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Within the one level R-matrix approach several hindrance factors for the radioactive decays in
which are emitted He, C, and 0 atomic nuclei are calculated. The interior wave functions
are supposed to be given by the recently proposed enlarged superBuid model, an extension of the
JINR-Dubna quasiparticle phonon nuclear model. The spectroscopic factors are expanded in terms of
products of cluster overlap and intrinsic overlap integrals. The cluster overlaps are equivalents of the
generalized coefBcients of fractional parentage, while for the intrinsic overlap integrals we construct
a model which is an extension of the usual models for simple particle decay such as deuteron, triton,
and o; decay. The exterior wave functions are calculated from a cluster-nucleus double-folding model
potential obtained with the M3Y interaction. As examples of the cluster decay fine structure we
analyzed the particular cases of o. decay of Fm, C decay of Ra, and 0 decay of Th and

Fm. A relatively good agreement with the experimental data is obtained especially in the case of
the o,-decay fine structure.

PACS number(s): 23.60.+e, 23.70.+j, 24.10.—i, 21.60.—n

I. INTRODUCTION

The spontaneous emission of nuclear fragments heavier
than o. particles and lighter than the most probable fis-
sion fragments, termed exotic or cluster decays, has now
become an experimentally confirmed reality (see Refs.
[1—8] and references therein). Moreover, Hourani and his
co-workers [9] experimentally discovered the fine struc-
ture in C radioactivity, opening in this way a new area
of research. All nuclei with Z ) 40 are unstable with
respect to radioactive decay into two nuclear fragments
(Ai, Zi and A2, Z2 with A = Ai + A2 and Z = Zi + Z2),
i.e. , the energy release Q = M(A, Z) —Mi(Ai, Zi)—
M2(A2, Z2) is positive; however, only for certain combi-
nations, (Ai, Zi) plus (A2, Z2), is the high value of the
potential barrier (proportional to ZiZ2) almost compen-
sated by a high value of Q, and these decay modes may be
detectable. By using a triple p coincidence technique in
the spontaneous fission of 2s Cf recently [6], neutronless
fragmentations, such as Mo + Ba) Mo + Ba)
and zo4Zr + &48Ce have been experimentally observed for
the first time. In this way it was experimentally proved
that the spontaneous decay with emission of light frag-
ments such as o 4C 0 ~F Ne Mg and i Sj
(cluster radioactivity), and the neutronless spontaneous
fission defined as a process where all the available energy
goes into the total kinetic energy of the fragments (cold
fission) may have an analogous decay mechanism. Also,
for the first time [6], a double fine structure, i.e. , decay to
the excited states of both fragments of the final channel,
was experimentally observed in analogy with the usual
fine structure, i.e., decays only to the excited states of
the daughter nuclei already known in o. decay [10] and

C decay [9, 7].

The interest in studying these new decay modes lies in
the quantitative estimations of the lifetimes and branch-
ing ratios on one hand and in the construction of models
regarding nuclear clustering, nucleus-nucleus potentials,
the nature of spontaneous fission processes, etc. , on the
other hand. In the present paper we touch both the above
aims of study concerning the fine structure of cluster de-
cay. First, we construct a mechanism of clustering by us-
ing the enlarged superfiuid model (ESM) [ll, 12] for the
nuclear states, which is an extension of the JINR-Dubna
quasiparticle phonon nuclear model (QPNM) [13]. The
spectroscopic factors are expanded [14] in terms of prod-
ucts of cluster overlaps and intrinsic overlap integrals.
The cluster overlaps are equivalents of the generalized
coeKcients of fractional parentage [15, 16], while for the
intrinsic overlap integrals we construct a model which is
an extension of the usual models for light particle decay
such as deuteron, triton, and n decay [17]. Secondly, we
calculate several hindrance factors for the He, C, and

0 radioactivity of some translead nuclei and compare
them with the experimental data and some previous cal-
culations. In the case of o; decay a relatively good agree-
ment with the experiment is obtained.

II. HINDRANCE FACTORS AND
RELATIVE INTENSITIES

A. Hindrance factors

The hindrance factor (HF) is defined [18] as the ratio
of the actual half life for a given cluster transition char-
acterized by the energy release Q to the half life obtained
&om the Geiger-Nuttal [19] law at the same energy Q.
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Such a definition of the hindrance factor determines a
quantity which is almost independent of energy Q. This
quantity measures the attenuat, ion of the decay probabil-
ity due to the mechanism of cluster formation and not to
the barrier penetration. The microscopic description of
preformation has a key role in the understanding of the
decay process and requires a precise knowledge of the
initial and anal quantum states. The HF plays the same
role as the 1nft plays in P decay.

