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The Glauber approximation is used to calculate the contribution of nucleon correlations in high-
energy A(e, e'N) reactions. When the excitatiou energy of the residual nucleus is small, the increase
of the nuclear transparency due to correlations between the struck nucleon and the other nucleons
is mostly compensated by a decrease of the transparency due to the correlations between nonde-
tected nucleons. We derive Glauber model predictions for nuclear transparency for the differential
cross section when nuclear shell level excitations are measured. The role of correlations in color
transparency is brieQy discussed.

PACS number(s): 25.30.Dh, 25.30.Fj

I. INTRODUCTION

The semiclassical approximation improves with in-
creasing collision energy. This theoretical expectation is
supported by the observation that the Glauber approxi-
mation describes quite well the recent experimental data
on high-energy (e, e'p) reactions [1]. Thus this theoreti-
cal framework makes numerous issues in nuclear physics
amenable to quantitative study at new facilities, such as
CEBAF or HERMES, and provides a baseline for study-
ing color coherent phenomena in the collisions of high-
energy particles with nuclei. Such phenomena may pro-
vide promising new methods of investigation of the non-
perturbative and perturbative @CD. One example is the
color transparency (CT) phenomenon suppression of
the final-state interaction (FSI) in high-energy quasielas-
tic large angle reactions with nuclei. Initial motivation
for the dominance of small size configurations came &om
the analysis of the leading perturbative @CD diagrams
[2, 3] which should dominate at very large momentum
transfer. However the recent analysis [4] of realistic
models of a nucleon (pion) has found that the elec-
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tromagnetic form factors of a nucleon and a pion are
dominated by smaller than average size configurations
already in the nonperturbative domain at Q ) 2—3
(GeVic) . Hence it seems important to study CT in
the A(e, '

eN), A(e, e'NK) processes at as small Q as
possible. However, to achieve these aims one needs both
dedicated high resolution experiments at intermediate Q
(see, for example, [1,5]) and calculations of nuclear trans-
parency within the standard Glauber theory. Such cal-
culations should include nuclear effects such as nucleon
correlations in nuclei and the nuclear shell effects.

We approach these problems by adapting the tech-
nique developed for high-energy hadron scattering off nu-
clei in the early 1970s by Moniz, Nixon, and Walecka
[6, 7] and by Yennie [8]. With the Glauber approxima-
tion [9] it is easily shown that nucleon correlations in
high-energy coherent hadron-nucleus scattering make a
nucleus less transparent. An important point to em-
phasize is that high-energy particles interact with dif-
ferent nucleons of the nucleus at different moments of
time: tq — t2 —— c (zq —z2) (that is, high-energy pro-
cesses develop along the light-cone). So the approxima-
tion of frozen configurations in the nucleus used in the
Glauber approximation seems, at erst sight, question-
able. However, a theoretical analysis based on the light-
cone quantum mechanics of nuclei has found [10] that
the conventional Glauber formulas can be safely used for
description of high-energy processes where contributing
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nucleon Fermi momenta are not too large. In conven-
tional quantum mechanics, the frozen nucleus approxi-
mation emerges from the condition that intermediate nu-
clear states of importance have excitation energies very
small relative to the projectile energy. The application
of this technique to the calculation of (e, e'p) cross sec-
tions is straightforward though it requires serious mod-
i6.cations due to the diIIFerent collision geometry. There
is no incident hadron, while a fast nucleon is produced
in any point of the nucleus so that the final expressions
are rather different from those in [6, 8]. We will focus on
the efFects of nucleon correlations for the nuclear trans-
parency in A(e, e'N) reactions at high Q as well as on
the efFects of the nuclear shells.

The first question we address is whether correlation
effects considered in hadron-nucleus scattering [6, 8] are
relevant for the propagation of a fast nucleon (produced
in a hard scattering) through nuclear matter. The ef-
fects of nucleon correlations for nuclear transparency in
the A(e, e'p) reaction were considered by several authors
[12—17] in connection with the recent experimental inves-
tigations of the color transparency. Benhar et al. '

[12] and
Lee and Miller [13] have suggested a modification of the
optical model approximation to include the nucleon cor-
relations. They have found that nucleon correlations may
significantly (by 20%) increase the (e, e'p) cross section
and considerably suppress the onset of color transparency
(CT) effects especially at intermediate Q2. However, in
the papers [11,14, 15] the efFects of correlations were es-
timated to be no more than 5%. We demonstrate here
that the role of nucleon correlations depends sensitively
on the experimental kinematics. So, we will consider how
the shell structure of nuclei observed at medium energies
(for a review, see Ref. [18]) should reveal itself in high
Q A(e, e'%) reactions.

