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A potential deduced from low energy *O(a, a) elastic scattering
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The properties of the a+-'60 interaction in the vicinity of the Coulomb barrier are investigated by
constructing (real, energy-independent) potentials which reproduce — when resonant nonpotential
contributions are added to the potential background — all available *O(a, ) elastic scattering
angular distributions and excitation functions between 3.5 and 9 MeV incident energies. These low
energy potentials, which are constructed for angular momenta ranging from 0 to 5, are in line with
the global potential extracted from the analysis of the higher energy data (20 < E, < 150 MeV),
but a slight angular momentum dependence, and an increase of the barrier height of about 1 MeV,
are found necessary to reproduce the low energy data; this effect is qualitatively similar to that
predicted by calculations taking into account antisymmetrization or dispersion relation effects. These
potentials reproduce the properties of the first three members of the *°Ne K™ = 0] “higher nodal”
rotational band, which dominate the scattering in the investigated energy range, and of the J™ = 57
member of the K™ = 0~ “inversion doublet” band. By taking into account the energy dependence
of the interaction at lower energy, these potentials also give a nice account of the properties of the
J™ =17 and 37 members of the same band, and are found to be compatible with the properties of
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the first three members of the 2°Ne ground state band.
PACS number(s): 21.60.Gx, 24.10.Ht, 25.55.Ci, 27.30.+t

I. INTRODUCTION

The investigation of the properties of the nucleus-
nucleus interaction in the vicinity of the Coulomb barrier
has focused considerable interest in the recent years [1—
4], in connection with the so-called “threshold anomaly”
seen in elastic scattering, and with the enhancement of
the fusion cross sections observed at low energies (see Ref.
[1], and references therein). Most of these studies con-
centrate on heavy-ion systems where transfer reactions
and the excitation of collective modes are thought to be
instrumental in enhancing fusion at energies near or be-
low the top of the barrier. The threshold anomaly, which
manifests itself by a rapid increase of the strength of the
real part of the optical potential when energy decreases,
could be linked to the fusion enhancement since it results
in a decrease of the potential barrier height, which in turn
could reflect dynamical polarization effects induced in the
one-channel optical potential by, e.g., transfer reactions.
This conjecture is partly supported by explicit coupled-
channel calculations. Another, more global, line of attack
is provided by the so-called dispersion relation approach
[5-7], where the effect of the opening of all nonelastic
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channels above the threshold on the real part of the op-
tical model potential is treated by taking into account
the energy behavior of the empirical imaginary poten-
tial. It is not yet completely clear if this contribution
is attractive or repulsive in the barrier region relative
to potentials at energies above the barrier since its de-
tailed radial behavior depends on the parametrization of
the energy behavior of the imaginary potential [7]. On
the other hand, microscopic calculations of the resonat-
ing group method (RGM) [8-10] or fishbone model [11,
12] types — mainly carried out for the o460 system —
indicate that antisymmetrization effects are also likely
to induce rapid changes in the potential strength in the
barrier region as the incident energy decreases.

The observation of threshold effects is generally diffi-
cult in the case of heavy-ion scattering since the interac-
tion is dominated at low energy by Coulomb excitation,
and thus by a very long-range polarization potential [13],
which tends to mask the specific nuclear effects. Also
potentials extracted from the analysis of heavy-ion elas-
tic scattering data are generally poorly determined, since
the latter essentially fixes the potential strength around
the so-called strong absorption radius, making a detailed
extraction of energy dependencies of the potential rather
problematic. A rather indirect evidence is provided by
the fact that the renormalization constant used in sim-
ple models like the folding model frequently varies rapidly
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with the incident energy around the Coulomb barrier [14].
The clearest evidence for a threshold effect is displayed by
the behavior of integrated quantities like volume integrals
or other moments of the potential [7], which tend to be
determined with better accuracy than the individual po-
tential parameters, and which are known with reasonable
accuracy for lighter, more transparent systems like 2C
+ 12C [1]. Even in these cases the low-energy data are
plagued with the discrete ambiguity phenomenon, and
one must invoke continuity arguments to follow the po-
tential from the high energies down to the Coulomb bar-
rier region [15]. Whatever the accuracy attained, changes
in the potential shape seem to remain out of reach of
these empirical studies. Other indirect, and also more
model-dependent, indications for threshold anomalies in
the potential rely on the analysis of inelastic or transfer
reactions or of anomalous fusion.

In view of the importance of a clear understanding
of the dynamics of the nucleus-nucleus interaction, and
of its implications for a correct description of inelastic,
transfer, and fusion processes, it is worth striving to ex-
tract the most precise possible information [16] on the
(presumably few) systems where strong absorption does
not hamper a quantitative determination of the potential.
Clearly heavy-ion systems are ruled out from this respect,
and even light-ion scattering like a-particle scattering is
rarely adequate since even in this case the optical poten-
tial is generally not known on sufficiently broad radial
and energy ranges. Of course, conclusions drawn from
such light-ion systems should not be extended without
caution to more massive ones; for example dispersion re-
lation effects, whose importance grows when the opening
of nonelastic channels becomes more rapid [1], are likely
to be larger for heavy-ion systems where many such chan-
nels are available when the incident energy reaches the
top of the Coulomb barrier. At the same time, nonlocal-
ity effects should lose their importance since their range
is expected to become small as compared to the radius of
the interaction potentials [17]. However a clear evidence
for an energy dependence of the potential shape in light-
ion scattering could be a very useful test for the various
models available [16].

One of the most interesting systems for exploring the
low-energy behavior of the nucleus-nucleus interaction is
the o + 10 system, which was studied some time ago
by the present authors from this point of view [18]. One
of its decisive advantages lies in the fact that because of
the doubly-closed shell nature of the partners, the first
inelastic thresholds are substantially higher than the top
of the Coulomb barrier (Vg ~ 4 MeV). Therefore when
the incident energy reaches the top of the barrier, the
scattering remains purely elastic, and even after crossing
the first inelastic threshold (which occurs at E, ~ 7.5
MeV), absorption effects remain negligible up to about
10 MeV incident energy since a phase shift analysis using
purely real phase shifts proved to be feasible up to that
energy [19].

