physical (versus
mathematical) study begins when we make the decision
on how to sum the perturbation series or, equivalently,
what skeleton elements are not to be expanded in a series.
The final choice is a matter of taste.

We wish now to perform the perturbative expansion of
the skeleton equations (3.15), (3.18), and (3.22). Their
matrix form accounts for the possible instability of the
initial ground state with respect to the interaction, but
their mathematical form is precisely the same as in stan-
dard field theory where the initial ensemble corresponds
to a pure and stable ground state. Any other structure
would be surprising, as only the ordering of the opera-
tors, regardless of its type, is important. The presence
of additional indices does not change the topology of the
dlagI ams.

Equations (3.15), (3.18), and (3.22), supplemented by
the expressions for the self-energies, can be iterated in a
standard way, giving rise to a formal perturbation series
in the powers of the coupling constant. Graphically, the
series reproduces the Feynman diagram expansion with
only one di8'erence: Each vertex acquires an additional
index. This kind of expansion proves useful when we
solve local problems, such as photon or dilepton emission
&om a system with slowly varying macroscopic param-
eters. These parameters are built into the definition of
the density matrix and should not change over the time
of emission.

We note, however, that this direct expansion is not
I

very rewarding when the composite system undergoes
a strong and short impact. Its parameters will change
dramatically within a very short time, and the memory
about the density matrix of the true initial state is obvi-
ously lost. It is then profitable to rearrange Eqs. (3.18)
and (3.22) [for example, "rotating" the basis of correla-
tors, as in Eq. (3.30)j in order to emphasize other details
of the dynamical process. Since we are interested in pro-
cesses on the light cone, the leading singularity of the
retarded propagators is the main element which should
be preserved in course of renormalization.

A. Perturbation theory for the local emission
problem

The quantity which we shall choose to calculate in this
section is the observable rate of the electromagnetic emis-
sion (real p or virtual p*). It is expressed via the tensor
of the electromagnetic polarization 'Pgo (—k) of the QGP,
given by Eq. (3.19). Let us expand it in a perturbation
series up to order o, The polarization tensor 7 ~ con-
tains three irreducible elements: two quark correlators
and the electromagnetic vertex dressed by the strong in-
teraction. They are given via their functional definitions,
and obey the inhomogeneous integral equations (3.15)—
(3.21). The free terms of these equations correspond to
the bare quark correlators, averaged over the ensemble
represented by the density matrix (of noninteracting par-
ticles as a first approximation). The density matrix in-
troduces occupation numbers which define the weights of
initial and final states for elementary processes.

The Born term emerges when all the irreducible ele-
ments are considered as bare:

Pg., (—k) =~e'N. f p"Gio(p —k)p Goi{p)

(4.1)

To obtain corrections of order o., to the electromagnetic
polarization, one should begin by iterating Eqs. (3.15)—
(3.21) to the same order. This iteration assumes that
we write down Eq. (3.15) for the correlators with the
bare Green functions and with self-energies computed to
the first nonvanishing order. The vertex is considered to
be bare. As a result of these approximations, we obtain
the Grst group of radiative corrections. A second group
appears if we keep the field correlators bare, but include
the erst-order corrections to the vertex. Eventually, such
an expansion results in the following expression:

'Pio" (—k) = ie N,
4 1

p"Gio(p —k)p Goi(p) + e g N, CF ) (—1) +
(2ir) 4

R,S=0
pd p, A

(2~) s DsR(q)&"GiR(p —k)y GRo(p+ q —k)&"Gos(p+ q)quasi(p), (4.2)

where the correlators Crip and Crp1 should be taken in
the form

G01,10 +01,10 +ret~01, 10Gadv + Gret~ret+01, 10

++01,10~adv +adv (4 3)

All diagrams contributing to 'Pio( —k) up to order n,
are depicted in Fig. 1. The sum of these diagrams is
the squared modulus of the coherent sum of amplitudes
of the real processes of photon emission with first virtual
corrections. These amplitudes are given in Fig. 2. The
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artificial intermediate cutoffs. Formally, for any given o,,
order the collinear divergences survive, exactly because
the phase space of the initial and final states is popu-
lated, and the balance required by the Kinoshita-Lee-
Nauenberg theorem does not hold. However, the physi-
cal origin of these divergences allows one to conclude that
they are shielded by the quark and gluon distributions:
Infinitely long &ee propagation in the dense system is
impossible.