To analyze efFects of nucleon correlations we consider
here the limiting case of coherent final-state interactions
(FSI), when knocked-out protons rescatter ofF the resid-
ual nucleus coherently and the final state energy of the
residual nucleus is fixed and known. A second case of
incoherent rescattering, when all elastic rescatterings of
the proton are allowed and the sum over the final states
of residual nucleus is performed, will be discussed else-
where. The results obtained for coherent final-state in-
teractions allow us to calculate nuclear transparency at a
fixed value of the ejected. nucleon momentum and missing
energy. Therefore they could be directly compared with
current and planned experiments which have limited mo-
mentum and angular acceptance.

The paper is organized as follows.
In Sec. II we present detailed calculation of the co-

herent FSI on the basis of the Glauber approximation.
By decomposing the ground-state wave function over the
contribution of two-nucleon correlations we derive the
formulas for the description of the (e, e'%) processes in
the case of fixed missing energy characterizing particu-
lar shells. The deduced formulas take into account the
ground and the Anal nuclear state correlations in a self-
consistent way.

In Sec. III, formulas obtained in Sec. II are used to cal-
culate the nuclear transparency for a proton knocked out

by the virtual photon. Qualitative calculations using a
uniform density model of the nucleus, pointlike approxi-
mation for NÃ scattering amplitude and 0-function type
of NN correlations allows us to obtain analytic results.
Quantitative analysis uses Hartree-Fock single-nucleon
wave functions, realistic parametrization of the NN scat-
tering amplitude and correlation efFects taken &om the
current calculations of the nuclear matter. The obtained
formulas are extended also to the case when electron pro-
duced a small size "nucleon" wave packet which expands
while propagating through the nucleus. This gives the
possibility of investigating how nucleon correlations in-
fluence the onset of color coherent eQ'ects in reactions
with the excitation of certain shell levels. It is demon-
strated that in some cases color transparency may even
lead to a decrease of the (e, e'N) cross section with in-
crease of Q . This efFect has been considered in Ref. [19],
where, however, nucleon correlations were not included
in the theoretical analysis.

In Sec. IV we summarize the basic results of the paper.
The Appendix contains necessary definitions and sum

rules for the two-nucleon density function.

II. COHERENT FINAL-STATE INTERACTION

Within the nonrelativistic theory of nuclei and neglect-
ing antisymmetrization of the knocked-out and bound
nucleons, the amplitude of A(e, e'K) scattering, Ey o, is
given by the formulas:

(y( ) @( )
~T ~y( ))

Pf

d' 'd'(")+.', '( ')+'" '(( ))T' (Q')

""~.'"'(. (.)) (1)
where 4O is the ground-state wave function of nucleus,(w) .

and Tq = T (Q )e'&'"' is the one-body electroinagnetic
current operator. In principle, T' should depend on
the presence of other nucleons due to o6'-shell efFects;
however, in this paper we restrict ourselves to the contri-
bution of nucleons with small Fermi momenta where ofF-

shell efFects seem to be a small correction. The position of
knocked-out nucleon j is r~', q and —Q2 are the three mo-

mentum and mass square of the virtual photon, 4: is
Pf

the wave function of knocked-out nucleon j, and 4&
(x—i)

is the wave function of the residual (A —1) nucleus. For
simplicity we denote the (ri, ) = ri, . . .'. . . , r~, where
the coordinate of knocked-out nucleon is excluded.

