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The momentum dependence of the off-shell p-~ mixing amplitude is calculated through a two-
quark loop diagram, using nonperturbative meson-quark vertex functions for the p and u mesons,
as well as nonperturbative quark propagators. Both these quantities are generated self-consistently
through an interlinked Bethe-Salpeter equation (BSE) curn Schwinger-Dyson equation (SDE) ap-
proach with a three-dimensional 3D support for the BSE kernel with two basic constants that are
prechecked against a wide cross section of both meson and baryon spectra within a common struc-
tural framework for their respective 3D BSE s. With this precalibration, the on-shell strength works
out at —2.4346(m ) in units of the change in "constituent mass squared, " which is consistent with
the e+e to a+a data for a u-d mass difference of 4 MeV, while the relative off-shell strength
(0.99 + 0.01) lies midway between quark-loop and @CD—sum rule (SR) results. We also calculate
the photon-mediated p-~ propagator whose off-shell structure has an additional pole at q = 0. The
implications of these results vis-a-vis related investigations are discussed.

PACS number(s): 11.10.St, 12.38.Lg, 12.40.Yx

I. INTR, ODUCTION

During the past few years the problem of charge sym-
metry breaking (CSB), which has been one of the long-
standing questions in nuclear physics [1—3], has attracted
a good deal of attention in theoretical quarters [4—ll],
stimulated by new experiments [12,13]. Thus it has been
claimed [4,5] that an understanding of the Nolen-Schiffer
anomaly [1] is possible in terms of the so-called class III
and class IV forms of the CSB potential [3]. In this
respect the dominant contributor on which there is a
broad consensus [2,4—7,10] seems to be the short-range

p -u mixing term in the one-boson-exchange (OBE) po-
tential, while other terms, e.g. , the long-range [one-pion-
exchange (OPE)] CSB effect arising from the n pmass-
difFerence, give much smaller contributions [4]. A more
sensitive test of the intrinsically small CSB terms comes
from the results of the TRIUMF [12] and IUCF-Saclay
[13] experiments on polarized n pscattering, w-hich are
&ee &om Coulomb effects. The crucial experimental pa-
rameter in this regard is the (small) difFerence AA(0) =
A (0) —A„(0)between the neutron and proton analyz-
ing powers measured at an angle 00 corresponding to the
vanishing of the average analyzing power. This quantity
in the Born approximation is proportional to the CSB
potential VcsB whose contribution from the p -~ mixing
effect may be schematically expressed in a fairly standard
notation as in Ref. [7]:

&csB = (NN~H, a~NN~)Go(~~Hcsa~p )

xGo(PoNN~Hin, ~NN) + (Po m ~)

'Present address: National Institute of Adv. Studies, I.I.Sc.
Campus, Bangalore 560012, India.

Here Go is the appropriate V-meson propagator and
(cu

~
HcsB

~ p ) gets its dominant theoretical contribution
from the strong CSB effect of the u-d mass difference
8m& with HcsB p„u„h(m,), and partly from the e.m.
chain p ~ p ~ ~ via vector-meson dominance (VMD)
and/or quark loop. Alternatively, the matrix element
can be estimated from the experimental e+e ~ vr+m

amplitude at the w pole [5], and its consistency, if any,
with the quark loop picture would contribute a test of
the latter. [The other pieces in Eq. (1) which refer to
the strong interaction (CS conserving) background are
not of immediate interest for this discussion. ] A fit to
the AA(0) from the TRIUMF experiment at 477 MeV
[12] has been claimed in Ref. [6]. However, the effect is
energy dependent, as suggested by the IUCF-Saclay ex-
periment at 183 MeV [13]. Further, the significance of
any agreement with theory is tempered by the possibil-
ity of competing CSB mechanisms (e.g. , n prnass difFer--
ence in OPE exchange versus p-~ mixing effect [11,13]),
with considerable &eedom in their respective parame-
trizations, unless such competing mechanisms stem &om
some common theoretical framework capable of demark-
ing their relative strengths (thus necessarily giving the
question a quantitative orientation).