Furthermore, the absorption remains comparatively
low even at higher energies, causing the well-known
anomalous large angle scattering (ALAS) phenomenon,
and making possible a precise determination of a unique
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global optical potential from about 20 to 146 MeV inci-
dent energy [20]. This potential, which is weakly energy-
dependent, was substantiated quantitatively by micro-
scopic RGM-WKB calculations [21, 22]. Its low-energy
properties are similar to those of the folding potential
built by Buck et al. [23] to describe the properties of the
bound and quasibound cluster states of 2°Ne. Its real
part binds a number of unphysical states with a principal
quantum number N = 2n + £ < 8 [20], which in an or-
thogonality condition model (OCM)-type interpretation
correspond to the so-called forbidden states of the RGM
for that system and are therefore to be discarded, and
physical states which group into rotational bands charac-
terized by principal quantum numbers N = 8, 9, and 10,
which correspond to the well-known K™ = 0},0~, and
07 a-cluster bands in 2°Ne [23,24]. A recent reanaly-
sis of Abele and Staudt [25] including new measurements
essentially confirmed the results of the global analysis of
Ref. [20].

In Ref. [18], the low energy properties of the o + 160
potential were extracted by analyzing the high precision
data of Buser [26], extending on the whole angular range
between E, = 3.5 and 4.9 MeV. It was shown in that
study that a quantitative description of these data could
only be reached provided (i) the interaction potential is
made slightly angular-momentum dependent; indeed an-
gular-momentum independent potentials cannot repro-
duce the near-degeneracy of the two broad J™ = 0" and
27 resonances (I' ~ 1 MeV) (which correspond to the
first two members of the 0 band) found by McDermott
et al. [27] around 4.9 and 5.1 MeV incident energy, re-
spectively, and whose low-energy tails dominate the scat-
tering data of Buser; (ii) the nuclear interaction is made
less attractive in the surface region with respect to that
needed at higher energy, making the barrier significantly
higher at these low energies.

Another more recent study [25], carried out within the
folding model approach, essentially confirmed the first
result of [18], but a renormalization of the barrier height
was not found necessary in describing the low-energy
data. This (apparent) discrepancy prompted us to re-
sume our original analysis, extending it on the broadest
energy range possible, and trying to estimate its possible
model dependencies. We found that a consistent analysis
of the available elastic scattering data from 3.5 to 9 MeV
laboratory energy makes possible a rather unambiguous
determination of an a+'0 interaction potential for an-
gular momenta ¢ ranging from 0 to 5. This potential
displays a significant enhancement of the barrier height,
which tends to decrease with increasing £. In addition it
gives a nice account of the 2°Ne rotational bands which
have the a+1%0 (g.s.) cluster structure.

The results of our new analysis are presented in Sec.
II. A brief summary and our conclusions appear in Sec.
I11.

II. POTENTIAL ANALYSIS OF THE DATA
UP TO 9 MeV INCIDENT ENERGY

A. Phase shifts

As stressed in the Introduction, o + %0 scattering
remains essentially elastic up to about 10 MeV incident
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energy. Indeed the first inelastic threshold, which cor-
responds to the excitation of the J™ = 0%, E, = 6.05
MeV state in 160, is only reached at E, ~ 7.5 MeV, and
even above that energy it proves possible to reproduce
the existing angular distributions and excitation func-
tions in a phase shift analysis using purely real phase
shifts up to about 10 MeV incident energy [19]. This
phase shift analysis aimed at extracting the parameters
(energies, widths) of the numerous resonances observed
in the studied energy range, and it complements an ear-
lier analysis of McDermott et al. [27] between 3.7 and 6.5
MeV. Above 10 MeV the fits of John et al. [19] deterio-
rate rapidly, pointing to the need of using complex phase
shifts, which was not attempted in that paper in view of
the ambiguities which affect this type of multiparameter
analyses. Below 10 MeV a parametrization with phase
shifts up to £ = 6 was found to be sufficient to fit the
data.

The more recent measurements of Buser [26] between
3.5 and 4.9 MeV made possible the extraction of the £
= 0 to £ = 3 phase shifts, which connect smoothly to
those of John et al. [19] at 5 MeV and agree reasonably
well with the solution of McDermott et al. [27] (note
that in the latter work the quantities displayed include
a hard sphere contribution, which must be subtracted
before being compared with Buser’s phase shifts). The
angular distributions of Buser are dominated by the low-
energy tail of two very broad resonances with £ = 0 and /¢
= 2, which were also observed by McDermott et al. [27]
and are now interpreted [24] as corresponding to the first
two members, with J™ = 0" and 2%, of the K™ = 0f
higher nodal band in 2°Ne. The broad ¢ = 4 resonance
observed at E, ~ 7.6 MeV [19] is thought to be the third
member of the same band. The £ = 1 and £ = 3 phase
shifts, except for a few isolated resonances, are essen-
tially smooth and close to 180° at low energy, and they
decrease slowly with the incident energy. This can be
interpreted as an “echo” behavior of these phase shifts,
which display sharp resonances at energies slightly be-
low the lower energy end of Buser’s data, that is at E,
= 1.3174 and 3.0382 MeV, respectively [28]. These two
resonances, with c.m. widths of 28 eV and 8.1 keV, re-
spectively, are associated with the first two J™ = 1~ and
3~ members of the K™ = 0~ “inversion doublet” band
in 2°Ne [29,24]. The J™ = 5~ member of this band man-
ifests itself as an isolated resonance in the £ = 5 phase
shift [19] at E, = 6.912 MeV (¢, = 141 keV).

As all the states mentioned above are thought to have
the a + %0 (g.s.) cluster structure (the excitation of
the members of the K™ = 0] band with respect to those
of the 2°Ne g.s. band is a radial excitation), they should
be describable — as well as the part of the scattering
which is not contaminated by “outside” resonances with
different underlying structure — in terms of a purely real
potential since only the radial degree of freedom of the
relative motion is active. The real part of the unique
global optical potential of Ref. [20], which reproduces
the higher-energy %0O(a, ) elastic scattering data be-
tween 32.2 and 146.0 MeV incident energy and which
will be denoted hereafter as the Ay potential, was in-
deed found, after a slight renormalization of its depth, to

be able to reproduce the energy location as well as the
essential properties (widths, electromagnetic transition
probabilities) of these cluster states with good accuracy
[30]. It also gives a qualitative reproduction of the data
of Buser; the energies of the latter are far from any of
the sharp resonances found at lower [31] and higher [27]
energy, which thus have negligible influence on the scat-
tering. However, it was shown in Ref. [18] that a quan-
titative reproduction of these data required, as recalled
in the Introduction, the inclusion of a slight angular mo-
mentum dependence and of a substantial modification of
the surface behavior of the Ay potential.