It is well known &om the low-energy studies that
the cross section of exclusive A(e, e'p) processes depends
strongly on the value of the missing energy E, which
characterizes the binding energy of the knocked-out pro-
ton, as well as the excitation energy of the residual (A —1)
nucleus. If E is fixed and does not exceed the charac-
teristic value for the nuclear shell excitations (& 50 MeV)
(which is a natural condition for the experiments search-
ing for the color transparency phenomenon) the final-
state interactions of the knocked-out nucleons with the
residual nucleus are dominated by their coherent rescat-
tering ofF the (A —1)-hole residual nucleus.
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Neglecting the antisymmetrization between. r~ ++ (rg)
the coordinate r~ is the knocked-out nucleon's coordi-
nate. Then within the impulse approximation for the
p*N interaction and Glauber approximation for the in-

I

teraction of the fast nucleon with the rest of the nucleus,
the amplitude Fy0 of the process where a nucleon is
knocked out from a specific orbit, 6, leaving the residual
nucleus in a (A —1)-hole state, is expressed as follows:

Th P(A g) Po&~ 0 d P&d P& 40 P& y PP QP 1 7 Q T

xe '~*""' 1 —I' (bi —b, )O(z; —zi)j .
h

(2)

Here ilI&, ({rgj) is the wave function of the (A —1)-hole
state of residual nucleus and p; = py —q. To simplify the
formulas, we shall always denote the coordinate of the
knocked-out nucleon as rq and will omit the sum over
various nucleons j. Here py is the momentum of the
knocked-out nucleon. The rescatterings of the knocked-
out nucleon ofF the individual nucleons of the residual nu-
cleus are described in Eq. (2) by the product of functions
I'~. The pro6le function I'~(b) is expressed through the
NN amplitude (f~+) as

I' (b) = exp(ik, b) f (k, )d k„
2vrzk

where for f ~ we use the normalization
Imf NN k ~ (6/2)t

4~ tot&

To calculate the amplitude T&~ given by Eq. (2) it is
convenient to approximate the ground-state wave func-
tion according to Ref. [20] as a product of the Slater
determinant, representing the uncorrelated ground-state
wave functions @„(r;)and Jastrow-type correlated basis
function Cg(r;, r), ):

A@0 (ri " r~)

=N(A!) '~'detl@„(r, )l [1+CD,(r;, rg)]
k&i=1

=N) . .4.( ) [ +C.(",")]+.'-. '(("))
h k&l

Here mh is the occupation probability for the nucleon

orbital h. In the last part of Eq. (4) we modify the
correlated basis representation by introducing the single-
nucleon wave functions, Pg(r;), which represent the over-
lap integral between exact A-body ground-state wave
function 4'0 and (A —1)-body wave functions of the resid-

ual nucleus 4&, ((ry)). Single-nucleon wave functions(A —i.)

are normalized as follows:

f ig), (r)l d r = 1

and [18, 24]

p(r) = ).~~ l&~(r) I'

where p(r) is the single-nucleon density function defined
according to Eqs. (A4), (A9), and (A10), which can
be taken either from nuclear many-body calculations or
from experimental data. Terms Cg(ri, rq) in Eq. (4)
parametrize ground-state pair nucleon correlations be-
tween detected nucleon 1 and undetected nucleons k. The
factor N 1 + O(l, /Rs&) accounts for the proper nor-
malization, where l, characterizes, the correlation lengths
between nucleons [7], and R~ is the nuclear radius (the
normalization factor N is further discussed in the Ap-
pendix). In the case when three-nucleon correlations in
a nucleus can be neglected N 1.

Correlations enter Eq. (4) in two ways, through the
correlation of the struck nucleon with nearby nucleons
[via Cg(ri, rg) functions] and through the correlations
between "spectator" nucleons which are contained in
the function 4&, . Substituting in Eq. (2) the nuclear
ground-state wave function by Eq. (4) we obtain

A
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hl i=2

1 —I' (bi —b;)O(z; —zi) [1+Cq~(ri, rq)] p&, z ((r(,)).
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To simplify formulas, we introduce the (A —1)-body den-
sity matrix as

p„,„((r~))d(ri, ) = 4,i. (9)

(8)

which satisfy (as a consequence of the orthogonality con-
dition described in the Appendix) the following sum
rules:

case of p; 0 the contributions from l g 0 orbits are sup-
pressed as compared to the l = 0 one); (v) nondiagonal
h ~ h' transitions are a correction to the contribution of
nucleon correlations into nuclear transparency. However,
we Bnd below that effect of correlations in the processes
we consider is small. Neglecting the nondiagonal transi-
tions between the residual nuclear states, we expand the
(A —1)-body density function for a particular hole, b, ,
similar to Refs. [7, 8] through the (two, three, etc. )-body
correlation functions:

and

p" '((r~k) = ):~alp~, ~'((r~k)l', (10)

ph h ((rk)) = p(r2) x ~ ' p(rA) + ) gh(ril rj )p(r2)

where p+ i((ry)) is the conventional (A —1)-body den-
sity function.

