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The quark delocalization and color screening model, a quark potential model, is used for a sys-
tematic search of dibaryon candidates in the u, d, and s three Qavor vmrld. Color screening, vrhich

appears in unquenched lattice gauge calculations, and quark delocalization (which is similar to elec-
tron delocalization in molecular physics) are both included. Flavor symmetry breaking and channel
coupling eKects are studied. The model is constrained not only by baryon ground state properties
but also by the N-N scattering phase shifts. The deuteron and zero energy dinucleon resonance
are both reproduced qualitatively. The model predicts two extreme types of dibaryonic systems:
"molecular" like the deuteron, and highly delocalized six-quark systems among which only a few
narrow dibaryon resonances occur in the u, d, and s three Havor @world. Possible high spin dibaryon
resonances are emphasized.

PACS number(s): 24.85.+p, 12.39.Pn, 14.20.Pt, 13.75.Cs

I. INTRODUCTION

Quantum chromodynamics (QCD) is believed to be
the fundamental theory of the strong interaction. High
energy processes are calculable due to the asymptotic
freedom property of QCD. The majority of low energy
processes are uncalculable due to infrared confinement.
Lattice gauge calculations may sufBce in the confinement
regime, but will still suffer from large numerical uncer-
tainties for the prediction of many hadron properties in
the near future. This leads to a reliance on QCD-inspired
models to explore hadron physics for the time being and
perhaps even in the future, due to the complexity of
QCD. The existing models (potential, bag, soliton, etc.)
are quite successful in understanding hadron (meson and
baryon) properties, but have not been very successful for
hadron interactions. Only recently have there been posi-
tive indications for obtaining the whole N-N interaction
from QCD models [1,2].

An outstanding problem is the fact that all of these
models, including lattice gauge calculations, predict that
there should be multiquark systems (qq), q4q, q; quark
gluon hybrids qqg, q g; and glueballs, in addition to
the qq mesons and q baryons. Experimentally there
are no well-established candidates for these exotics. In
a relativistic theory, since quark and gluon number is
not conserved, any meson state can be a mixture of
qq, (qq), g, and qqg; any baryon state can be a mix-
ture of q, q q, and q g. It is quite possible that these
exotics, (qq), qqg, g, q q, q g, exist in the normal meson

and baryon states [3]. Polarized lepton nucleon scatter-
ing measurements have aroused a new round of hadron
structure studies, wherein these exotic components are
explored in connection with the normal q and qq com-
ponents [4]. However, qs is really a new quark sys-
tem sector, different from that of mesons and baryons.
We call a baryon number B = 2 state, which is qua-
sistable, a dibaryon. Its minimum configuration is q .
Since Jaffe predicted the first dibaryon, the H particle
[5], a large number of dibaryon calculations with all the
above-mentioned QCD models have been carried out and
almost all support the existence of dibaryons [6]. If the
present absence of an experimental dibaryon signal con-
tinues, then all these QCD models (and even QCD itself)
should be questioned. Therefore, the dibaryon is a good
place to test QCD and its models.

Recently, Silvestre-Brac et a/. reported a new system-
atic dibaryon calculation based on the chromomagnetic
model [6]. As pointed out by Lichtenberg and Roncaglia,
the chromomagnetic model Hamiltonian is oversimplified
[7]. The chromomagnetic interaction can give only the
N-N short range repulsion but not any N-N attraction.
Many dibaryon model calculations have the same defi-
ciencies unless a phenomenological meson exchange is in-
voked. To study the dibaryon, it is better to have a
model Hamiltonian which can at least fit the N-N in-
teraction qualitatively. Then we can expect that such a
model prediction may be relevant to real dibaryon states.
Another deficiency of many prevailing model calculations
is that the model Hilbert space is rather restricted. In
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II. QUA&K DELOCALIZATION,
COLOR. SCB.EENINC MODEL

Quark potential models are quite successful in describ-
ing single hadrons; therefore we adopt the usual potential
model Hamiltonian to describe a single baryon:

3 2 3

H(3) =) (m;+ * )+ ) V;, —T., (1)
i=1 i(j=l

V; =V,'+ V,

V;. = —A, A~ar, . ,

A~ 1
V,,- =o.. 4 r~

+
2 (m m.

+3m™2cr; . cr b(r; ) + .

some model calculations [5, 6, 8], the six quarks are as-
sumed to be completely merged into a single confinement
region (which we term a "fully deconfined" model). In
other model calculations, the quarks are assumed to be
always confined separately in two distinct baryons (which
we term a "fully confined" model) [9]. The real situation
is quite possibly neither completely merged nor always
separately confined, but, rather, in between, i.e., par-
tially deconfined due to the interaction of two baryons.
A more realistic model calculation allows the six-quark
system to choose the preferred configuration by its own
dynamics.

To remedy these model deficiencies, we developed a
Inodel which we will call the quark delocalization, color
screening model (QDCSM) [2]. The model Hilbert space
is enlarged to include the fully confined and. fully decon-
fined models as two extremes and the real configuration
is determined variationally by the dynamics of the six-
quark system. In this way the system is allowed to de-
velop its own preferred distortion. The model Hamilto-
nian is sufIiciently realistic to produce a qualitatively cor-
rect N-N phase shift. We especially take into account the
possible difFerence of the q-q interaction inside a hadron
and between two colorless hadrons due to the nonlin-
earity of QCD (see Sec. II). We use this model to do
a systematic search within the u, d, s-quark three-fIavor
world, expecting it to improve the reliability of estimates
on promising dibaryon candidates. This expectation is
realized in the N %channels -(see Sec. IV). Of course
we cannot expect that the model estimate is quantita-
tively correct, because both the model Hamiltonian and
Hilbert space are restricted to be simple enough to do a
systematic search. As emphasized by Silvestre-Brac [10]
this kind of systematic search serves the purpose of de-
limiting, among the thousands of multiquark states, the
most promising candidates. Our intent is to assist experi-
mental efForts to explore a challenging question in hadron
physics by providing more reliable theoretical estimates.