A more serious issue concerns the behavior of the p-
m mixing amplitude, which is the dominant contender
for the CSB effect, when it is extrapolated from its "on-
shell, " timelike value (measured in e+e ~ sr+sr at the
w pole) to its off shell structur-e [7] which is relevant to
the corresponding N-N potential (1) in the spacelike re-
gion of q2. Indeed, it has been claimed [10] that the mo-
mentum dependence of this mixing amplitude, whether
computed in terms of qq loops [7] or of NN loops [10],
can be so strong that the p-u contribution to the CSB
potential is greatly suppressed. even in the r 0.9 fm
region [10,11] where the occurrence of a node in the N
N potential should make this (intrinsically small) ampli-
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tude relatively more visible. Unfortunately, theoretical
estimates [6—ll] of its off-shell effect have varied rather
widely so that the issue is no longer a qualitative one. On
the other hand, the "nuclear" stakes on the p-w mixing
efFect, which seems to play such a crucial role in the CSB
scenario, are high enough to warrant a more systematic
quantitative evaluation of the ofF-shell amplitude which
should leave little scope for parametric uncertainties. To
that end it is useful first to express the ofF-shellness of
p-ur amplitude 8(q ), defined linearly as a function of q

[11], in terms of a dimensionless parameter A as

(2)

in the notation of Ref. [11] (but adapted to the Euclidean
metric), where M is the average p-w mass. The estimates
of A have been found to vary over a wide range, from rel-
atively smaller values (0.6—0.7) predicted by quark loop
mechanisms [7,8] to much larger values (1.7) obtained by
the QCD sum rule method [11,14] with the nucleon loop
method [10] yielding an intermediate value ( 1.0).

The object of this investigation is to offer an inde-
pendent estimate of the ofF-shell measure A as well as
of the related on-shell quantity 0(M ) which is hope-
fully free &om the large scale parametric uncertainties
inherent in any phenomenological approach to these im-
portant quantities. This is sought to be achieved within
the &amework of the quark loop method, with the u-
d mass difference 8m~ as one key parameter. (We do
not address any other questions on the CSB aspects of
the N Ninteract-ion. ) The dynamical method used for
this purpose is an interlinked Bethe-Salpeter equation
(BSE) curn Schwinger-Dyson equation (SDE) framework
characterized by two basic constants up Co [15] which
are precalibrated against hadron spectra (qq, qqq) as well
as several other observable hadronic parameters. How-
ever, since such a &amework is hardly novel and has
been employed by many workers in the past [16] and
present [17,18] we have first attempted (in Sec. II) to
give a comparative assessment of our approach vis-a-vis
the contemporary literature on the subject, without go-
ing a&esh into the detailed motivations which have been
recently described elsewhere [15], the basic concern being
to avoid the introduction of any fresh input parameters
beyond the two already introduced [15],plus the u-d mass
difference bmq. In Sec. III we recapitulate only the es-
sential aspects of our three-dimensional (3D) BSE-cum-
SDE formalism [15] in which the active ingredients are
the hadron quark vertex function I'i, (q) and the dynami-
cal quark mass function m(p), while referring to the sev-
eral recent publications [19—22] for their detailed deriva-
tions. Section IV outlines the derivations of the p ~ w

amplitude at the quark level, with its proportionality to
the u —d mass difFerence bmq being facilitated by fol-
lowing a simple device of difFerentiation with respect to
m~ [7]. This is a quark-level alternative to its hadron-
level counterpart which emphasizes the proportionality
to (m —m ). The detailed steps which are otherwise
routine are skipped for brevity, without fear of any pos-
sible misunderstanding that our calculation necessarily
refers to a p-w quark loop which is proportional to bmq,
and not, e.g. , to a p-p quark loop which is not so propor-

tional [because of an obvious difference in phase which
comes about from the isospin structures (uu p dd) of po

and w, respectively]. See also the Appendix. The con-
tribution of the p-p-~ chain to the p-~ amplitude is also
included for completeness. The last section gives a brief
discussion of the results vis-a-vis contemporary investiga-
tions [7—ll] through a direct comparison of their effect on
the p-w mixing potential, Eq. (1), at the "node" r 0.9
fm [10,11] of the N-N potential.