In Eq. (7) hard electromagnetic and soft hadron-
nucleus scattering are separated since we ignore the off-
energy-shell efFects in T' (Q2). To calculate nuclear
effects we may use the methods developed for the cal-
culation of hadron-nucleus scattering [6—8] provided the
(A —1) nucleon density matrix [Eq. (8)] of residual nu-
cleus is known. However, this matrix is practically un-
known now. So to evaluate transitions to certain nuclear
levels, we will neglect the contribution of nondiagonal
h ~ fi' transitions based on the following reasons: (i)
our interest is in the processes where Axed missing en-
ergy is small (& 50 MeV) and we consider nuclei which
have a clear resolved shell structure (e.g. , C); (ii) the
nondiagonal transitions &om large E states to small
E states are strongly suppressed since FSI leads to a
further increase of the overall missing energy; (iii) over-
lap integrals for the transition from small E states to
large E states are suppressed too [18,24]; (iv) the abil-
ity to Bx missing momenta independently of the missing
energy in the considered kinematics, allow suppressing
further the nondiagonal transitions (for example, in the

x . p(r ) x . p(r ) p(rg) +
(»)

where p(r;) is the above-defined nucleon single density
function. In the approximation when only pair nucleon
correlations are kept, it follows from Eqs. (9) and (10)
(cf. the Appendix) that

gh (r;, r, )p(r;) p(r, )dsr, dsr, = 0. (12)

Using this decomposition of (A —1)-body density matrix
[Eq. (11)], we obtain for FSI practically the same func-
tional form as that obtained in [7, 8] for hA scattering
within the Glauber approximation, when two-body cor-
relations are taken into account. The major difference
from [7, 8] is the difFerent geometry of eA collisions as
compared to hA scattering. This difference is accounted
for in Eq. (7) in the limits of integration over the coordi-
nate z~ of the knocked-out nucleon. Taking into account
the normalization conditions for the correlation function
C(r;, r~) (see the Appendix) and gh, (r;, r~) [Eq. (12)] we
obtain for the amplitude Th the expression similar to that
in Ref. [7]:

Th
—— d rquh, h, rq T e '"*""' 1 — d r 1+ Ch, rg, r p r I' bg —b

Zg

- (x—i)
P~ —i[(1+Ch) I l (13)

where the factor 'P~ i[(1 + Ca), I'] characterizes influence of correlations between undetected nucleons on FSI of
knocked-out nucleon [7]:

A —1 A —2OI'

m=O

(A —1)'
(A —1 —2m)!m!

d r2d rs [1 + Ci, (ri, r)] gh(r2, rs) p(r2) p(rs)I'(bi —b2)I'(bi —b )
z2 3)zj.

dsr [1 + Ch, (r„r)] p(r)i'(bi —b)
Z)Z1

(14)

Equations (13) and (14) show that correlations between undetected nucleons enter similarly to hA scattering [7, 8],
while correlations between the knocked-out nucleon and undetected nucleons enter via the rescaling of the single-
nucleon density function by the factor [1 + Ci, (ri, r)].

At large A, Eqs. (13) and (14) can be considerably simplified by keeping in the factor [ . ] in Eq. (14) only the
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terms which grow with A. The formulas obtained for large A resemble the optical limit of Glauber approximation
formulas:

gp'A ds p ( )~e~(q2) jp—, r~ —j r(bg b)n—(v )d r (i5)

where n(r)—:(A —1) p(r). The modified nuclear density is

( A —1
p(z, b) = [1+ Ch(rx, r)] I

1—
2

= p(r) 1+Ch(r„r)—

I (bx b )gxL (r r') 1p(r') d'r'
I p(r)

I'(bi —b') gh, (r, r') p(r') d r' (16)

d
d dnd- = '""(""

Pf
(17)

where, at the last step, we neglect the term proportional
to the square of correlations, since its contribution is com-
parable to higher-order correlations which were neglected
earlier. In practice Eq. (15) is applicable starting from
A & 4, with accuracy comparable to the accuracy of
exponentiation of (A —1) power function in Eq. (13),
estimated as O(z& [f 1 (bi —b)nd r] ).