This paper is organized. as follows. In Sec. II, the
model Hamiltonian and Hilbert space are described. Sec-
tion III is devoted to a sketch of the calculation method.
(A inore complete description will be reported sepa-
rately. ) The results are given in Sec. IV and a conclusion
in Sec. V.

The symbols in Eq. (1) have their usual meaning. For the
confinement potential V, we assume a quadratic form
to simplify the calculation. A possible constant part is
omitted to reduce the number of parameters. In the ef-
fective one-gluon-exchange potential V, only the color
Coulomb and color magnetic terms are retained, because
we are only interested in the ground state. The efFect of
the momentum-dependent Darwin term has been checked
and found not to be critical; hence it is also omitted to
reduce the calculational burden.

A variational three-quark wave function (WF) of the
form

4'(123) 41 (rl)4'1 (~2)4'1 (~3) (3a)

f 1&i(r)=l
q~b2

(3b)

8 is a reference center, and 6 is a baryon size parameter
to be determined by the stability condition

BM(123)
06

where M(123) = (Q(123)lH(123)l@(123)).
The other model parameters are fixed as follows: The

u, d-quark mass difI'erence is neglected and m = m„= mg
is assumed to be exactly 3 of the nucleon mass M, i.e. ,
m = 313MeV. The quark gluon coupling constant o,,
is determined by the N-4 mass difFerence. The con-
finement potential strength a is determined by the zero
nucleon binding. The strange quark mass m, is deter-
mined by an overall fit to the strange baryon masses un-
der the assumption that all the fIavor octet and decuplet
baryons have the same rms radius b (Choosing .diferent
values of 6 for diferent baryons will make the calcula-
tion more elaborate and is left as a future refinement. )
The fitted parameters are m = 313MeV, m, = 634 MeV,
6 = 0.603fm, o.,=1.54, and a = 25.13MeV fm . The
theoretical baryon masses are compared with experimen-
tal values in Table I.

The strange baryon masses do not agree perfectly due
to our simple model assumptions. The largest deviation
is 41 MeV. The lower bounds on the constituent quark
mass differences derived from the Feynman-Hellman the-
orem are fulfilled for our fitted quark masses, which are
quite close to those of Lichtenberg [ll]. The other pa-
rameters are very similar in value to the usual baryon
spectroscopic results [12].

The direct extension of the single-baryon Hamiltonian
(1) to q is neither reasonable nor successful. First, the
two-body confinement interaction will give rise to a spu-
rious color van der Waals force. We take this as an indi-
cation that the q-q confinement interaction between two
color singlet hadrons is modified due to the nonlinearity
of QCD [13]. The nonperturbative and lattice gauge ap-
proaches both give rise to a string structure instead of a

@(123) = y (123)gsI g (123)$(123)

is assumed to describe the ground state baryons. Here
y(123) is the color singlet WF, @sr'(123) is the symmet-
ric spin-flavor SU2

&
DSUyxSU2 WF (S = strangeness,

I = isospin, J = spin),
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TABLE I. Baryon masses (MeV).

k N
Expt.
Theor.

939
939

A

1232
1232

Z
1115
1118

1193
1217

1318
1359

1385
1361

0
1533
1504

1672
1658

two-body q-q interaction [14]. The string structure and
two-body confinement give rise to similar spectroscopic
results for simple quark system but are not identical [15,
16]. Lattice gauge calculations, after taking the (light)
qq excitations into account, show that the (heavy) Q-Q
confinement interaction is screened. Numerical results
can be fitted by the following color screening interaction

as /I —ev(r)=( ——'+mr)
ir

o, = 0.21 + 0.01, ~cr = 400 MeV,

p = 0.90 + 0.20 fm.

Based. on these results, we model the Hamiltonian of q
as an otherwise direct extension of Eq. (1), but modify
the confinement part as

—A; . A~ar2
—A;. A, —(1 —e ""'~)

if i, j occur in the same baryon orbit,
if i, j occur in different baryon orbits.

(6a)

Here the exponential e " appearinginEq. (5) has beenreplacedbya Gaussiane ",solely to simplify the numerical
calculations. Another reason is this form will automatically match the quadratic confinement in the short distance
(pr (& 1) region. Keeping the same form of confin™nt as that of a single baryon when the interacting pair of
quarks occur in the same baryon guarantees that when the two baryons are separated to large distances, the energy
of the qs system evolves into the two-baryon internal energy calculated by the Hamiltonian Eq. (1).

Svetitsky [18] gave a qualitative description of the Q-Q potential: The short range Coulomb potential evolves into
a linear part at larger distance, but at still larger distances, the linear part evolves into an exponentially decaying
Yukawa potential due to light meson exchange. To take this possibility into account, we assume another screening
confinement potential (as described above)

if i, j occur in the same baryon orbit,
if i, j occur in different baryon orbits.

(6b)

v = 0.40 fm p = 1.0fm

Note particularly that the latter is consistent with the
lattice result [17].

For the q model space, we extend the quark cluster
model space by introducing a delocalized single-quark
orbit. In the usual quark cluster model approach, two
single-quark orbits are assumed:

Although Eq. (6a) would be favored as better represent-
ing the Yukawa falloff to a constant potential at large
distances, that constant is not the zero value expected
as between colorless hadrons. Thus, Eq. (6b) both tests
the sensitivity (which turns out to be very mild) of our
model to the long distance behavior of the potential and
provides a model with the expected zero value of the
hadronic potential at infinity.