II. QUARK LOOP METHOD IN 4D VS 3D BSE

In the QCD —sum rule (SR) method, the inputs are
(qq), b(qq), and the current u, d masses which are more or
less under control. However, the uncertainties arise from
the matching of the two sides of the "duality" equation
by the standard methods [14] to obtain the necessary
stability in the sum rule structure, which is the key to
the determination of the hadronic parameter A [11].

In the quark loop method [7,9], on the other hand,
the dynamics resides in the hadron-quark vertex function
and constituent quark mass [7], or, better, the dynamical
mass function, and these two quantities in turn are inter-
linked through the Schwinger-Dyson and Bethe-Salpeter
equations, a formalism which, though well known since
the 1970s [16], has been greatly revived in the 1990s
[17,18]. These approaches also require in practice a gen-
erous degree of parametrization [17,18] of the basic enti-
ties, since any exact solution of these coupled equations is
still a distant dream. Therefore any attempt to adapt this
methodology to the present problem [9] must also share
the corresponding parametric uncertainties [18], without
prior checks from other sectors of hadron physics, no-
tably spectroscopy as well as some sensitive coupling con-
stants and form factors. A broad perspective on these ap-
proaches [17,18] has been discussed more fully elsewhere
[15], in the context of an alternative program with a sim-
ilar philosophy [19—22] whose continued emphasis on the
spectroscopy sector stems from its sensitivity to the "glu-
onlike propagator" in the infrared region (a paraphrase
for the q-q potential in the more ordinary language).

We shall not go into the relative merits of the QCD-SR
[14] and the BSE-curn-SDE methods, which have been
discussed elsewhere [15]. However, in the context of the
latter it will be useful to make a distinction between
two broad types, the "spectroscopy-oriented" type [19,20]
which depends on a basically 3D approach, and the more
"orthodox" 4D type [17,18]. For purposes of this paper
we shall term these two BSE-curn-SDE methods as "3D"
and "4D" BSE's, respectively, for short. Both make use
of the two-quark loop integration to calculate the p-~ am-
plitude but this difFerence in terminology emphasizes the
difference in the parametrizations of the infrared region
of the gluonic propagator, which are 3D and 4D, respec-
tively. While the 4D form is prima facie more natural,
the theoretical reasons for the 3D form are no less per-
suasive and the interested reader will find the necessary
details on its theoretical motivations [23] f'rom various
angles in [15,22]. Here we shall merely cite the chief ex-
perimental reason, viz. , the O(3)-like spectra in the Par-
ticle Data Group tables [24] continually for four decades
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which provide the bedrock of foundation for any theoreti-
cal effort at a microscopic description of quark structure,
and our 3D BS program [19—22] has been specifically de-
signed to meet this requirement. On the other hand,
a literal consequence of the 4D form of parametrization
of the in&ared part (con6ning) of the gluon propagator
[18] would be to predict O(4)-like spectra which contra-
dicts experiment [15]. The reason why such O(4)-like
results are not entirely visible in some of these spectral
predictions [18] is merely because of their consideration
of mainly the ground state masses L = 0, since the fuller
implications of the 4D forms would not start showing up
until the predictions include the I excited states [15].

Since some quark loop results of the 4D BSE [18] are
already available [9], along with those of the @CD-SR
analysis [11], it should be of considerable interest even
without prejudice to the question of O(3)- versus O(4)-
like spectra (important as it may be in its own right),
to record for comparison the corresponding results of the
3D BSE [15] in view of their parameter-free nature. This
may be useful in the context of the current controversy
[7,9—11] on the off-shell strength of the p-u mixing ampli-
tude which is an important parameter for charge symme-
try breaking in the N-N force. We recall in this connec-
tion that the 3D BSE formalism is speci6cally calibrated
to both q-q [20] and qqq [21] spectra, both in excellent
accord with data [24], as well as to a representative list of
hadron couplings [25,15,19]. All this has been obtained
with just two basic constants Co and uo common to both
types, since a third input, the quark mass (constituent),
gets dynamically generated through the (chiral symme-
try breaking) solution of the SDE [15,16], so that in this
(spectroscopy-oriented) BSE-curn-SDE approach there is
practically no scope for any free parametrization beyond
the ones noted above, a condition which is probably im-
portant for the determination of the rather sensitive pa-
rameters 8(M ) and A under study.