To gain a more quantitative impression of the phase
shifts the purely potential approach should reproduce, it
proves very useful to subtract from the total experimental
phase shifts the “nonpotential” resonance contributions.
This was made by subtracting from these phase shifts
simple Breit-Wigner contributions:

by = arctan 2(—E1;_I;—_E)’ (1)
with parameters Er and T' taken directly from the liter-
ature [27,19]. Of course the resonances corresponding to
the o + %0 (g.s.) cluster states mentioned above should
not be included in this subtraction procedure. We note
that the effects linked to the interference of nearby reso-
nances with the same spin are ignored, as they were also
in the above-mentioned studies for extracting the reso-
nance level parameters. The result of this subtraction
is presented in Fig. 1 (dots). The original phase shifts
[19] were actually carefully extracted from the original
figures by a scanning and digitizing procedure. It should
be noted that the fluctuations seen in some subtracted
phase shifts do not prevent the extraction of a meaning-
ful average behavior. These fluctuations have essentially
two origins; indeed for very sharp resonances, small errors
in the scanning/digitizing treatment can have dramatic
effects, as can have slight deviations of the resonance pa-
rameters of the literature with respect to optimal values.
The only example where we compensated for this last
effect by a fine tuning of the experimental resonance en-
ergy is that of the J™ = 4%, Er = 6.569 MeV resonance
[19], where changing the resonance energy to 6.600 MeV
significantly reduced the excursions of the subtracted ¢
= 4 phase shift with respect to a smooth average behav-
ior. It is also worth emphasizing that the broad J™ =
0%, Er = 7.8 MeV resonance of John et al. [19], with
its c.m. width of 576 keV, gives a non-negligible contri-
bution of several degrees to the £ = 0 phase shift down
to energies as low as 4 MeV, which is difficult to accept
from a physical point of view. Therefore, this contri-
bution was subtracted only from the experimental phase
shifts of Ref. [19]; at the energies of Buser [26], which are
far from any other significant resonance contribution, the
phase shifts which appear in Fig. 1 are thus the original
phase shifts of Ref. [26].

B. The global A, potential

The Ao potential can in fact be extrapolated to lower
energies, and it was shown [20] to be able to reproduce
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FIG. 1. Experimental **O(a, a) subtracted phase shifts

[19, 26] (dots, see text) and potential model predictions ob-
tained with the parameters of Table II (solid lines).

the average behavior of the fluctuating excitation func-
tions of Refs. [32, 33] between 15 and 30 MeV with rea-
sonable accuracy. It reads

V(ry=Ve(r) —U(r) —iW(r)
Us {1 + aexp [—(r/p)z]}
{1+ exp[(r — Rr)/2ag]}’
—i Wo

{1+exp|(r — Ry)/2a7]}*

Despite its somewhat complicated appearance, all its
parameters are fixed, except @ and R; which vary
smoothly and control its energy behavior on the whole
20-146 MeV energy range. In Eq. (2), V¢ denotes the
Coulomb potential due to a uniformly charged sphere of
radius Rc = 1.3 AY/3 fm = 3.276 fm, and the fixed pa-
rameters assume the values Uy = 38 MeV, R = 4.3 fm,
ap = 0.6 fm, p = 4.5 fm, Wy = 25 MeV, and a; = 0.65
fm. This remarkable global potential is thus able [20] to
reproduce the transition between low-energy scattering,
where intermediate structure effects are still apparent, to
energies where this structure disappears and where the
scattering is dominated by a vigorous ALAS behavior
(typically between about 30 and 50 MeV), and finally
to the energies where ALAS fades out and disappears

=Veo(r) —

(2)
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to leave a pure rainbow scattering regime [34]. It was
shown [20] that this global potential is characterized by
a particularly low absorption, which makes possible a
precise determination of its real part down to unusually
small distances; indeed for most a + nucleus systems,
absorption is significantly stronger than in the case of
nucleon scattering, and the potential is essentially de-
termined only in the surface region around the so-called
strong absorption radius. This particularly low absorp-
tion is undoubtedly due to the doubly closed-shell nature
of both the projectile and target; « particles accessing the
nuclear interior thus have a non-negligible chance to es-
cape back into the entrance channel, and thus they carry
information on this part of the potential, the more so
as the contribution corresponding to a reflection at the
barrier and that due to the wave entering the nuclear
interior [35] display strong interference effects in the an-
gular region where they are of similar magnitude [20].
Another system which strikingly displays ALAS and the
same type of internal-barrier wave interference around 30
MeV incident energy is the a + %°Ca system, which was
the first case where an optical model interpretation of
ALAS was shown to be viable [36], and where the crucial
importance of the internal wave contribution to this ef-
fect — and thus the nuclear interior transparency — was
demonstrated [37]. The properties of the global poten-
tial of Ref. [20] have been amply confirmed by the recent
reanalysis of the 1°0(c, a) angular distributions between
32 and 146 MeV, including several new measurements,
within the frame of the folding model approach [25]. In
particular, the volume integrals per nucleon pair

ju = 4 /0 ~ 20U (r)dr /44 3)

of the real part of the folding potentials, which are ad-
justed at each energy through a normalization parameter
A, do not differ by more than a few percent from those
of Ref. [20], and the quality of the fits obtained is quite
similar.