The screening parameter p(v) is determined by fitting
our model to the N-N scattering phase shifts and they
are [2]

(~+s/2)~.(a = ( '..)"
0a(~) = (.',.)' e

(left centered orbit),

(right centered orbit).

Here s = ~~s]~ is the separation of the centers of two q
clusters. We introduce the delocalized quark orbit

I, (r) = [Pl.(r) + e(s)QR(r)] /N(s)

( ) = [& () + ( )&.()) /~( ),

N (s) = 1+ e (s) + 2e(s)(PL ~P~).

The delocalization parameter e(s) is determined varia-
tionally for every s by the dynamics of the q system
(see Sec. III). This orbit is a generalization of the quark
molecular orbit introduced by Stancu and Wilets [19],
The six-quark space is restricted to be the space spanned
by the following quark cluster bases:

,~, (1 . 6) = A[/, z, (123)@,~, (456)]

Q, y, (123) = y(123)gs, l, g, y, (123)gl (l)@L (2)QL (3)

4', ~, (456) = X(456)ns, l, ~,~. (456)@~(4)@ii(5)&ii(6).

(9)
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Here cx = (SIJ) describes the strong interaction con-
served quantum numbers of strangeness, isospin, and
spin. The q cluster WF is almost the saIne as given
in Eq. (2), but the single cluster Gaussian WF (3b) is
replaced by the delocalized orbital WF (8), and a flavor
symmetry quantum number F is shown explicitly. [ ]
refers to isospin and spin coupling by means of the SU2
Clebsch-Gordan coeKcients. The SU~ color coupling is
trivial because only color singlet hadron states are used
in our calculation. A is the normalized antisyrnmetry
operator

~).(—)'p

III. CALCULATION METHOD

A dynamical calculation of single-channel N-N scat-
tering has been done first to fix the screening parameter
p(v) by fitting the model N Nphase shift-s to the exper-
imental ones [2].

The q states of a given set of quantum numbers
n = (SIJ) are expressed as a multiple physical channel
coupling WF

@-(1. 6) = ). &:,F„,z, @:,z„,~,
a1F1 )exp F2

(10)

The channel coupling coeKcients C F F are deter-
mined by the diagonalization of the q Hamiltonian. The
maximum number of channels coupled is 16. In the diago-
nalization, the nonorthogonality property of the physical
bases is properly accounted for.

The six-quark Hamiltonian matrix elements

,z, l&(1".6)l@. F .~)

Orbital angular momentum is assumed to be zero for the
lowest states. An angular momentum projection which should
be done is left for future work. Preliminary estimates indicate
that this correction to the state energy is small.

where p is the two-quark permutation operator. Equa-
tion (9) is termed the physical basis by Harvey [20]. Even
though only totally symmetric q orbital configurations
are included in Eq. (9), q orbital excitation configu-
rations are included due to the delocalized single-quark
orbit (8) used in Eq. (9). Hidden color channels are not
included in Eq. (9). The reason is that the colorless
channels are already complete when orbital-spin-isospin
excitation configurations are included [15, 21]. Further-
more, color states have not been well constrained in @CD
models. It should be clearly kept in mind that these phys-
ical bases are dependent on the separation s of the two
q cluster centers and the delocalization parameter e(s).

A check had been done in the %-% scattering dynam-
ical calculation, that if we start with the Stancu-Wilets
molecular orbits instead of the left and right centered or-
bits PL, and P~, exactly the same results are obtained
[2].

are calculated by the group theory method developed by
Harvey and by Chen and ourselves [20]:

(1) The physical bases @ & & are expressed in
terms of the symmetry bases (group chain classification
bases) by the 6 —+ 3 x 3, SU & SU x SU, and SU&f D
SU2 xU~i isoscalar factors calculated by Chen et al. [22].

(2) The six-quark Hamiltonian matrix elements in the
symmetry bases are reduced to a two-body matrix ele-
ment and a four-quark overlap (due to the nonorthogo-
nality of the delocalized orbit) by the traditional parent-
age expansion (6 m 4 x 2, SU „0 SU x SU„, and
SUs D SU2 xUi isoscalar factor [22]).

(3) The four-quark overlap is reduced to a one-body
overlap by the permutation symmetry property of the
four-quark state [23].

(4) Two-body confinement interaction matrix elements
are calculated as follows: If the interacting quark pair
occurs in the same left or right orbit, i.e. , (LLlV lLL),
(RRlVlRR), (LLlVlRR), and (RRlV[LL), then the
usual quadratic confinement form is used. We do so
since the two quarks involved are then always in the
same "baryon" and hence in a relative color antitriplet
state. For all the other two-body confinement interac-
tion matrix elements, such as (IRlVlLR), (II lVlLR),
. . ., the color screening confin'ement form is used. Again,
we do so since the confining interaction will cancel over
all the quark pairs identifiable as originating in difer-
ent color singlet hadrons; we effectively remove it in ad-
vance from each pairwise interaction, leaving an inter-
action which mimics color singlet (mesonic) exchanges.
Here (LLl'VlRR) means (yg(1)yg(2) lVi2lyR(1)y/(2))

The eigenenergies obtained in this way are dependent
on the separation s and the delocalization parameter
e(s). We repeat the calculation for each s by varying
e(s) from 0.1 to 1.0 with step size 0.1 to get a min-
imum of the eigenenergy, which thus also determines
the delocalization parameter e(s). The difference of the
minimum eigenenergy at separation 8 and the minimum
eigenenergy at infinite separation is taken to be the
baryon-baryon potential energy V (s) (an adiabatic ap-
proximation). Numerically the asymptotic values of the
eigenenergy are indistinguishable from the calculation at
8 = 3 fm. It is equal to the threshold sum, i.e. , the sum of
theoretical masses of the corresponding channel baryon
pair (single-channel case) or of the lightest baryon pair
(channel coupling case), and the model relative kinetic
energy of this baryon pair, which is equal to 1/6 of the
total kinetic energy of the q system due to our model
WF assumption, Eq. (9). (This is one of the checks of
our numerical calculation; another check is that all the
channel mixing matrix elements are vanishingly small at