B. Perturbation expansion for light cone processes

FIG. 1. Diagrams for the rate of dilepton production. The
dashed line crosses the functions representing densities of the
initial or final states. Arrows label the retarded and advanced
propagators and show the latest time.

first process is the direct annihilation of a bare qq pair
to a (virtual) photon; the next three diagrams are radia-
tive contributions to the same process. Next, there follow
four diagrams of qq annihilation accompanied by gluon
emission and absorption, and two diagrams for Compton
scattering of a quark (or antiquark) and a gluon with
photon emission. The first loop and the last four loops
in Fig. 1 are due to real processes, while the others are
due to vertex and mass corrections. The correlators cor-
responding to initial or final states are marked by dashed
lines. Lines with arrows correspond to retarded propa-
gators, and arrows inside the loops show retarded self-
energies.

A complete calculation is the subject of a separate pa-
per. Here we shall only outline the main ideas and re-
sults. The technique of QFK allows one to perform all
calculations without the assumption of thermal equilib-
rium. Not only can the statistical weights of the initial
and final states of the real processes be of arbitrary form
(though compatible with slowly varying macroscopic pa-
rameters), but we can also And all the virtual corrections
consistently with the same quark-gluon background dis-
tributions. The general rule is that infrared divergences
caused by the integration over the low-momenta domain
(of the Bloch-Nordsieck type) cancel out between real
and virtual processes, despite the nontrivial population
of phase space. It is not even necessary to introduce any

As was already mentioned in Secs. I and II, QFK
is equally applicable to the description of any inclusive
processes, including those dominated by light cone dy-
namics. These are deep inelastic e-p scattering or deep
inelastic collisions of two hadrons or nuclei. In this case
the inclusive cross section of DIS is expressed via the
same electromagnetic polarization tensor, but the kine-
matic region is different.

The cross section for inclusive quark and gluon pro-
duction, which might initiate evolution towards a QGP,
is also expressed via the off-diagonal self-energies of the
colliding system. For example, for gluon production, we
have

g = ) Spp;„Stet(p,A, a)c(p, A, a)S
dp

—ip(x —y})~ d4 d4 (Al (A)
[

llol, gal/(
)j

(2vr) 2p
A, a

(4.4)

where the gluon polarization tensor II01 is obtained by
averaging with the density matrix of the system of the
two colliding nuclei. The latter is the direct product of
two independent density matrices for each nucleus. Thus,
to a first approximation,

Iloi (p) = ig() 4 8(k+ q —p)

xV",~ (k+ q, —q, —k)DO(il„„~(k)

xv~, ,~~(—k —q, q, k)DIO~/~(q) + (A m B)),
(4.5)

where each of the gluon field correlators is averaged with
the density matrix of one nucleus A or B'. The prec-
ollision dynamics of the field correlators Do(il&&, (k) and

Die &, &(q) is naturally described by equations similar to
)

(3.46). The conditions for nuclear propagation along the
light cone allows us to suggest that the retarded prop-
agators contribute to the process mainly via their light
cone singularity, and can be used without radiative cor-
rections as a first approximation. In this case we may
use the form

FIG. 2. Processes participating in the dilepton production
in the o., order. Notation the same as in Fig. 1. (&} (J)@ (~}* (J) (J) (J)

001,10 D01,10 + D01,10 ret 01,10 adv (4 6)
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where Do& io describes the population of the gluon states(J)~

used as initial data (at, for example, some scale Qo),
and Do& io is the density of gluon states in the initially
unpopulated continuum.