The reason why, even after tuning the parameter o
which controls the real well depth of the Ao potential,
and even after making it angular momentum dependent,
the quality achieved by the fits to Buser’s data is still
unsatisfactory [18] can be understood by inspecting the
energy behavior of the phase shifts generated by the Ag
potential for various values of «, and comparing them
with the subtracted phase shifts of Fig. 1; this is made
in Fig. 2(a) for the case of the £ = 0 phase shift, which
resonates around F, = 4.5 MeV with a width ' ~ 1
MeV. It can be seen that using the value of o assumed
by the Ao potential at E, = 32.2 MeV, that is o = 3.407,
leads to a width which is close to the experimental value,
since the maximum slopes of the experimental and cal-
culated phase shifts are similar; however, the calculated
£ = 0 resonance is seen to fall about 1 MeV too low. On
the other hand, although reducing the potential depth by
decreasing the value of o brings the resonance energy in
better agreement with experiment, the calculated width
is now much larger than that of its experimental counter-
part [see Fig. 2(a)]. Of course the energy behavior of the
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(dots) and the predictions of the Ao potential for various val-
ues of the strength parameter . (b) Same as (a), but the
Ao potential is now supplemented with a surface repulsive
Gaussian term of strength Vg located at Rg = 5.5 fm.

experimental phase shift can be reproduced artificially
by making the depth of the potential (and thus the pa-
rameter a) strongly energy dependent; indeed inspection
of Fig. 2(a) shows that making o jump from about 3.10
to 3.50 when F,, rises from 4 to 6 MeV would make pos-
sible a nice reproduction of the experimental phase shift.
However such a drastic energy dependence is difficult to
accept from a physical point of view, since it corresponds
to an excursion of some 25 MeV fm?® of the volume in-
tegral per nucleon pair of the potential on the small 2
MeV range considered here, a value much higher than
the predictions of current models based on dispersion re-
lation (7] or on nonlocality effects [9, 2] (typical changes
of the volume integrals per nucleon pair expected from
these effects do not exceed about 2 to 3 MeV fm3 per
MeV). This remark helps to understand the apparent
discrepancy between the studies of Refs. [18] and [25],
where the increase of the barrier height found in the for-
mer was not found necessary in the latter. Examination
of the energy behavior of the normalization parameter
A used in the folding model analysis of Ref. [25] indeed
shows that this parameter is systematically and rapidly

increasing between 3.5 and 5.0 MeV, especially for £ = 0
where the volume integral of the real potential rises by
more than 30 MeV fm3. As the form factor of the folding
model potential is by itself nearly energy independent on
this energy scale (the only source of energy dependence
originates from the one-nucleon exchange contribution
contained in the N-N interactions used, which all de-
rive from the M3Y effective interaction), it is difficult to
accept that the folding model “explains” the low-energy
data without having to introduce some extra mechanism
like, e.g., an additional potential barrier.

C. Increase of the barrier height

The effect of introducing such a barrier is clearly illus-
trated in Fig. 2(b). Instead of modifying the geometry
of the original Ay potential by changing the value of its
diffuseness parameter ag to enhance the barrier, as was
done in Ref. [18], which has the unwanted side effect of
modifying not only the surface but also the internal be-
havior of the potential at the same time, we chose to add
explicitly a repulsive Gaussian term:

AV (r) = Vg exp {— [(r — Re) /aG]Z} (4)

located in the surface region of the potential; the internal
part of the potential can be adjusted independently by
tuning the parameter a. To avoid the use of an exces-
sive number of parameters, the centroid Rg and width
ag of this Gaussian repulsion were fixed at the values 5.5
and 1.5 fm, respectively (these values lead to a potential
modification similar to that used in Ref. [18]), the only
variable parameter being the strength Vg. Figure 2(b)
shows the effect on the £ = 0 phase shift of adding to the
bare potential (Vg = 0, a = 3.25) Gaussians of strength
Ve = 2.5 and 5 MeV (with values of « leading to equal
values of §p at the energy of the resonance, F, ~ 4.5
MeV); it is seen that a repulsive term of about 2.5 MeV
brings the calculation in nearly perfect agreement with
the “experimental” subtracted phase shift. The effect of
such a modification on the effective (nuclear + Coulomb)
£ = 0 potential is presented in Fig. 3; the potential bar-
rier top, which had a height (calculated with the E, =
32 MeV Ag potential, thick solid line) of some 3 MeV, is
now seen to have risen by about 1 MeV (thin solid line).

One may of course wonder to what extent this result
is “model independent,” that is, how it depends on the
parametrization assumed for the additional repulsive po-
tential. This point was investigated by refitting the theo-
retical £ = 0 phase shift generated by the modified poten-
tial used in Fig. 2(b) (with Vg = 2.5 MeV) between 3.5
and 9 MeV, using Gaussian repulsive potentials with dif-
ferent values of Rg; the parameters Vg, ag, and o were
readjusted independently for each value of Rg. An ex-
cellent reproduction of this phase shift, and thus of the
experimental subtracted phase shift, were obtained for
values of R¢ ranging from 4 to 6 fm in steps of 0.5 fm; be-
yond 6 fm the quality of the fits deteriorates rapidly. The
values of the parameters obtained, together with the vol-
ume integrals of the corresponding potentials, are listed
in Table I, and the corresponding ¢ = 0 effective po-
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FIG. 3. Comparison of the £ = 0 effective potential bar-
rier generated by the E, = 32.2 MeV Ag potential (thick solid
line) and by modified potentials with Gaussian repulsive bar-
riers located at values of Rg ranging from 4 (long dashed line)
to 6 fm (dotted line) in 0.5 fm steps (see text).

tential barriers appear in Fig. 3. The latter show very
little scatter, and examination of Table I shows that the
parameters of the Gaussian repulsive potentials readjust
themselves when R is varied so as to preserve the height
and location of the top of the effective potential barrier
at the values Vg ~ 4 MeV, Rp ~ 6.4 fm, which therefore
appear to be determined rather model independently by
the data. At the same time it is seen that the volume
integrals of the potentials obtained do not vary strongly
when the location of the repulsive term is varied.

It is also interesting to have a look at the total mod-
ification of the potential implied by these modifications.
This is displayed in Fig. 4, which shows that the dif-
ference between the potentials obtained and the original
E, =32 MeV Ag potential is essentially repulsive beyond
about 4 fm and attractive in the internal region. Whereas
the location and height of the top of the barrier are deter-
mined with good accuracy by the data (the curves of Fig.
4 are very similar beyond 5.5 fm, in the vicinity of Rp),
it appears that there exists some compensation between
the internal (r < 3 fm) and intermediate (3 < r < 5 fm)
parts of the potential, which are therefore determined
with lower accuracy.

TABLEI. Parameters of the Gaussian modification repro-
ducing the £ = 0 phase shift for different locations Rg; ju is
the volume integral per nucleon pair of the total potential.