2
s = 3 fm. ) A zero-point harmonic oscillation energy 4p 80
is added to the minimum potential energy V (sp) to ob-
tain the binding energy B'~ of a q state with the quan-
tum number o.:

3h2
R = V (sp) +

4@~BO

Here p is taken simply to be the reduced mass of the
corresponding channel baryon pair (single-channel case)
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or the lightest baryon pair within the quantum number
n set (channel coupling case). In principle, we should
do a multichannel coupling dynamical calculation; this
program is being pursued only for the few most promising
dibaryon candidates.

Finally the experimental channel baryon pair mass
(single-channel case) or the lightest baryon pair mass
(Mq + M2) (channel coupling case) is added to B to
obtain the lowest q mass of each quantum number o. set:

M (q ) = (My + M2) + B . (12)

IV. RESULTS

All possible sets of n = (SIJ) within the u, d, and
8 three-Qavor world have been calculated. Only a few
states are strong interaction quasistable or narrow reso-
nances, and they are listed in Table II.

The strong interaction unstable states have been omit-
ted to simplify the presentation. However, some general
features are listed here.

(1) The two color screening forms give quite similar
results: The form (6a) gives slightly higher six-quark
masses than the form (6b) but the largest difference is
only about 10 MeV for the (SIJ) = (003) case. This
is consistent with the findings for N-N scattering where

The mass M (q ) is compared not only to the two-body
decay threshold, the experimental lightest baryon pair
mass (Mq + M2), but also to the possible multiparticle
final states allowed by strong interaction to determine if
there is a strong interaction quasistable dibaryon state.

In order to show the efFects of channel coupling, Havor-
symmetry breaking, and the di8'erent forms of color
screening, the following eight sets of calculations have
been done: (1) single-channel, flavor symmetry (scs), (2)
multichannel, flavor symmetry (ccs), (3) single-channel,
flavor-symmetry breaking (scb), and (4) multichannel,
flavor-symmetry breaking (ccb), where (1)—(4) have been
calculated using the color screening form (6a) and (5)—(8)
are (1)—(14) recalculated with the color screening form
(6b).

To indicate the level of uncertainty due to the choice
of the color screening parameter value, we have calcu-
lated the results corresponding to p = 1.6 fm and
v = 0.46, 0.60 fm in addition to the best fit values
p = 1.0 fm and v = 0.40 fm . (The reasoning behind
the parameter values chosen for these additional cases is
described in the Appendix. ) Only dibaryon candidates
based on both the channel coupling and symmetry break-
ing results should be considered serious possibilities for
experimental searches.

A computer program package which incorporates all
the needed group theory results has been written to au-
tomate the numerical calculation. It can be used for
other model calculations by simply replacing the one-
and two-body matrix elements. In particular, it is may
also be used for a relativistic quark cluster model calcula-
tion. As a cross-check on the program, the S = 0, (IJ) =
(01), (10), and (03) channels have been done both by the
method described above and by direct diagonalization
with the physical bases.

the forms (6a) and (6b) give similar JV N-phase shifts
while form (6b) yields a little stronger attraction in the

Sq channel [2].
(2) There are two extreme kinds of dibaryon candi-

dates. One kind is a loosely bound ("molecular" ) two
baryon state. The binding energy B is small (usually
around zero), J ( 1; the delocalization e(so) is also small

(usually 0.2). (The deuteron is a typical example while
the H particle is an exception. ) Their masses are close to
the lowest two-body decay threshold and they might be
stable with respect to the strong interactions, but their
stability is very sensitive to model details. The other
kind is a tightly bound state. The binding energy is

large ( 100 MeV), J & 2; the delocalization is also large

( 0.8). Their masses are larger than the lowest two-
body threshold and they are therefore unstable. How-
ever, their masses are lower than the favorable three- or
four-body decay threshold. Their two- or three-body de-
cay is hindered due to large angular momentum and so
they might nonetheless appear as narrow resonances. A
typical example is the di-A(003) state. This quasistabil-
ity property is not sensitive to the model details, unless
radically difFerent model assumptions are made.

(3) Flavor-symmetry breaking eff'ects are channel
dependent as reported by Maltman [24], decreasing
the binding by an amount ranging from negligible to
70 MeV. For some multichannel coupling cases, the
Qavor-symmetry breaking eKect changes which is the low-
est channel. In those cases, there is large apparent Bavor-
symmetry breaking effect (b,B 120—180 MeV). The
mass of the q state is increased correspondingly and this
produces a large difference in the stability of the q state
with respect to the multiparticle decay channels, due to
the flavor-symmetry breaking.

(4) The channel coupling effect is small for most cases,
even after taking into account quark delocalization in the
extended u, d, s world. For the H particle case, channel
crossing occurs: The dominant channel for the minimum
potential (ZZ) and the asymptotic channel (AA) are dif-
ferent. This channel coupling decreases the q mass by
about 100 MeV and makes the H particle stable. A sim-
ilar channel coupling eff'ect occurs in the (SIJ)=(—202)
state.

We emphasize that all the QDCSM parameters are
fixed by the ground state baryon properties and the N-
N scattering phase shifts. Therefore the dibaryon candi-
dates noted here are a relatively robust theoretical pre-
diction. We wish to emphasize a few additional points.