In the limit when correlations are neglected the derived
equations coincide with the formulas of the Glauber ap-
proximation in the independent particle approximation
for the nuclear wave function. When FSI is neglected,
the derived formulas lead to plane wave impulse approxi-
mations within the generalized shell model, where corre-
lations in the ground-state wave functions are taken into
account (see, e.g. , [18,21,22]).

The interesting feature of Eqs. (15) and (16) is that
account of nucleon correlations influences the final-state
interaction in two opposite ways. Due to the second term
in Eq. (16), correlations lead to a decrease in the effec-
tive nuclear densities [Ch(r, r') ( 0] and therefore an
increase in the transparency of nuclear matter for the
knocked-out nucleon. This effect reflects the presence of
a hole around the scattered nucleon in the ground-state
wave function. This effect has been previously mentioned
in Ref. [19] and analyzed at length in [12], within the op-
tical approximation and for cross sections integrated over
missing momentum and energy.

However, the contribution of correlations in the
third terxn of Eq. (16) leads to an increase of
the effective nuclear density and, as a result, nu-
clear matter becomes more opaque for the knocked-
out nucleon. The same effect was found in
Refs. [6—8] for high-energy hadron-nucleus scatter-
ing. A similar effect was discussed also in Refs.
[14, 16, 17] for the cross section of (e, e'p) reaction
summed over the Anal states of residual nucleus and in-
tegrated over the proton momentum. In this case this
contribution into the overall correlation effect is practi-
cally negligible [16, 17].

To calculate the cross section of the semiexclusive
(e, e'N) reaction we use the distorted wave impulse ap-
proximation (DWIA) where the cross section can be rep-
resented as follows:

where nx, (E ) characterizes the strength of the shell, and
proportional to the shell occupation probabilities
@h (p;, »7y) is the distorted momentum distribution of the
nucleons for the h shell. Using Eq. (15) we obtain for

I @~(p' 6) I':

I
~'~g, , srI I'= jd'~i@a(~i)~ "'"'

r(b, —b)-( )ds
(i9)

III. NUCLEAR TRANSPARENCY

We use Eq. (15) for the scattering axnplitude and
Eq. (19) for the distorted momentum distributions to cal-
culate (e, e'N) scattering on nuclei.

In this section we will consider the effects which are
due to the final-state interaction of knocked-out nucle-
ons. The convenient quantity to characterize the FSI
(see, e.g. , Refs. [1,12,11,23]) is the ratio of the mea-
sured cross section of the (e, e'N) reactions and the cross
section calculated within the plane wave impulse approx-
imation (PWIA). In the case of complete nuclear trans-
parency this ratio will equal unity. The corresponding
theoretical quantity is the ratio of the cross sections cal-
culated with and without FSI.

In the theoretical analysis a convenient quantity is the
transparency corresponding to a transition when the par-
ticular nuclear shell is 6xed (no suxnmation over the final
states of residual nucleus):

f g ~xP )
I

@Dwx&(p p )
( &PwIA~

I

@PwxA(p ) I2
(20)

where
I 4& (p;, pf) I

is given by Eq. (19).

where 0. ~ is proportional to the cross section of electron
scattering off a bound nucleon. We restrict ourselves to
the case of reactions where nucleon Fermi motion is small
(i.e. , small missing momenta). For large missing mo-
menta, a more accurate treatment of multistep processes
and relativistic effects is necessary.

If the specific shell is fixed the DWIA spectral function
can be written as [18]

~~(p' &- pf) = n~(&-) I
@'~(p' »f) I'
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A. Qualitative estimates

To visualize the role of nucleon-nucleon correlations
it is worth considering first a highly simplified model of
uniform nuclear density. We will also treat nucleons as
pointlike and furthermore approximate correlation func-
tions as 0 functions:

ci, (x) = g(x) = —e(l, —x),

where l, is the correlation length defined as [7]

(24)

l, QR~ —b2i —z

A 4A

Using the above approximations and assuming that

~
~

g(z —zi)p(z, bi)dz = —2l, p(zi, bi)
Z1

we obtain for the exponent in Eq. (15):

QBz —b2 —z
I'(bi —b)n(r)d r =—

2A

g(r) dr.
0

(22)

F(bi —b2) = ' 'h'(bi —bz).
2

(23)

Here g(r) is the correlation function calculated within
the realistic theory of nucleus. We will omit T' (Q2)
in the next following analysis since electromagnetic form
factors of a nucleon are canceled in Eq. (20) for nuclear
transparency provided the off-shell effects are neglected.