III. 3D BSE-CUM-SDE FORMALISM

The purpose of this paper is to present the results of
this calculation in the most economical fashion, omit-
ting all but the essential details. To that end we shall
use [11] for the definitions and notations of the crucial
parameters involved, and calibrate our language to that
of [7,9] as far as possible for the definition of the loop
integrals except for the implicit understanding of a Eu-
clidean metric notation underlying our formulation, and
the use of P~ for their q„notation since the latter has,
in all our formulations [15,19,22], stood for the internal
four-momentum of the quarks within the hadron, while
P„is the four-momentum of the (composite) hadron. As
to the 3D BSE formalism itself, we shall make free use
of [15,19] but recapitulate some essential results so as to
keep the paper within reasonably self-contained limits.

The quantities we shall explicitly calculate in our for-
malism are the following. (i) The function g(p ) with an
explicit proportionality to b(m2) where m is the con-
stituent (dynamical) quark mass squared, which is ob-
tained directly from an analytical formula (given below)

for II(P ) [7], by a simple process of differentiation with
respect to m2. (See Appendix for derivation. ) (ii) The
parameter A 11] which can be explicitly identified from
the linear dependence of this quantity on the inverse me-
son propagator (P + M ). (iii) The analogous p-u po-
tential mediated by an intermediate photon, so that its
full off-'shell structure is a chain of two linear off-shell
quantities g~ ~ and g ~ to be compared with the 0 func-
tion, Eq. (2) for p-u mixing due to the "strong" effect
of u, d difference which involves this linear factor in the
off-shell quantity (P +M ) only once. [Despite the com-
parative weakness of the e.m. effect, its off-shell scenario
is, on this account, somewhat different Rom that of the
(strong) u-d effect: this point is discussed further at the
end. ]

As to the actual numerical values the only unknown
quantity in our formalism is the u-d mass difference which
we shall keep as a free multiplicative factor for 0(M ), to
facilitate discussion at the end on this point. The main
results are

0(M2) = —1289(MeV) x 8(m~), A = 0.99 4 0.01, (3)
where for b(mz) it is usual [9] to take md —m„.

Our formalism is based on the covariant instaneity
ansatz (CIA) [19] which gives the Bethe-Salpeter kernel
K(q, q') for a quark-antiquark system a 3D support ex-
pressed through its dependence on the component of q„
transverse to P„for which we use a caret notation, i.e. ,

qp = q~ —(qP )P~ /P (4)

so that K(q, q') = K(q, q') for a 3D support [19]. As
a result of this ansatz, there is an exact interconnection
between the 3D and 4D forms of the BSE [19] and the
hadron-quark vertex function I'~(q, P) becomes a func-
tion I'Ir(q) of a single argument q„.It is usually conve-
nient to take out the Dirac matrix from this structure,
viz. , p5 for a pion, ip for a p meson, etc. ; the multiplying
scalar factor I'I, (q) which carries the dynamical informa-
tion has the following universal structure [19]:

&(q) = exp[ —q'/(»')]
emerges (for harmonic confinement) as a solution of the
3D BSE, with P2 obtained analytically from the input
structure of the BS kernel [15,20] and checked against
spectroscopy [24]. Its value for the p-ur case is 0.0692
[20]. In Eq. (6), M is the hadron mass and m~ the con-

I'h(q) = N~D(q)P(q)/(27t. ) ~ .

Here D(q) is a 3D denominator function and P(q) the
corresponding wave function, which together satisfy a
Lorentz-covariant Schrodinger-like equation of the form
DP = J'KP, representing the 3D reduction of the 4D
BSE as a result of the above ansatz. The quantity NH
is the standard 4D BS normalizer which goes with the
vertex function (5). The D function for equal mass kine-
matics has the simple form