R¢ (fm) Ve (MeV) ag (fm) a ju (MeV fm?®)
4.0 4.77 2.27 3.95 369.8
4.5 3.73 2.05 3.86 373.5
5.0 3.02 1.80 3.79 377.4
5.5 2.50 1.50 3.71 380.8
6.0 2.34 1.09 3.63 383.2

V MeV)

-20 -

FIG. 4. Difference between the potentials, with different
values of Rg, fitting the subtracted £ = 0 phase shift, and the
E, = 32.2 MeV Aq potential (same conventions as in Fig. 3).

The stability of the results obtained prompted us to
pursue our analysis within the same frame, that is by
adding a repulsive Gaussian term for each £ value to the
E, = 32 MeV A, potential, keeping Rg and ag fixed at
the values 5.5 and 1.5 fm, respectively, and adjusting Vg
and «a in order to get the best possible agreement with
each of the subtracted phase shifts active in the studied
energy range (E, = 3.5 — 9 MeV), that is for £ < 5.
Some energy dependence of the potential should in prin-
ciple be introduced on this extended energy range, but
part of this effect is probably taken into account by the
explicit £ dependence of the potential. Indeed the en-
ergy range where each phase shift varies rapidly is, even
for broad resonances, substantially less than the 6 MeV
range investigated here, and adjusting the energy loca-
tion and width of each of these resonances by tuning the
potential parameters turns out to be more than adequate
for describing the empirical phase shifts. In addition let-
ting the potential depend on both the energy and angular
momentum would unavoidably lead to ambiguous param-
eters. The results of our adjustment appear in Fig. 1 as
solid lines, while the corresponding parameters, together
with the associated volume integrals, are summarized in
Table II.

TABLE II. Parameters and volume integrals per nucleon
pair of the potentials reproducing the “experimental” sub-
tracted £ = 0 to £ = 5 phase shifts (see text).

f a VG (MeV) jU (MeV fma)
0 3.71 2.5 380.8
1 3.50 1.0 389.6
2 3.81 2.0 396.5
3 3.50 1.0 389.6
4 3.87 2.0 401.0
5 3.238 0.5 378.1
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Examination of Table II reveals two striking features.
The first one is the progressive decrease of the strength
of the repulsion Vg needed to reproduce the subtracted
phase shifts as a function of £. This was in a sense ex-
pected, since the energy where a particular phase shift is
active tends to increase with £, and the potential should
converge towards the Ao potential around 20 MeV in-
cident energy. More unexpected is the fact that this
strength is manifestly parity dependent, V¢ being smaller
for the odd-parity waves than for the even-parity ones. It
must be noted that in our previous study [18], which ex-
tended on the much smaller E, = 3.5 to 4.9 MeV range,
these effects could not be seen since a common surface ra-
dial behavior was assumed for all £ values, the diffuseness
parameter ap taking the £-independent value 0.372 fm.
This did not provide an optimal reproduction of the £ =
0 phase shift, but in view of the small energy range cov-
ered, and of the negligible influence of the £ = 4 and of the
odd partial waves on this range (see Fig. 1), use of this
common geometry was found sufficient to obtain a nice
reproduction of Buser’s data [26]. The most important
ingredients in this success turn out to be the introduc-
tion of a slight £ dependence of the internal part of the
potential (essentially to reproduce the near-degeneracy
of the £ = 0 and £ = 2 phase shifts mentioned above) and
an ({-independent) increase of the barrier height. The
first of these effects has recently been confirmed by the
folding model analysis of Ref. [25]. As for the volume
integrals, they are seen to depend rather weakly on £,
the most notable exception being that of the £ = 0 po-

300

tential which assumes a rather small value in order to
reproduce the experimental near degeneracy of the £ =
0 and £ = 2 phase shifts. The volume integrals we ob-
tain are in fact in nearly complete agreement with those
obtained by Abele and Staudt [25] in the middle of the
range of Buser’s data; at E, = 4.477 MeV for example,
they obtain jy = 380.6, 386.3, 396.5, and 386.3 MeV
fm3 for £ = 0 to 3, respectively, to be compared with our
corresponding values 380.8, 389.6, 396.5, and 389.6 MeV

fm3.

D. Elastic scattering data and K™ = 0~ and 0]
cluster bands

Since the parametrization obtained reproduces well the
subtracted “experimental” phase shifts between 3.5 and
9 MeV incident energies, and thus, after adding the non-
potential resonance contributions of Eq. (1), also repro-
duces the full experimental phase shifts, it should give a
good account of the experimental elastic angular distri-
butions and excitation functions available in this energy
range. Figure 5 shows, for example, how the excitation
functions of McDermott et al. [27] are reproduced by the
present approach (solid lines). In Fig. 5, the dashed lines
represent the potential contribution to the full cross sec-
tion. It is seen that below E, ~ 5 MeV, the nonpotential
resonances play a negligible role in the scattering, and in-
deed the angular distributions of Buser between 3.5 and
4.9 MeV could be well reproduced in a purely potential
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FIG. 5.

Comparison of the predictions of the potential model + nonpotential resonances (solid lines) with the elastic

scattering excitation functions of McDermott et al. [27] at fc.m. = 90, 125.3, 140.8, 149.4, and 168.9° (dots); the dashed lines

present the pure potential contribution.
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FIG. 6. Comparison of a few selected elastic scattering
angular distributions of Buser [26] (dots) with our calculations
(solid line).

picture in Ref. [18]; Fig. 6 illustrates the merits of the
present parametrization for the same data. Figure 5 also
shows that the sharp resonances which have to be added
to the potential background to reproduce the data in a
quantitative way do not alter the underlying gross struc-
ture observed in experiment, such as the deep minimum
at ... = 90° seen around E, ~ 4.7 MeV and the broad
bump at 6., = 168.9° centered around E, ~ 5 MeV,
which are essentially due to the broad £ = 0 and £ = 2
resonances which dominate the scattering in this energy
range (cf. Fig. 1).