The profile function of pointlike nucleon is [cf. Eq. (3)]

(»)
where R is the nuclear radius and A = is the mean

CF Pp
free path, and p0 is the uniform density. Approximating
the one-body wave function as uniform:

8(I& —r I)
(4~ ~s) i (26)

we calculate the amplitude F~ with coherent FSI in the
case of g7; = py —q = 0 for transition to the (A —1)
nucleon system:

LA+ 2A~

2 e-~~+2~~) s+-'+
1+ L(x+ 2~ )' (27)

and for the transparency defined as in Eq. (20) (for certainty we consider the case k = 0):
—( —'+-~ )

~ 2

L
— 1+

14 (I = o)I' (-'+,'.)'4 (28)

7coh p2 ~—2
r (30)

This considerably oversimplified model of the nucleus

where L = ~ and A = —.l A
R R

To visualize the effects of correlations in Eq. (28) it is
convenient to normalize transparency to the correspond-
ing transparencies within the uncorrelated Glauber ap-
proximation and to consider the case when A is sufIi-
ciently large and & )& 1, &

——~& (( l.
We obtain for this ratio

T„lt' e ~ ( Ll
29

~Tnoncorr ) (1 + I )2 ( A)
Equation (29) clearly demonstrates that correlation

between detected nucleon and nondetected nucleons [nu-
merator in Eq. (29)] and correlations between undetected
nucleons [denominator in Eq. (29)] enter differently into
nuclear transparency and the first effect dominates.

The next important feature of coherent rescatterings
for transitions to a ground state is the strongly different
A dependence of nuclear transparency compared to the
case of incoherent final-state interactions A ~ (see,
e.g. , [23]). From Eq. (28) we obtain

demonstrates the qualitative difference between coher-
ent and incoherent Anal-state interactions. The obtained
formulas show that fixing the final states of residual nu-
cleus is more promising for searching color transparency
effects in nuclei since CT effects are larger in this case.

B. Quantitative calculations

We present here numerical results for the case of (e, e'p)
scattering off C and use the kinematics where the mo-
mentum of the knocked-out proton is equal to the trans-
ferred momentum: py ——q. The distinguishable shell
structure of C allows us to outline the effects of shell
structure on the nuclear transparency. In calculations of
the C ground-state wave functions we use the Skyrme-
Hartree-Fock model with correlated interaction [24].

To describe the correlation properties of the nuclear
ground state and final (A —1)-hole state, we assume
that NN pair correlations are state independent. This
assumption is inferred from both theoretical and exper-
imental observations (see, e.g. , [10, 25, 26]) indicating
that the nuclear high momentum components (controlled
mainly by short range NK correlations) are practically
the same for all nuclei. This approximation is not reli-
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able for the long range correlations, where a strong den-
sity dependence (observed in Ref. [27]) should be taken
into account. For our calculations we use the correlation
function g(r) from the calculation of [27, 28] for standard
nuclear density (= 0.16 fm ). The accuracy of such
approximation depends on the overall size of correlation
effects and use of the exact density-dependent correlation
function would clearly improve the present calculations.

The profile functions in Eq. (3) have been calculated
using the relation

0.64

0.62

0.6

0.58

0.56

0.54

k do.
I f(k~) I'=

d,
— (31) 0.52

~ ~ ~ ~

For
&

we use the phenomenological parametrization: 0.5

0 2

167t
(1+ o. ) exp(bt), (32)

0.48

0.46

where n = Ref/Imf and all parameters are taken from
[29-31].

In Fig. 1 we present the results of calculations of the Q2
dependence of the nuclear transparency based on Eq. (20)
for the proton knocked out from the 8 shell. We observe
that two opposite effects of nucleon correlations reduce
the overall effect of correlations to the level of a few per-
cent.