D(q) = 4(u(~' —M'/4), ~' = m,' + q',

while the P function is model dependent. In particular,
a Gaussian form
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stituent (dynamical) quark mass. Its momentum depen-
dence was obtained in [15] by simply relating the quark
mass function to the pion vertex function which must re-
duce to each other in the chiral limit of vanishing pion
mass (M = 0), by virtue of the Ward-Takahashi iden-
tity for the axial-vector vertex function [16]. Therefore
by specializing Eqs. (5)—(7) to the pion case in the limit
M = 0, one immediately obtains the formula [15]

m(p) = m (m + p ) ) exp( —p /2P ), (8)

where the quantity P (=0.031) for the pion case [20] is
still governed by the same BS dynamics [15,20], but now
(because of the Goldstone nature of the pion in the chiral
limit) the normalization has had to be fixed anew by
identifying the "constituent" mass mq with this function
at its zero-momentum limit [m(0) = m~]. In terms of
m(p) the nonperturbative quark propagator Sp(p) is now
given by

[Sp(p)] ' = i[m(p) + ip p], (9)

IV. THE p-~ AMPLITUDE

After collecting these essential ingredients of the 3D
BSE formalism, we now turn to the central quantity, viz. ,
the two-loop contribution to the meson self-energy oper-
ator II„„(P2)[7,9,11] which is expressible as

x Tr[ip. pSp(-P+ q)ip cuSp(2P —q)], (10)

where rh, (q) is the scalar part of the vertex function de-
fined by Eq. (5), and the )(), u symbols on both sides of
(10) stand for their respective polarization vectors. At

where the Landau gauge is understood [A(p ) = 1 [17,15]]
and m(p) is given by (8). This nonperturbative mass
function was employed in [15] for evaluating the quark
condensate (qq) as an explicit quadrature:

6 „,. m(P)
Qp'+ m(p)'

giving a value in the QCD-SR range [28]; the meaning of
p was also clarified therein.

An important property of the structure (5) for the
quantity D(q) in the hadron-quark vertex function is that
it prevents, through a general cancellation mechanism
[19,22], the occurrence of overlapping pole effects due to
integration over the timelike component of the loop mo-
mentum in any quark loop integral, and thus automati-
cally preempts the possibility of any "free" propagation
of quarks that might otherwise occur. It thus may be
regarded as a simple 3D alternative to the construction
of quark propagators as entire functions through more
elaborate models [18,9], but with the added benefit of a
parameter-free description (cf. [9]). This structure will
play a key role in simplifying the loop integral for the
meson self-energy operator from its 4D scalar form, Eq.
(11), to the 3D form, Eq. (13), as given below.

where [17,20,25]

A, , = m'+ (P/2 + q)' (P' = —M').

The integration over the longitudinal (timelike) compo-
nent of q„,viz. , M der (0. equals qP/P ), is carried out
again as in [19,22] wherein the structure (6) of the D
function ensures an exact cancellation of the effects of
overlapping singularities arising from the a-pole residues.
The resultant 3D integration over d j is expressible as

&(&') = —2~V f ~'~4*(q)I~'(q)l~ —&(~)

x (P' + 4q'/3)]. (13)

Equation (13) brings out explicitly, without further ado,
the linear structure of the mass operator in the off-shell
variable P . The BS normalizer N&~ in Eq. (13) is itself
an integral of the same kind as II(P ), and is formally
defined for any V meson through the equation [25,19]

2iP„Nv ——(2~) d q[rh(q)] Tr(ip VSp(2P + q)ip„

xSp(2P+ q)ip VSp(2P —q)), (14)

whose integral over the timelike component of q~ can be
carried out exactly as above to give a formula analogous
to Eq. (13):

N~ = 2 d {g g 44) & —g 3

= 0.0502 GeV (15)

The quantities w and D in both Eqs. (13) and (15) are
defined as in Eq. (6), which in turn carries the explicit in-
formation on the m dependence of both these quantities.
This fact facilitates a simple differentiation with respect
to m2 under the integral signs in Eqs. (13) and (15) in
order to evaluate hll(P ) which precisely represents, with
no further normalization, the desired quantity ())(P2) de-
fined in Eq. (2), while the values of its two crucial param-
eters as predicted by this model are already listed in Eq.
(3). In obtaining the latter we have used the equality of
b(m ) with 2m~8(m~), and employed the "spectroscopic"
value 265 MeV for m~, the constituent mass [20,21]. For
the evaluation of the integrals (13) and (15) we have not
explicitly considered the momentum variation (8) of the
dynamical mass, but left it at its "constituent" value mq
corresponding to zero momentum. This has been done

this stage the scalar vertex function is common to p and
u, since their mass difference due to the u-d effect will
be automatically taken care of via standard differentia-
tion with respect to m, cf. [7] (see below). Simplifying
the trace in Eq. (10) and checking on current conserva-
tion (which is routinely satisfied) we can write II&„(P)
as (b„—P„P„P2)II(P2) where, following any one of
[19,22],