More spectacular is the agreement obtained above 5
MeV with the excitation functions of John et al. [19].
These were measured at many angles ranging from 54.4
to 176.8°; only half of these angles are reported in Figs.
7 and 8. Again the solid lines give the results of the
present parametrization, while the dashed lines give the
potential contribution to the cross section. It should be
noted that the relatively less precise agreement obtained
around 7.5 MeV should not be attributed to a defect
of our approach since it is also observed in the original
phase shift analysis [19]. Some of the comments made in
the 3.5 to 5 MeV energy range can be repeated here, al-
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FIG.7. Same as Fig. 5 for a few selected elastic scattering

excitation functions of John et al. [19] at 6..m. = 54.4, 77.3,
98.7, and 119.6°.

though the importance of the nonpotential contributions
is obviously growing rapidly with the incident energy. In-
deed the average behavior of the excitation functions is
still reasonably well described by the potential contri-
bution, but around particular incident energies/angles,
some nonpotential resonances have a dramatic influence
on the scattering; this is, for example, the case for the
J*™ = 4%, E, = 6.60 MeV resonance. The potential con-
tribution is still dominated by the £ = 0 and £ = 2 reso-
nances in the low-energy range, then by the sharp £ = 5
resonance centered at about 6.9 MeV, which is the third
member of the K™ = 0~ rotational band, and by the
broad ¢ = 4 resonance at E, ~ 7.3 MeV, which like the £
= 0 and £ = 2 resonances belongs to the K™ = 0] higher
nodal rotational band.

The good quantitative agreement obtained here makes
possible a reappraisal of the parameters found in the lit-
erature for the positions/widths of the resonances of the
K™ = 07 higher nodal band. For very broad resonances
it is difficult to give an unambiguous definition of the
resonance width [38]; we will define the resonance width
as

2

{d‘sl/dE]EzEg ’ 2

Ty =
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where Eg is the energy where the slope of the phase
shift assumes its maximum value. The resonance param-
eters obtained are reported in Table III. The parameters
of the resonances estimated in this way are somewhat
more precise than the values reported in the literature
[28]. Indeed the published widths of the £ = 0 and £ =
2 resonances are still those given by McDermott et al.
[27], whereas account was taken here of the more recent
phase shifts deduced by Buser [26]. On the other hand,
the width currently reported [28] for the £ = 4 member
of the rotational band turns out to be substantially too
small with respect to that deduced from the subtracted
phase shift and from our potential model; indeed instead

TABLE III. Parameters of the first members of the
K™ = 0} “higher nodal” rotational band and of the J™ = 5~
member of the K™ = 0~ “inversion doublet” band extracted
from the present analysis.

J E, (MeV) E, (MeV) Tem. (MeV)
ot 4.6 8.4 ~ 1.3
2+ 4.9 8.7 ~ 0.65
4+ 7.4 10.7 ~ 0.65
5~ 6.91 10.26 0.136

of I'c.m. = 349 keV [19, 28] we find I'c,, >~ 650 keV, a
value much more in line with the widths of the first two
members of this band. Incidentally this provides the hint
that the J™ = 67 member of the same band, which has
been located at many different energies (see, e.g., Ref.
[26]) and is no more reported in the recent compilation
[28], should most probably not be sought among narrow
objects like the previously reported E, = 9.79 MeV res-
onance with its width of 88 keV [39], the more so as all
the potential model and RGM-like calculations predict
a width of at least several hundred keV for this reso-
nance. Moreover, the optical model analysis of Ref. [20]
revealed that the J™ = 8% member of the K™ = 0] band
corresponds to the broad bump (I' > 1 MeV) seen in the
elastic scattering excitation functions of Hunt et al. [32]
and of Bergman and Hobbie [33] around E, = 20 MeV,
confirming earlier results of Ohkubo et al. [40], and the
(last) J™ = 10" member of the same band is expected to
fall around E, = 29 MeV with a width of several MeV
[41].

The only member of the K™ = 0~ “inversion doublet”
band falling in the investigated energy range is the J" =
57 state; the parameters of this £ = 5 resonance are also
given in Table III. The first two members of this band
are in fact seen in elastic scattering at £, = 1.3174 and
3.0382 MeV, with widths I'c ,,, = 28 eV and 8.1 keV, re-
spectively [28]. Table II shows that a slight barrier effect
(Ve = 0.5 MeV) is also needed for obtaining a correct
width for the £ = 5 resonance. Use of the Ay poten-
tial, even after tuning the parameter a which controls
its depth, indeed slightly overestimates this width, as it
does also for the £ = 1 and ¢ = 3 members of the same
band [30]. The optimal reproduction of the £ = 1 and £ =
3 experimental resonance parameters (energy, width) is
obtained with depth parameters a differing slightly from
those given in Table IT; this is not surprising since the lat-
ter reproduce at best the average subtracted phase shifts
between 3.5 and 9 MeV without introducing any explicit
energy dependence, and are thus optimal at midrange,
that is, around 6 MeV incident energy. The values ob-
tained, together with the associated volume integrals per
nucleon pair, are reported in Table IV. The volume in-
tegrals reported in Table IV are somewhat smaller than
those of Table II; this points to a further decrease of the
volume integrals towards very low energies, at a pace (a
few MeV fm? per MeV) similar to that predicted by most
calculations [7,21]. Figure 9 compares the experimental
excitation function of MacArthur et al. [42] at 0. =
160° with the predictions of the calculation using the po-
tential parameters of Table IV; the experimental data,
which were supplied in arbitrary units [42], have been
normalized to the theoretical cross section.

Inspection of Figs. 7 and 8 also shows that the broad
structure seen at back angles around 8.6 MeV incident
energy, which is reported for a long time as a possible J™
= 2% candidate with a c.m. width of some 500 keV [39,
28], is in fact a region of incident energies, probably the
last one, where potential scattering is nearly free from
outside nonpotential resonances. This bump appears be-
cause of the interference of the smoothly varying poten-
tial background with two sharp £ = 2 resonances located
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TABLE IV. Parameters and volume integrals per nucleon pair of the modified Ao potential
reproducing the energies and widths of the J™ = 17 and 3~ members of the K™ = 0~ rotational

band.

J" E. (MeV) E. (MeV) a Ve (MeV) ju (MeV fm®)
1~ 1.317 5.787 3.2876 1.0 373.6

3~ 3.038 7.164 3.3142 1.0 375.6

at £, = 8.246 and 8.930 MeV with widths I'c ,,, = 53
and 46 keV, respectively [19, 28]. Comparison (Fig. 10)
of the experimental angular distribution [19] at E, = 8.5
MeV with the predictions of our model (solid line) and
with the pure potential contribution (dashed line) con-
firms that the nonpotential resonant contribution plays
a minor role in the good agreement obtained with the
experimental data. The same figure, which also displays
angular distributions at the selected energies E, = 5.5,
6.5, and 7.5 MeV, shows that this is not the case at all
the incident energies; for example at 6.5 MeV the poten-
tial contribution is seen to interfere severely with the J™
= 4%, E, = 6.60 MeV nonpotential resonance.