(1) In the S = 0, (IJ) = (Ol) channel (the deuteron
channel), the model predicts that there is a state with
M(001) = 1880(+14)MeV. It is a dinucleon state be-
cause the delocalization ~ = 0.2 is small and 4 MeV
away from the deuteron energy. We take this as a
measure of the predictive power of the QDCSM for the
dibaryon state. Due to this uncertainty, we have included
those states which are close to the lowest two-body decay
threshold in Table II.

(2) In the S = 0, (IJ) = (10) channel, the model pre-
dicts that there is a dinucleon [e(so) = 0.1] resonance
state at 1889(+4) MeV. It is about 10 MeV away Rom
a possible zero binding dinucleon resonance. This is an-
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TABLE II. Masses (M in MeV), potentials (V in MeV) at equilibrium separations (so in fm), binding energies (B in
MeV) relative to an asymptotic two-baryon system with channel quantum numbers and delocalization parameter values (e) for
all six quark three-Bavor systems without orbital angular momentum contributions to total spin.

(a) p = 1.0 fm v=04 fm

SIJ
001

010

003

-1-3

1 —0

-200

-202

-213

-220

-3-:3

-3—12

-3-,'2

-3-1
2

-400

-600

001

SCS

CCS

Scs
CCS

SCS

Scs
Ccs
scb
ccb
SCS

CCS

scb
ccb
SCS

CCS

scb
ccb
SCS

CCS

scb
ccb
SCS

CCS

scb
ccb

CCS

sr.b
ccb
SCS

Ccs
scb
ccb
SCS

CCS

scb
ccb
Scs
Ccs
scb
ccb
SCS

CCS

scb
ccb
SCS

CCS

scb
ccb
Scs
scb

SCS

CCS

M
1885
1886
1891
1891
2134

2285
2285
2343
2343
2133
2133
2137
2137
2145
2059
2328
2222
2297
2205
2478
2369
2432
2432
2559
2556
2394
2394
2393
2393
2570
2570
2767
2754
2510
2512
2525
2525
2394
2342
2556
2552
2394
2575
2543
2527
2632
2632
2643
2643
3287
3351

1885
1878

Va
-21
-23
-11
-11
-363

-363
-363
-311
-311
-24
-24
-19
-19
-195
-318
-194
-155
-217
-318
-171
-182
-363
-363
-252
-252
-11
-11
-12
-12
-363
-363
-201
-201
-22
-23
-25
-25
-266
-318
-267
-195
-266
-107
-84
-100
-24
-24
-24
-24
-74
-29

-30
-31

(6b)
B
7
8
13
13
-330

-332
-363
-274
-274
1

5
5
-112
-172
-58
-9
-175
-268
-S9
-103
-333
-333
-210
-209
8
8
7
7
-335
-335
-151
-150
-1
-0
14
14
-218
-269
-14?
-60
-218
-59
109
93
-4
4

7
7
-58
-6

(6b)
7

E

O. l
0.2
0.1
0.1
1.0

1.0
1.0
1.0
1.0
0.1
0.1
0.1
0.1
0.5
1.0
1.0
1.0
0.6
1.0
0.7
1.0
1.0
1.0
1.0
1.0
0.1
0.1
0.1
0.1
1.0
1.0
1.0
1.0
O. l
0.2
0.2
0.2
0.8
1.0
1.0
1.0
0.8
0.4
1.0
1.0
0.1
0.1
0.2
0.2
0.2
0.1

0.2
0.2

8p

1.5
1.4
1.6
1.6
1.2

1.2
1.2
1.1
1.1
1.5
1.5
1.5
1.5
0.8
0.6
0.6
0.6
1.1
1.0
0.8
1.8
1.2
1.2
1.0
1.0
1.6
1.6
1.6
1.6
1.2
1.2
0.9
0.9
1.5
1.4
1.1
1.1
1.0
1.0
0.6
0.6
1.0
1.0
0.5
0.5
1.5
1.5
1.2
1.2
1.5
1.0

1.3
1.4

M
1885
1894
1893
1892
2144

2294
2294
2346
2346
2134
2134
2138
2138
2143
2055
2322
2218
2307
2216
2476
2367
2442
2442
2560
2557
2395
2395
2397
2397
2579
2579
2766
2754
2511
2518
2525
2525
2394
2353
2552
2548
2394
2385
2540
2523
2633
2633
2643
2643
3291
3350

v = 0.46 fm
Threshold
1878(NN)

(6a)
V
-20
-21
-10
-9
-359

-359
-359
-308
-308
-23
-23
-18
-18
-198
-321
-198
-159
-215
-319
-173
-184
-359
-359
-251
-251
-10
-10
-11
-11
-359
-359
-202
-201
-20
-21
-25
-25
-266
-319
-271
-198
-266
-108
-87
-104
-23
-23
-24
-24
-69
-30

B
7
16
15
14
-320

-322
-322
-271
-271
2

2
6
6
-114
-176
-62
-14
-165
-257
-102
-106
-324
-324
-209
-209
9
9
11
11
-325
-325
-152
-150
0
7
14
14
-217
-259
-151
-64
-217
-48
106
89
-3
-3
7
7
-54
5

O. l
0.2
0.1
0.1
1.0

1.0
1.0
1.0
1.0
0.1
0.1
0.1
0.1
0.5
1.0
1.0
1.0
0.6
1.0
0.7
1.0
1.0
1.0
1.0
1.0
0.1
0.1
0.1
0.1
1.0
1.0
1.0
1.0
0.1
0.2
0.2
0.2
0.8
1.0
1.0
1.0
0.8
0.5
1.0
1.0
0.1
0.1
0.1
0.1
0.2
0.1