11(P') = 2i(2~) 'Nv

4, 2 &i+ &2
x dgD g g
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mainly for simplicity and transparency in carrying out
the differentiation process. Although not strictly valid,
the scope of error on this account is likely to be small
for two reasons: (i) the main burden of momentum vari-
ations in the two integrals (13) and (15) is carried by the
meson-quark vertex function whose effect has been fully
incorporated via Eqs. (5)—(7); (ii) the mass function, Eq.
(8), maintains a sort of plateau (250—300 MeV) in the re-
gion of integration which provides the bulk contributions
to the integrals. Our estimate of error, based on some
trial runs with the momentum-dependent mass function,
is about 10%. On the other hand, the explicit analytic
structure in mz of the integrals (13) and (15) greatly
minimizes the possibility of further numerical errors that
would be inherent in the differentiation process in the ab-
sence of a (nonperturbative) analytical form which is usu-
ally more dificult to ensure than, e.g. , in a point vertex
structure [7] without additional parametric assumptions
on the way, e.g. , [9].

Before comparing our results with others we wish to
record for completeness the predictions of this model on
the photon-mediated chain of p-p-~ mixing amplitude
which we denote by 0~(P ) in the same relative normal-
ization as Eq. (2). Here we need no longer distinguish
between m„and mg and take a simple proportionality
of the p-p and u-p amplitudes to a common dynamical
quantity gv(P ) defined by

gv(P )V„=—if d qPq(q)Tr(iq Vgg(q+P/2)iq„

x S~(—q + P/2)]/~2, (16)

the multiplicity factors being e and e/3, respectively, and
V~ standing collectively for p or u. The other symbols
are as defined in Eq. (10) and earlier. The evaluation
of gv(P ) is on lines similar to Eq. (10), but actually
simpler and leads to the explicit formula

gv(P ) =4 Nv[2m + 4P —(P + M )/2]. (17)

Writing it in a form analogous to Eq. (2), we have

gv(P') = fv(M')[1 —)(d(1+ P'/M')], (18)

where the an-shell value fv (M ) and the ofF-shell coeK-
cient p are

fv(M ) = gv(M ) = 0.1608 GeV,

)(d = M /4(m + 2p ) = 0.7197.
(19)

The final result for the complete photon-mediated p-~
amplitude is

ep(P') =
3

gv(P') p, gv(P'), (20)

where we have explicitly shown the photon propagator
in the middle to bring out the "extended" nature of the
off-shell extrapolation due to the photon-mediated mix-
ing compared to that due to the u-d effect, despite the
smallness of (20) compared to (2). Unlike (2) there is no
uncertainty in (20) within this model, though the on-shell

value (P = —M ) is a bit too high (see the discussion
below):

0~(M ) = +1316 MeV . (21)

The off-shell effect, on the other hand, is best expressed
through the corresponding N Np-otentials [11]which are
given by

V(p-(u) = —[())(M )/2M] [1 —(2A/Mr)] exp( —Mr), (22)

&(p& )-=-[0 (M')'/M']((1 —&)'/ + [(2p —1)/ ]

x exp( —Mr) —(M/2) exp( —Mr) }, (23)

respectively, where a common factor g(pN)g((idN) [11]
has been suppressed from the last equations. Equation
(22) has no counterpart of the 1/r term in (23).