The full description of the problem and the calcula-
tions is the subject of a separate paper. Only the main
ideas and results will be outlined here. For the sake of
simplicity, let us consider the case of pure glue dynam-
ics. In that case, Eq. (4.5) yields the following evolution
equation:

lloyd (p) = —i&.' V",f (p, k —p, k)

x [Dret(k)IIio(k)Dam~(k)]

xV~, ~, ( p, p ——k, —k)Dio f, f(k —p). (4.7)

If this equation is rewritten in light cone variables, and
projected onto the specific measurement of the unpolar-
ized e-p DIS experiment, it reproduces the well-known
Altarelli-Parisi evolution equation for the gluon struc-
ture function. If tvi(p) is defined as the scalar coefficient
in the decomposition

p"pII""(p) = ~" ~ (p) + ~ (p) +
p2

then the gluon structure function of the leading logarith-
mic approximation reads

G(-, Q') = G(-, Q.')
v...~++",
(2ir) '

ip "~i"(p)
pt p

( 2)2 (4.9)

V. CONCLUSIONS

This paper presents a formalism which allows us to
solve various problems of the QGP dynamics using the
same technique. On the one hand, it allows one to cal-
culate the rates of such processes as photon and dilepton
emission, or heavy quark production in the QGP. On the
other hand, it is a good tool for the study of extremely
nonequilibrium processes, such as the first hard collision
of two heavy ions.

From the most general point of view, this technique

where G(x, Qo2) is the phenomenologic "initial" distribu-
tion at the scale Qo.

Here, the novel point is that equations like (4.7) are of
the evolution type, even in their initial coordinate form.
Further, they may be derived without reference to any
particular process. The equations are of a ladder form,
and the ordering of the ladder cells by the Feynman x and
virtuality Q is a consequence of the initial retarded or-
dering: Lower 2: and higher Q correspond to later times
in the evolution. A parallel study of the two processes,
p-e DIS, and p-p or A-A collisions, shows that one may
use the new evolution equations to obtain quantities [like

(p)] which are common to these two processes. Fur-
ther, one avoids intermediate parton language.

is capable of replacing the standard Feynman approach,
in any situation where the latter is applicable. In QFK,
we begin with the density matrix generated by the Fock
operators from the pure vacuum state of noninteracting
fields. The reader can easily rewrite some chapters from
a standard textbook on QED in terms of this approach
as an exercise. In some points the new approach is phys-
ically more intuitive than the Feynman technique: At
the tree level, retarded propagators appear naturally in
every place where we usually put them in by hand (fol-
lowing common sense). The cutting rules and unitarity
come to be a trivial consequence of the matrix structure:
Both S and St contribute to any observable from the
very beginning.

For the case of true thermal equilibrium, this kinetic
approach also reproduces all that is obtainable from the
standard Matsubara formalism. All global relations like
the fluctuation-dissipation theorem come to be a trivial
consequence of thermal equilibrium and the matrix struc-
ture of the Schwinger-Dyson equations, but none of the
global relations are used in the definition of the observ-
ables. For the Gibbs ensemble, QFK describes dynamical
fluctuations.

The essential new point is that the theory is not con-
fi.ned to a specific form of the one-particle distribution.
The plasma may be far out of thermal and/or chemical
equilibrium. Nevertheless, we can consider both real and
virtual processes in a self-consistent manner. Usually this
consistency is lost in computer simulations of the emis-
sion from the nonequilibrium plasma [5]: Only tree level
matrix elements are taken into account. In the next pa-
per we shall give an example: For dilepton emission from
a nonequilibrium "plasma, " a self-consistent account of
the radiative corrections changes the answers from what
is obtained using a naive cutoff of the infrared singular-
ities. We have also found a significant difference in the
case of an equilibrated plasma.

The QFK approach allows one to formulate new princi-
ples for computing the distributions of quarks and gluons
created in the first hard interaction of two heavy ions at
high energies. It essentially employs an initial resum-
mation of the perturbation series for the probabilities,
and allows one to describe two different high-energy pro-
cesses, viz. , e-p scattering and nuclear interactions, in
the same terms. These processes are considered as two
versions of the same phenomenon: deeply inelastic scat-
tering of composite systems. The calculations can be
performed without reference to parton phenomenology.
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