To see the interplay of the above-discussed effects with
the anticipated effects of color transparency (CT) we use
the quantum diffusion model (QDM) [23] to account for
the reduction of FSI for the knocked-out proton due to
CT effects. For this purpose we introduce the modified
profile function in Eq. (3) with the modified NN scat-
tering amplitude [32]:

. k —'tf (kt, , Q, t) =i—ot t(I, Q )e~'

G~[to.g t(l, Q')/o, ,]

G~(t)
(33)

where b is the slope of elastic NN cross section and G~(t)
[= (1 —t/0. 71) ] is the Sachs form factor. The last fac-
tor in Eq. (33) accounts for the difference between form
factors for pointlike and average configurations, which
is estimated based on the observation that the t depen-
dence of der" +~~"+~/dt G2&(t)G2~(t). The efFective
NN total cross section we calculate using the (QDM)
predictions [23]:

i i i I & i i I I I I I

(rg(Q ) )/(r&) 1 GeV /Q is the average transverse
size squared of the configuration produced in the inter-
action point.

In Fig. 2 we present the Q dependence of the color
transparency effect in the kinematics of Fig. 1 (curves
labeled "s shell" ). Figure 2 shows that the correlation

0.75
O

0.725

0.7

0.675

0.65

0 2 4 6 8 10

Q I (GeV/c) ]

FIG. 1. The Q dependen. ce of the nuclear transparency
T„of C, calculated according to Eq. (20) for the reaction
of proton knock out from 8 shell with p, = 0 including
the energy dependence of the NN amplitudes. Dotted line is
the calculation without correlation effects; dashed line, with
the eKects of correlation between undetected nucleons; dash-
dotted line, with the eKects of correlation between knocked-
out proton and undetected nucleons; and solid line, with over-
all correlation effects.

~t.~(I, Q') =~t.t —+ ',
I

1 ——
I

0(ti —t)
(r~) & ~~)

0.625

0.6

+o(t lg)
I

(34) 0.575

where lh = 2py/AM, with AM = 0.7 GeV . 0.55

0.525 I I I I I I

The function g(r) used in present work is related to the
correlation function gp(r) obtained in [27, 28) as g(r)
(A/A —1)gp (r ) —1.

0 2 4 6 8 10

Q [(GeV/c) ]
FIG. 2. The Q dependence of color transparency effect

defined by Eq. (20), corresponding to the kinematics of Fig. 1.
Dashed line, without; solid line, with overall correlation ef-
fects.
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10 2

S - shell

Another important effect in the kinematics of coherent
FSI is different manifestation of color transparency for
fixed 8 and p shells. It follows from Fig. 3 that in the
case of the proton knock out from p and 8 shells in the
kinematics where p, = pf —q = 0 the decrease of FSI
leads to opposite effects on the cross section for (e, e'p)
reaction for 8 and p shells. In Fig. 4 the expected CT
effects calculated using Eqs. (33) and (34) normalized
to the corresponding transparencies within the Glauber
approximation.

IV. CONCLUSIONS

P - shell

2 4 6 8 10

Q I (GeV/c) ]

FIG. 3. The Q dependence of color transparency effect in
distorted momentum distribution of proton on 8 and p shells.
Dashed line, without; solid line, with overall correlation ef-
fects.

effect becomes smaller at high Q2 since according to
Eqs. (15) and (16) the reduced value of the cross sec-
tion of %% scattering reduces sensitivity to the changes
of density function p —+ p. However, correlations slightly
reduce the onset of CT effect since the nucleus becomes
more transparent.

We investigated the final-state interaction of knocked-
out nucleons in high Q (e, e'%) processes within the
Glauber approximation, taking into account the nucleon
correlations in a consistent way in the nuclear ground
state and fixed (A —1) final-state wave function. The
main conclusion is that nucleon correlations affect the
nuclear transparency in two different ways: correlations
among undetected nucleons make a nucleus less transpar-
ent, while the correlations among .'he detected nucleon
and undetected nucleons make the nucleus more trans-
parent.

The consideration of nuclear shell structure shows that
effects of correlations are on the level of few percent for
coherent final-state interaction.