V. RESULTS AND DISCUSSION

To put the results of this investigation in perspective
with those in [7—ll] we should first note that in this
spectroscopy-rooted approach there is little scope for any
significant variation of the input parameters (wo, Co, and
mz) whose respective values (158 MeV, 0.27, and 265
MeV) can be traced all the way back to the BS kernel
itself [20], without efFecting a simultaneous change in the
(already good) fits [20] to the observed meson spectra
[24], and in the more recent (equally good) fits [21] to
the baryon spectra [24] with these very parameters. It
is with this constraint that the numbers obtained above
may be viewed vis-a-vis those in [7—ll], especially in re-
spect of the off-shell parameter A, Eq. (2), which can be
compared with almost all of them. However, the on-shell
value 0(M ), Eq. (3), is quite specific in this model, and
could at best be compared with the predictions of, say,
chiral Lagrangian models [8], except that the available
prediction [8] refers to 2r -g mixing and cannot be used
for a direct comparison.

The only uncertainty in our on-shell value, Eq. (3),
arises from a corresponding uncertainty in the value of
b(mz) for which a natural substitute, following Politzer
[26], would be (mg —m„).The latter quantity has been
discussed in great detail in [11] to which we refer the
interested reader, but for a definitive estimate it should
be reasonable to take a value of, say, 4 MeV [9], which
is well within the limits of the [ll] analysis. With this
value we get 0(M ) equal to —5156 MeV2, which should
be compared with the value (—4520 + 600) obtained
from e+e ~ sr+sr data [5] after taking account of the
p —+ p —+ u chain which gives a smaller contribution of
opposite sign, viz. , +1316, Eq. (19). Its inclusion gives
the net value —3840 which is still within the experimen-
tal range [5] (taking account of the uncertainties of the
u-d mass difference).

The somewhat larger value of g~(M2) compared to the
VMD value [27] 610 MeV quoted in [11]may in turn be
related to the quantity gv(M2), Eq. (19), which gives
0.1608 GeV . This number, when divided by M~ = 0.775
GeV, precisely translates, in the OCD-SR [28] notation,
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to the result f~ = 215 MeV, to be compared to the quoted
value of 200 MeV [28] needed for agreement with the
p —+ e+ e width. This is the extent of our overestimate
of 0(M2) compared to the VMD value [27,11],but never-
theless tolerable enough to warrant a discussion (below)
of the off-shell aspects of p-p-u mixing along with those
of the main (u-d) term.

The off-shell prediction is dominated by the parameter
A, Eq. (2), at the value 0.99, Eq. (3), and its photonic
counterpart p defined in Eq. (19) at the value 0.720. Our
value of A is rather below the @CD-SR range (1.43—1.85)
[ll], implying a "softer" off-shell effect in this quark loop
model than the "harder" effect in the @CD-SR approach,
as already noted in [11] for @CD-SR versus quark loop
methods: A smaller value of A would tend to postpone
the onset of attenuation of the p-~ mixing potential due
to the off-shell efFects to somewhat shorter distances, as
measured by the "critical distance" [11]r = 2AM, which
is also seen from Eq. (22). In a similar way, the off-
shell effect of the photon-mediated p-~ mixing, as mea-
sured by the parameter p = 0.720, Eq. (19), produces
the potential Eq. (23), but its (1/r) term has no coun-
terpart in Eq. (22). Taking note of the opposite signs of
the two efFects, the following scenario emerges. The two
short-range terms of (22) get duly reduced by the two
corresponding terms of (23) by about 20—25 '%%uo. However,
the long-range (1/r) term of (23), which has no counter-
part in (22), reinforces the exp( —Mr) term of the latter,
again by about 20—25'%%uo near the critical distance [9,11],
but continues with increasing strength down to shorter
distances and therefore further postpones the attenuation
by another (small) amount. For brevity we omit further
discussion [11].

Finally, we wish to comment on the magnitude of our
A value, 0.99+0.01, vis-a-vis other determinations [7—11].
We have checked on the possible variation in this quan-
tity due to the (neglected) efFect of the momentum de-
pendence of the dynamical mass Eq. (8), and found the
effect to be ( 10'%%uo. There is little scope for further varia-
tion in this otherwise "rigid" description, unless a totally
different set of input parameters (Co, (uo, m~) from the
ones [20,21] employed here produces an equally good fit
[20,21] to the observed spectra [24], which is rather un-
likely. Nevertheless, this value seems to lie about midway
between other quark loop calculations [7—9] and QCD-
SR results [ll], though somewhat nearer to the former
than to the latter; rather surprisingly, it is quite close
to the nucleon loop value [10] of about unity [11]. It is
also in fair agreement with the corresponding results [8]
for vr -g mixing obtained from chiral Lagrangian models
[29], though a similar result for the analogous case of p-u
mixing by the same method [29] is not yet available. Of
course a nonlinear dependence of 8(P ) on P, such as
attempted in [9], may well change this (linear) scenario,
but this requires more effort.