8p

1.5
1.3
1.6
1.6
1.1

1.1
1.1
1 ' 1
1.1
1.5
1.5
1.5
1.5
0.8
0.6
0.6
0.6
1.0
0.9
0.8
0.8
1.1
1.1
1.0
1.0
1.6
1.6
1.5
1.5
1.1
1.1
0.9
0.9
1.5
1.3
1.1
1.1
1.0
0.9
0.6
0.6
1.0
0.9
0.5
0.5
1.5
1.5
1.2
1.2
1.5
1.0

Threshold
1878(NN)

1878(NN)

2464(AA)
2158(N¹r7r)
2617(AZ*)
2335(NAvrz )

2132(NE)

2231(AA)

2472(N:-')
2397(N:-vr)

2765(A:-')
2690(A:-7r)
2511(AA~~)

2386(ZZ)

2904(AA)
2788(A:-*~)
2714(A:-vrz. )

2511(Z:-)

2611(NO)
2574(A:-vr)

2434(A:-)

2636(:-:-)
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TABLE II (Continned)

010

003

-1-3

1 —0

-200

-202

-220

-3-3

-3-1

-3-2

-3-1

-400

-600

SCS

CCS

SCS

Scs
CCS

scb
ccb
SCS

Ccs
scb
ccb
Scs
CCS

scb
ccb
SCS

ccs
scb
ccb
Scs
Ccs
scb
ccb
SCS

CCS

scb
CCb

Scs
CCS

scb
ccb
SCS

Ccs
scb
ccb
SCS

CCS

scb
ccb
Scs
Ccs
scb
ccb
SCS

Ccs
scb
ccb
Scs
scb

1888
1888
2112

2263
2263
2322
2322
2132
2132
2134
2134
2128
2043
2312
2206
2278
2185
2461
2352
2410
2410
2540
2537
2391
2391
2393
2393
2548
2548
2749
2736
2509
2504
2515
2514
2375
2323
2540
2536
2375
2358
2469
2452
2630
2630
2642
2641
3274
3341

-14
-14
-385

-385
-385
-331
-331
-29
-29
-23
-23
-212
-333
-210
-170
-236
-337
-188
-199
-385
-385
-271
-271
-14
-14
-18
-18
-385
-385
-219
-219
-30
-31
-35
-34
-285
-337
-283
-210
-285
-124
-99
-116
-29
-29
-31
-32
-86
-38

(6b)
10
10
-352

-353
-353
-294
-294
0
0
2
2

-129
-188
-74
-25
-195
-287
-117
-121
-355
-355
-229
-229
5
5
7
7
-356
-356
-169
-168
-2
-8
3
2
-237
-289
-163
-76
-237
-75
36
19
-6
-6
6
5
-71

0.1
0.1
1.0

1.0
1.0
1.0
1.0
0.2
0.2
0.1
0.1
0.6
1.0
1.0
1.0
0.6
1.0
1.0
1.0
1.0
1.0
1.0
1.0
0.1
0.1
0.2
0.2
1.0
1.0
1.0
1.0
0.2
0.2
0.3
0.3
0.9
1.0
1.0
1.0
0.9
0.5
1.0
1.0
0.2
0.2
0.2
0.2
0.3
0.2

(c)

1.6
1.6
1.2

1.2
1.2
1.1
1.1
1.4

1.5
1.5
0.8
0.6
0.6
0.6
1.1
1.0
0.8
0.8
1.2
1.2
1.0
1.0
1 ' 6
1.6
1.4
1.4
1.2
1.2
0.9
0.9
1.3
1.4
1.1
1.1
1.0
1.0
0.6
0.6
1.0
1.0
0.6
0.6
1.4
1.4

Threshold
1878(NN)

2464(AA)
2158(NN7r7r)
2617(AZ')

2335(NAnvr)

2132(NZ)

2231(AA)

2472(N:-*)
2397(N:-vr)

2765(A:"")
2690(A:-7r)

2511(AA7r7r)

2386(ZZ)

2904(AB)
2788(A:-*sr)
2714 (A:-7r7r )

2511(Z:-)

2611(NII)
2574 (A:"7r)

2434(A=)

2636(:-:-)

1.5 3345(OA)
1.0

, V=0.6 fM.

SIJ
001

010

003

SCS

CCS

SCS

Ccs
SCS

M
1869
1867
1890
1888
2074

V
-46
-48
-20
-22
-422

(6b)
B
9
11
12
10
-390

0.2
0.3
0.2
0.2
1.0

Sp

1.3

1.4
1.4
1.2

M
1873
1873
1885
1885
2084

(6a)
V
-42

-18
-18
-413

8
5
5
7
7
-380

0.2
0.2
0.1
0.1
1.0

Sp

1.3
1.3
1.6
1.6
1.2

Threshold
1878(N'N)

1878(NN)

2464(AA)
2158(NNn. 7r)
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TABLE II (Continued).

-1-3

-200

-202

-213

-3-:1

-3-2

-3-1

-400

-600

scs
ccs
scb
ccb
scs
CCS

scb
ccb
scs
ccs
scb
ccb
scs
ccs
scb
ccb
scs
ccs
scb
ccb
scs
ccs
scb
ccb
scs
ccs
scb
ccb
scs
ccs
scb
ccb
scs
ccs
scb
ccb
scs
ccs
scb
ccb
scs
ccs
scb
ccb
scs
scb

2225
2225
2285
2285
2119
2119
2126
2126
2097
1974
2282
2176
2242
2150
2413
2319
2372
2372
2496
2493
2391
2390
2382
2381
2510
2510
2704
2691
2493
2491
2498
2497
2339
2287
2510
2506
2339
2337
2474
2422
2617
2617
2628
2627
3251
3376