By including color coherent effects we elaborate the
observation of Ref. [11] that color transparency has dif-
ferent implications for the excitation of different nuclear
shells. We conclude that (e, e'p) reactions are more sen-
sitive to the color coherent effects provided the particular
nuclear shell is fixed.
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APPENDIX

0.9

0.8

0.7

To construct the wave function of the nuclear ground
state via single-nucleon wave function, Pg(ri) and (A—
I)-hole wave function, ill&, ((rk)), we introduce the
6-state dependent correlation functions between nucleon
at ri and (A —1) nucleons belonging to the rest of the
nucleus:

0.6
0

I I I I I i I I

4 6 8 10

I (OeV/c)

FIG. 4. The Q dependence of color transparency effect
normalized to the corresponding transparency within Glauber
approximation. Curves labeled 8 shell, p shell corresponded
to the 6xed shell scattering, with coherent FSI, from 8 shell,

p shell. For all cases p, = 0. Dashed line is the calculation
without correlation eBects; solid line, with correlation e8ects. We choose normalization of 4"& 1 as(A —x)

(A1)

(A2)
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(A3)

The overall normalization factor N —1 provided three
(or more) nucleon correlations are neglected. To repro-
duce the formulas of the shell model we choose p(ri) as

the points r; and rz. p2 is normalized as

p2(r, , r~ )d r. ;d r~ =1.i 1 j ~
iI

~
~

~ ~~ ~

The single-nucleon density p(r) is

(AS)

p, (r, r')dsr' = p(r). (A9)

0 ri, rk d rk It is normalized as

(A4) (Alo)

where p(ri) is the single-nucleon density function.
As a consequence of the orthogonality of h.-state wave

functions, Eq. (A2) and Eq. (A4) the correlation func-
tions C), (ri, r), ) should obey the following relations:

Inserting Eq. (A7) into Eq. (AS) and using Eq. (Alo)
we obtain the following sum rule for the correlation func-
tion g(r;, r~):

(All)

~ 4 4 I

k)1
[1+Ch, (ri, r), )] [1+C~+ (ri, rg)] —1

1 4 h

k&1
Inserting Eq. (A7) into Eq. (A9) we obtain also

xCI, '((rA:))CI.. .' ((r&))d'(rl ) = O, (A5)

if three ... nucleon correlations are neglected. For 6 = 6',
within the accuracy O(Ch) we obtain

(A6)

For the practical aims we neglect the dependence of
the (A —1)-nucleus wave function liIg&, ((rg j) l

pl l((rg)) and the correlation function Ch(ri, r)g)
C(ri, rI, ) on the nucleon orbital 6 expressing them
through the correlation function g(r, , r~) defined as

9("' rr) p(r')d "' = f g("' rr) p(rr )d rr = g.i 7 j i
3

iI ~~ i 7 j j ~
~I

~~
~ (A12)

Expanding the A-body density function through the
above defined correlation function g as

P'"'( ( )) = P( ) [1 + g( )]P'" ' (( f)
k=2

(Ala)

and comparing it with A-body density function defined
by square modulus of Eq. (Al) one obtains the following
relations between two correlation functions:

l@o (r» "2 . ~r~)l d rid r; id r;+id r) id ri+id r&—~ ~ ~
l1 + C(ri, r, ) I' = 1+g(ri rl. ). (A14)

p2(;, r ) = [1+g(;, , )] p(;)p(j), (A7)

where two-nucleon density function p2(r;, rz) is the prob-
ability to find (i, j) nucleons in nucleus simultaneously at

The obtained relation allows us to estimate the accu-
racy of the approximation N = 1. Using Eqs. (Al) and
(A14) and the normalization condition for @~+(ri, ..., r~)
we obtain

1=% 1+) g(r, , rr)p(r)p(r~)d rdrr + ) f g(r;, r~)g(r;, rq)p(r )p(rr)p(rr)d r d rrd rg
)2 i++j,k

) f g(r, , r )g(r, r )p(r)p(r )p(r )p(r )d rd r d r d r
ig jgkgrn

+ ).f g(r;, rr)g(r;, rg )g(rr, r~)p(r;)p(ri )p(rg)d'r; d'rrd'rg + " (A15)
i++j,k

Taking into account the sum rules for function g(r;, r)) [Eqs. (All) and (A12)] we find that first nonvanishing term
in Eq. (A15) is proportional to gs. In the framework of the uniform density model of nucleus (see Sec. IV A) we
obtain that

N =1+CD
l

( l.' )
(A16)

) R~)
where R~ is the nuclear radius and /, is the correlation length defined in Eq. (22). Using the estimation t, 0.74 fm
(Ref. [7]) for nuclei with A & 12 the accuracy of condition N = 1 is better than 1—2'%%uo. The effect of neglected
three-nucleon correlations is expected to be on the same level, since they are proportional to l, .
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