On the other hand, it is seen that the backward rise
seen in experiment at 7.5 MeV, which is well reproduced
by the calculation, and also reasonably well by the po-
tential contribution, is dominated by the broad ¢ = 4
potential resonance (cf. Fig. 8). The relative impor-
tance of the various partial waves in the building up of
the potential contribution at the most forward and back-
ward angles measured by John et al. [19] (fc.m. = 54.4
and 176.8°) can be appreciated more clearly in Fig. 11;
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FIG. 9. Comparison of the experimental excitation func-
tion of Ref. [42] near the energy of the E. = 7.164 MeV, J™
= 37 resonance of the K™ = 0~ inversion doublet band, and
the potential model calculations (with o = 3.3142 and Vg =
1.0 MeV).

in this figure, we have plotted the cross sections calcu-
lated by adding the contribution of the potential phase
shift with the indicated ¢ value to the Coulomb scat-
tering amplitude. It can be seen in this way that the
characteristic pattern observed at 6., = 54.4° (thick
solid line) is essentially due to the strong interference be-
tween the Coulomb amplitude and the contribution of
the J™ = 4* member of the K™ = 0] rotational band,
whereas at 6., = 176.8° the broad complex structure
which dominates the scattering between 6.8 and about 8
MeV incident energies is mainly due to the constructive
interference of the contributions of the same state with
that of the J™ = 5~ member of the K™ = 0~ inversion
doublet band (contaminated by several narrow £ = 2, 3,
and 4 resonances with widths of a few tens keV [19]).
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FIG. 10. Comparison of a few selected angular distribu-

tions of John et al. [19] (dots) with our calculations; the
dashed lines present the pure potential contribution.
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E. Ground state band

Additional indications on the validity of the poten-
tial picture at low and even negative energies can be
gained by turning to the potential predictions for the
members of the K™ = 0f 2°Ne ground state rotational
band. Of course it should be borne in mind that al-
though we succeeded in reproducing the data between 3.5
and 9 MeV using an energy-independent (but angular-
momentum dependent) potential, naively extending the
potential predictions down to negative energies without
taking into account any energy dependence — in a re-
gion where all the available model calculations predict
fast changes such as an additional barrier increase — is
not expected to be a realistic approach. An indication
that such an energy dependence should be taken into ac-
count was provided by the slight decrease of the depth
parameter o with respect to the values given in Table II
found necessary to reproduce the properties of the first
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two members of the K™ = 0™ rotational band mentioned
above (see Table IV). As was the case for these states,
we did not attempt to modify the barrier height param-
eter Vg, since the number of physical quantities avail-
able (rms radius of the ground state, B(E2) intraband
quadrupole transition probabilities) is too small to guar-
antee a meaningful determination of the additional free
parameters. Therefore we again simply adjusted the pa-
rameter « in order to bring the calculated energies of the
J™ =0%,2%, and 4% states of the g.s. band in agreement
with the experimental values, while keeping the Vg pa-
rameter at the values listed in Table II (we did not include
the 67 and 8% states of this band in the analysis since
the £ = 6 and £ = 8 potentials are not determined by
the scattering data analyzed here). The parameters ob-
tained are given in Table V, together with the rms radii
and the B(E2) intraband quadrupole transition proba-
bilities. The rms radius obtained for the 0T state makes
possible the calculation of the 2°Ne ground state charge
radius from [23]

4

(e = 5 (%) + £(3)a + 5 (o, ©)

where the quantities appearing in the right-hand side
(RHS) are the mean square radius of the wave function
and the mean square charge radii of the a particle and
of 180, respectively. Using (7'2)2,/2 = 1.674 fm [43] and
(7-2)2)/2 = 2.72 fm [43], we find from the calculated value

((r?)1/2 = 3.757 fm, cf. Table V) (r2)3/.? = 2.956 fm, that
is, a result not far from the experimental value (3.004 fm
[44]), albeit somewhat too small. One may of course won-
der at this stage whether quantities whose calculation in-
volves the wave function on the whole radial range, and
not only its asymptotic behavior like in the calculation of
the phase shifts and widths, can be quantitatively calcu-
lated from a simple local potential approach. One knows
for example that the wave functions resulting from RGM
microscopic calculations differ at small distances from
those obtained from the local equivalent potentials; this
is generally known as the “Perey effect.” For light systems
like a4-180 this effect is generally relatively small, but it
tends to increase at low energy because its importance
is linked to that of the energy dependence of the local
equivalent potential V°? [2]; indeed Horiuchi has shown
that the Perey factor F(r) by which the local potential
wave function should be multiplied in order to reproduce
the microscopic wave function is given by [2]

TABLE V. Parameters, volume integrals per nucleon pair, rms radii of the wave functions, and
B(E2) values for the modified Ao potentials reproducing the energies of the J™ = 0% to 47 members

of the ground state K™ = 0] rotational band.

J" E E, o Ve ju (rY/2 B(E2)(J — J — 2) (e? fm*)
(MeV) (MeV) (MeV) (MeV fm?) (fm) th. expt.