To summarize, we have outlined an explicit calculation
of the p-w mixing amplitude, both on and ofF shell, in the
form expressed by Eqs. (2) and (3), using a 3D BSE-cum-
SDE approach which is attuned. to hadron spectroscopy
of both varieties simultaneously [20,21]. The on-shell
value agrees with experiment [5], while the off-shell pa-

rameter A is rather close to unity, signifying a change of
sign for 8(q2) in just the transition region between space-
like and timelike momenta.
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AP PENDIX.

The self-energy II(P ), Eq. (13), for p or w, can be
straightforwardly adapted to give the p -u transition self-

energy denoted by hII(P ) which is directly identifiable
with the desired quantity 8(P ), Eq. (12), ofF the mass
shell. The quantity hII(P2) which, as the notation im-

plies, is obtained by difFerentiation with respect to m
under the sign of integration in Eq. (13), arises as follows.

Since the isospin functions of p and u are ~uu ~ dd)/~2,
respectively, and since they are each normali. zed to unity,
the self-energy formula via the respective quark loops is
formally given by Eq. (13) for either meson as a 2 x 2

matrix, to take care of the mass difference between the
u and d quarks which affects the quantity m appearing
inside the integral. However, the p -u transition mass,
which works out as an overlap of (uu —dd[ with ]uu+ dd),
will be equal to the difference between the corresponding
expressions II(P ) with m corresponding to the u and
d quarks, respectively, and will "vanish" unless this dif-
ference is properly taken into account. This last is most
simply achieved through differentiation with respect to
m', cf. Ref. [7].

In the present case, the functional dependence on m is
carried primarily by the quantities Nv given by Eq. (15)
and D(q), tu given by Eq. (6). This is a full-Hedged non-
perturbative counterpart of the corresponding perturba-
tive calculation in Ref. [7]. Additional m dependence
comes about in principle from the structure of the inverse
range parameters P because of their dynamical depen-
dence on the input parameters (uo, Co) of the BS kernel

[15,20,25] so as to relate to the spectroscopy [20,21]. This
is unlike the free parametrization of such quantities (in
Gaussian form) usually exnployed in other phenomenolog-
ical descriptions of the qq wave functions [30] in which no
such dynamic significance was sought for them. However,
in this paper we shall not press this detailed aspect of the
dynamics any further at this stage, and rest content with
taking the average value of P at 0.069 GeV [20] for

p, u, so that the m dependence comes about only from
the explicit structures (15) and (6) for Nv and (D, u),
respectively.

To compute hII(P2), it is convenient to rewrite Eq.
(13) as

(Al)

where J = N&, and I stands for the integral on the
right-hand side (RHS). The linear dependence of I on
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bII(P ) = bm [JBI/Bm —IBJ/Bm ]/J, (A2)

which shows the explicit proportionality to bm as well as

P2, and hence also of bII(P ) after differentiation, comes
about from routine simp1ifications leading from Eq. (10)
to Eq. (13), using inethods already explained in Refs.
[19,22,25]. Note that J(m ) does not depend on P since
the normalization is calculated on shell (Pz = —M2).
Then

the linear dependence of the RHS on P S.ince bII(P )
is exactly equal to 0(P ), its identification with Eq. (2)
leads to the numerical results given in Eq. (3) of the text,
on the contribution of the strong CSB efFect arising from
the u-d mass difFerence.

The ofF-shell P dependence of the p-mediated p -w
mixing effect is already given in Eqs. (16)—(21) of the
text. In particular, Eq. (20) shows that the P2 depen-
dence of this contribution is quite difFerent from linear.
The resultant efFect is discussed in Sec. V of the text.
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