-422
-422
-369
-369
-41
-41
-34
-34
-244
-364
-240
-200
-272
-373
-221
-231
-423
-423
-308
-308
-20
-21
-33
-34
-423
-423
-254
-255
-46
-48
-60
-61
-321
-373
-313
-240
-321
-156
-167
-146
-41
-41
45

-46
-112
-65

(6b)
-390
-390
-332
-332
13
13
6
6
-161
-257
-104
-55
-231
-323
-164
-153
-393
-393
-273
-272
5
4

-5
-394
-394
-214
-213
-18
-20
13
14
-272
-324
-193
-106
-272
-97
-38
11
-19
-19
-8
-9
94

32

1.0
1.0
1.0
1.0
0.2
0.2
0.2
0.2
1.0
1.0
1.0
1.0
0.8
1.0
0.9
1.0
1.0
1.0
1.0
1.0
0.2
0.2
0.2
0.2
1.0
1.0
1.0
1.0
0.2
0.3
0.4
0.4
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
0.2
0.2
0.3
0.3
0.3
1.0

1.2
1.2
1.1
1.1
1.4
1.4
1.4
1.4
0.8
0.7
0.6
0.6
1.1
1.0
0.9
0.8
1.2
1.2
1.1
1.1
1.4
1.4
1.3
1.3
1.2
1.2
1.0
1.0
1.3
1.3
1.0
1.0
1.0
1.0
0.6
0.6
1.0
0.9
0.6
0.6
1.4
1.4
1.1
1.1
1.4
0.6

2235
2235
2292
2292
2123
2123
2130
2130
2097
2012
2281
2175
2249
2255
2429
2320
2382
2382
2509
2506
2388
2388
2386
2385
2520
2520
2717
2705
2497
2497
2501
2500
2344
2292
2508
2504
2344
2340
2437
2421
2622
2622
2630
2630
3260
3375

(6a)
-413
-413
-361
-361
-37
-37
-30
-30
-244
-365
-241
-202
-265
-368
-219
-230
-413
-413
-302
-302
-18
-18
-29
-30
-413
-413
-250
-250
-42
-42
-57
-58
-316
-368
-304
-242
-316
-154
-131
-147
-37
-37
-43
-43
-102
-67

-382
-382
-324
-324
9
9
2
2

-161
-220
-105
-56
-223
-318
-148
-152
-383
-383
-260
-259
2

2
0
-1
-384
-384
-201
-200
14
14
10
11
-268
-319
-194
-107
-268
-94
3
13
-15
-15
-6
-6
-84
30

1.0
1.0
1.0
1.0
0.2
0.2
0.2
0.2
0.9
1.0
1.0
1.0
0.7
1.0
1.0
1.0
1.0
1.0
1.0
1.0
0.1
0.1
0.2
0.2
1.0
1.0
1.0
1.0
0.2
0.2
0.3
0.4
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
0.2
0.2
0.2
0.2
0.3
1.0

1.2
1.2
1.1
1.1
1.4
1.4
1.4
1.4
0.8
0.6
0.6
0.6
1.1
1.0
0.8
0.8
1.2
1.2
1.0
1.0
1.6
1.6
1.3
1.3
1.2
1.2
0.9
0.9
1.3
1.3
]..0
1.0
1.0
1.0
0.6
0.6
1.0
0.9
0.6
0.6
1.4
1.4
1.1
1.1
1.4
0.6

2617(AZ )
2335(NA7r7r)

2132(NZ)

2231(AA)

2472(N:- )
2397(N:-7r)

2765 (A:-*)
2690(A:-vr)
2511(AA7rn )

2386(ZZ)

2904(AA)
2788(A:-' ~)
2714 (A:"7m )

2511(Z:-)

2611(NO)
2574(A:-m)

2434(A:-)

2636(:-:-)

3345 (OO)

other example that shows the predictive power of the
QDCSM and appears to limit the model uncertainty.

(3) In the nonstrange sector (S = 0), the model
predicts an n = (003) state with mass M(003)
2110(+36)MeV. It has the largest binding (320—390
MeV) within the u, d, s three-Havor world. Although its
mass is above KNvr threshold, the transition to NNm
and NK is hindered by the large angular momentum, so
that it is still possible for this to be a narrow resonance.
The large delocalization e = 1.0 means this is a true six-

quark state. All these results are consistent with our
earlier simple relativistic model result [25]. Although the
Skyrmion Inodel calculation of Walet does not obtain a
binding as large as QDCSM result [26], we note that this
model does not obtain sufBcient attraction in the N-N
channel, either, We know of no reason for the predictive
power of the QDCSM shown in the N-N channel to be
totally lost in the L-L channel since both channel re-
sults are stable under the same reasonable variations in
the values of the model parameters. Therefore, we con-
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tinue to recommend this state highly as a good candidate
for discovery of a dibaryon resonance.

There is no other interesting channel in the u, d two-
flavor world as found earlier by Maltman [9].

(4) JafFe's H particle remains as the unique strong
interaction stable dibaryon in the QDCSM. M(H)
2199(+24) MeV is 32 MeV lower than the AA thresh-
old. The delocalization e(so) = 1.0 is also large and the
adiabatic channel coupling WF is quite close to 3affe's
pure symmetric Havor singlet basis. However, because of
the sensitivity to details of the model, it is not possible to
claim that it is indeed a strong interaction stable state.

(5) Another interesting state is the n = (—322) state
[27]. M( —322) = 2529(+25) MeV is 45 MeV lower than
the favorable (A:-m) three-body decay threshold. Also
because of its large angular momentum, its decay into
A:- should be inhibited and so it too might show up as
a dibaryon resonance. Another goad point about this
state is that all the other states with the same quantum
number set are about 100MeV higher than it (not listed
in Table II). This might make it a cleaner resonance to
observe.