0F -4.734 0. 3.174 2.5 340.5 3.757 - -

2t 3100 1.634  3.094 2.0 342.7 3.790 41 65+ 3

4t -0.486  4.248  3.043 2.0 338.9 3.743 55 7146




~ aVea(r)
F(r)=4/1 3E (7
At low energy the energy behavior of the local equiva-
lent potential due to antisymmetrization effects implies
that at small », F'(r) must be smaller than unity, while
it becomes larger than 1 in the surface region. There-
fore, quantities sensitive to the large distance behavior
of the wave function, like rms radii and B(E2) transition
probabilities, could be somewhat underestimated when
calculated with a local potential since the local potential
wave function tends to be overestimated at small r.
Inspection of the B(E2) values obtained here (Table V)
confirms this interpretation, since the calculated values
are also somewhat lower than their experimental coun-
terparts (an effective charge e.gq ~ 1.15-1.20 e would be
needed to bring the calculated and experimental values
in quantitative agreement). In a sense the better agree-
ment obtained in simple potential models where the rapid
energy dependence of the potential shape at low energy
is not taken into account [30, 25] (the effective charge
needed in these calculations is often nearly equal to the
bare charge) is somewhat fortuitious, since neglecting the
barrier increase enhances the wave function in the surface
region and mocks up to some extent the Perey effect; this
point has been emphasized by Wada and Horiuchi [10].
Taking the parameters of Table V at their face values,
we can also calculate the volume integrals of the poten-
tials reproducing the energies of the states of the 2°Ne
ground state band in order to obtain additional indica-
tions on the main trends of the energy dependence of
the potential when energy decreases. Our calculations
point to a further decrease of the volume integrals, at a
pace of some 4 to 8 MeV fm® per MeV between E. ;. =~
4 MeV and E ~ —5 MeV (for £ = 0 for example, one
had jy = 380.8 MeV fm3, cf. Table II, to be com-
pared to the value jy = 340.5 MeV fm3 obtained here
at E = —4.73 MeV; the E, = 32.2 MeV A, potential
has jy = 399.1 MeV fm3). This value, although rather
large, is not inconsistent with the results of the theoret-
ical calculations referred to above: indeed a significant
energy dependence is predicted for the a+160 system by
both antisymmetrization and dispersion relation effects
in this energy range, and as these two mechanisms have
a different physical origin they are expected to be ad-
ditive to some extent. Still in view of the uncertainties
pointed out above in extracting the parameters of the
potential at these low energies, the trends observed here
should only be taken as purely qualitative indications on
the ultimate fate of the a+180 potential at very low en-

ergy.

III. SUMMARY AND CONCLUSIONS

A systematic analysis of the existing *O(c, a) elastic
angular distributions and excitation functions for inci-
dent energies ranging from 3.5 to 9 MeV makes possi-
ble the extraction of real, energy-independent potentials
for angular momenta ranging from 0 to 5. These po-
tentials give a precise description of the elastic scatter-
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ing data when the potential background they generate is
supplemented with the resonant nonpotential contribu-
tions, that is, the contribution of the resonances which
do not have a single-particle character. Our study makes
possible the extraction of the purely potential contribu-
tion to the scattering, which is found to explain well the
gross structure underlying the experimental data; how-
ever, inclusion of the nonpotential resonant contributions
is important to get quantitative agreement with experi-
ment, and it would thus have been very difficult to ex-
tract meaningful information on the underlying a+4160
interaction by restricting to a description of the average
behavior of the data.

The potentials obtained here confirm the results of a
previous study by the same authors [18], that is, the need
of introducing a slight angular momentum dependence,
and a significant enhancement of the barrier height with
respect to the global potential (Ag) extracted from an
extensive optical model analysis of %0(a, @) elastic data
between 20 and 150 MeV [20]; inside the barrier the low-
energy potentials are on the contrary found to be more
attractive than the higher-energy potential. The rather
precise information obtained here for the radial depen-
dence of the potential should be useful in clarifying the
relative importance for light systems of various mecha-
nisms, like antisymmetrization or dispersion relation ef-
fects, which have been invoked in the literature to explain
the low-energy features of the interaction.

The more precise study carried out here reveals that
the barrier enhancement decreases with angular momen-
tum, which was expected since the low-energy potentials
must eventually converge towards the Ay potential when
energy, and thus the angular momentum of the domi-
nant partial waves, increases. The barrier enhancement
is also found to be significantly parity dependent, the rise
of the barrier found for odd partial waves being smaller
than that needed for even partial waves; below about 5
fm the even potentials are on the contrary deeper than
their odd counterparts (see Fig. 12, where the poten-
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FIG. 12. Nuclear potentials obtained for odd ¢ (dotted

lines) and even £ (solid lines) (cf. Table II).
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tials corresponding to the two parities have been plot-
ted separately). Although this feature may sound rather
unconventional, it may not be at variance with the mi-
croscopic calculations since, although these calculations
predict little parity dependence in this mass region, the
importance of parity dependence is expected to grow at
low energy. It would thus be worth reinvestigating this ef-
fect more quantitatively within the frame of microscopic
approaches like the resonating group method, the more
so as detailed studies of this effect at very low energy
are rather scarce. To obtain meaningful information on
the parity dependence of the potential from these calcula-
tions, one must be able to build local potentials which are
phase equivalent to the nonlocal RGM kernels. One of
the most powerful methods to perform this construction
relies on the WKB approximation [2], which tends to lose
its accuracy at low energy [45]; therefore other techniques
like those relying on potential inversion might be useful
in this energy region. It is worth pointing out in this
respect that a recent study of Mackintosh and Cooper
[46], in which the local potentials corresponding to the
various exchange components in the RGM calculations
of LeMere et al. [47] for the a+!%0O system are deter-
mined by a potential inversion technique, points to the
fact that the four-particle exchange contribution induces
a sizable parity dependence in the inverted potential; it
would be worth repeating this type of calculations using
RGM results at lower energies where stronger effects are
expected.

The potentials extracted reproduce the properties of
the first three members of the 2°Ne K™ = 07 “higher
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nodal” rotational band, which dominate the scattering in
the investigated energy range. The width (T, = 650
keV) of its J™ = 41 member, which is located at E, =
10.7 MeV, is found to be substantially larger than that
usually reported in the literature, pointing to the fact
that the widths of the members of this band do not de-
crease dramatically with J, and that the (still unknown)
J™ = 6% state of this band should be searched among
rather broad objects.

The properties of the first members of the K™ = 0~
“inversion doublet” band (the J™ = 5~ state is the only
member of this band falling in the investigated energy
range) are also nicely reproduced if account is taken of
the energy dependence of the potentials when energy de-
creases. Those of the K™ = 0] ground state band are
also qualitatively reproduced provided allowance is made
for a substantial decrease of the strength of the poten-
tial at very low energies; however the limitations of a
purely local potential approach become apparent here,
since quantities derived from the full range wave func-
tions, such as rms radii and B(E2) transition probabil-
ities, are found to be somewhat underestimated, most
probably as a consequence of the so-called Perey effect.
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