(6) The states M( —120) = 2133(+7)MeV, M( —220)
2390(+9) MeV, M( —321) = 2512(+15) MeV,

M( —321) = 2469(+58) MeV, M( —400) = 2637(+10)
MeV, and M ( —600) = 3359(+18) MeV all
have their masses close to the corresponding thresh-
olds: NZ, KZ, Z:-, A:-, :-:-, and OO. Other
states M( —1 2 3) = 2318(+33) Me V, M (—213)
2530(+37) MeV, M( —202) = 2345(+26) MeV, and
M( —323) = 2728(+37) MeV have a very large binding
and their masses are all less than the favorable multibody
channel. These states bear further study. The high-spin
dibaryon resonances seem to be especially worth experi-
mental searches, in addition to the spin-zero H particle.

V. CONCLUSION

states). To get more reliable estimates, especially to be
able to determine whether or not the candidate states are
strong interaction stable requires improvement of many
aspects of the QDCSM:

(1) The QDCSM does not fit the baryon octet and
decuplet perfectly, the largest deviation being 41 MeV
for the . Although the adiabatic potential is obtained
through a subtraction procedure which suggests that can-
cellation of errors is possible, there is no guarantee that
the uncertainty of the strange baryon mass cancels very
accurately.

(2) An adiabatic approximation has been used in this
calculation which should be replaced by a dynamical
channel coupling calculation.

(3) This calculation is nonrelativistic; a relativistic cal-
culation is underway to estimate relativistic corrections.
The preliminary result is that the relativistic and nonrel-
ativistic versions give very similar mass values, especially
for the nonstrange states.

(4) Only N Nscatt-ering has been used to constrain
the QDCSM. Although data are sparser, A-p, and Z-p,
scattering should be used as well. We have begun such
an analysis.

(5) The efFects of qq excitations or quark-meson cou-
plings, which have not been included, may well be impor-
tant, especially for those states which have a mass close
to the lowest two-body threshold.

(6) It would be interesting to include c and b quarks
with a view towards making contact with heavy quark
effective theory. However, the large quark WF difference
between u, d and 6, c would need to be treated first. This
is unlike the s-quark case where the single-quark WF
distortion is not large.

We believe the QDCSM results support the value of
investing additional effort, both theoretical and experi-
mental, using more sophisticated approaches, in order to
concentrate on a few promising dibaryon candidates.

Since Jaffe's first prediction of the H particle [5], there
have been many efforts both theoretically and experimen-
tally to search for dibaryons. Whether all these QCD-
inspired models miss some physics when they are ex-
tended from the single-hadron to the multihadron case,
so that their predictions are not reliable, remains a ques-
tion. The QDCSM is a more realistic model by taking
into account the possible d.ifference of the q-q interac-
tion inside a single baryon and between two color singlet
baryons, by allowing each system to choose its favor-
able configuration in a larger Hilbert space, and by hav-
ing the model constrained not only by qualitatively fit-
ting hadron spectroscopy but also N-N scattering. This
model approach has some moderate success to support it:
It predicts two dinucleon states not too far from the ex-
perimentally known deuteron and quasideuteron states.
If we take this as a measure of the predictive accuracy
of the QDCSM, then there are few promising dibaryon
resonance candidates within the u, d, and s three-Bavor
world, as listed in Table II. Because of the simplicity of
the model assumptions, the quantitative pred. ictions of
the dibaryon masses are uncertain ( 10MeV for non-
strange states and. even larger uncertainty for strange
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APPENDIX

In the dynamical N-N scattering calculation [2], we
first calculate the interaction kernel

(~(s) IHI+(s))
(e(s) le(s))

(Al)

(A2)

where 0„ is the angle between 8 and 8'. We then as-

where H is the six-quark Hamiltonian and 4(S) is the
N Nchannel WF (9-). Then we do a partial wave de-
composition
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sume the diagonal matrix elements ki (s, s) as the efFective
interaction of the l partial wave between two nucleons,

Vi(s) = ki(s, s) . (A3)
This efFective interaction is dependent on the delocaliza-
tion parameter e(s). We vary the value e(s) to get a
minimum for each separation s. The e(s) so determined
is l dependent; i.e. , we have ei(s). Next we substitute the
values e~(s) and ei(s') back into Eq. (A2) to get the final
ki(s, s') for the N %sea-ttering calculation. Finally, we
adjust the screening parameter p or v of Eqs. (6a) and
(6b) to get the best fit to the So and Si N Mph-ase
shifts. This determines the best values, p = 1.0 fm
v = 0.4 fm, because it is a more complete and consis-
tent calculation. However, it takes much more computer
time than the next calculation we describe.

To minimize computer time for systematic dibaryon
search, we tried another approximation, assuming
K(s, s ) as the effective interaction between two nucle-
ons,

V(s) = A(s, s) . (A4)

Then, we varied e(s) to minimize V(s) and so determine
the e(s) as well. This e(s) is partial wave independent.
Substituting the e(s) and e(s') values so determined back
to Eq. (Al), we obtain the final K(s, s ) and then do a
partial wave decomposition to calculate the phase shifts.
Adjusting the screening parameters again to obtain the
best fit, the So and ' S~ channels, we obtain a second
set of values: p = 1.6 fm, v = 0.6 fm . The approx-
imation is not as good as the first one, but also gives a
qualitatively good fit to the N-N phase shifts.

In the dibaryon calculation, we use the second vari-
ation method (variation before partial wave decompo-
sition) to obtain the effective interaction between two
baryons. The results are shown in Tables II(a) and II(c).
As a check on the range of variation, we also used the
intermediate value v = 0.46 fm, and those results are
shown in Table II(b).
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