When we are dealing with a cluster transition Rom the
initial state (I;K;m;) of a heavy deformed nucleus with
axial symmetry to the ground or excited states (IqKj mq)
and (IzK2~2) of the residual axial deformed nuclei, the
corresponding theoretical hindrance factor has the fol-
lowing expression [7, 20]:

HF(Ii Ki vari mI1 K17r1 jI2K2m'2)

+S

E) = exp 2 dz[/z ~p;z —1
z.

—gl(l + l)z2+ x—'p;z —1]

= exp [
—&(Zi, Ai, Zz, Az) l (l + 1)],

wherez, =z = p, , z =p, p, =kB, p =kR, and
x = QR /ZgZ2e2:

q(Z/, Z2, A], A2, l) = p =p~x
pc 2pBcZ1 Z28

A Z1Z2A, d
1/3

( d(&s~;~; +h~x~-i, AJAR~~~)
~2l ] l K=IK1 jK2 —Ki I

i

l

When any of the residual nuclei is a spherical nucleus,
the K quantum number disappears &om the sets IKx
of quantum numbers that identify the nuclear state (see,
e.g. , the case of the n decay),

d(Ii Ki ~i ~I1K1m1 )I2K27r2 )
l K=IK1+K'2 —KiI

(Ii Ki Iri mI1 K17r1 )I2K2m'2)
l K= IK1+K2 Ki I

[00+(g.s.}—+00+ (g.S.);00+ (g.S.)]
~l=p K=p

The quantity p&~ is the reduced width [10,21, 22], while

Fg — ' ——exp
/

— [qz=p(r) —q~(r)]dr 1,I,(Q) (2
&~=.(Q) 8 ., r

'

where P~(Q) stands for the penetrability [23]. In the
right, -hand-side expression of the penetrability ratio Fl
we have used the 3WKB approximation [24] of the pen-
etrability. "r " and "r;" stand for the outer and inner
turning points, respectively, and

in which P may be considered a constant close to 5 [plus
terms O(l(l + l)xz/p, )] for the case studied above.
This constant becomes smaller for the case of the square
well being replaced by any other realistic potential. 6 =

= 2.45, in which o' =
4 &,

——137 036 is the

6ne structure constant A —A1 + A2 For o. decay1/3 1/3 1/3

the |,' function has the following approximate expression
[25]: ((Zg ——2, Ag ——4, Z2 ——Z, A2 ——A) =

~ZA ~

For deformed nuclei there is a matrix part of the pen-
etrability [26, 27, 21, 28, 10] (K, ), the Froman-Nosov
matrix,

K„= C, exp
~

—S, (R)
~

C,(i
(7)

h h R qr. (R)
(8)

responsible for the channel coupling. Here
[ 4,) is the

channel spin function [22] including the angular momen-
tum part in the relative motion of the decay products.
The function S, (R) is the JWKB expression [24] of the
noncentral part of the action,

q((r) = 2mpA„s(V, "'+""'—Q), (4)
where q~(r) is given by Eq. (4). The noncentral
part of the action is generated by the noncentral part
Vq(R, e, , e, ) of the double-folded MSY interaction po-
tential (see Refs. [29—32]):

A1A2 d y Coul+nucl [ yCoul+nucl
L l

Vppp(R) + 2 l(l + 1)] is the sum of the Coulomb, nu-

clear [Vppp(R) = (47r) ~ Vppp(R)], and centrifugal one
body potentials acting between the emitted cluster and
the daughter nucleus. Q = Q = Qp —E& R, , —E&,~,
In the R-matrix theory [22] when calculating the penetra-
bility the inner turning point is replaced by the channel
radius (R,). There can be cases when the inner turning
point and the channel radius do not coincide. Usually [4,
10], the Coulomb part of this potential is replaced by a
pointlike Coulomb potential, and the nuclear part by a
square well or a Saxon-Woods one. Within these simple
prescriptions the penetrability ratio El becomes

v(R, e!",e!")

~1 &~2 &~3 P1 )P2 }03

~Ay Ag As ~Ay Ag Ag ~AgAs P
(9)P1P2P3 0 0 0 P3 —P3 0&

&.",.(e.' ')&.";.(e.'")&..—..(R)v.„....(R)

= Vppp(R) + Vj (R, e. , e. ),

acting between the residual nuclei. Here Vppp(R)

(4') ~ Vppp(R), while
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4 A1+Az+A3 ~ A

Vg, g, g, (R) = (—1) ~ AzA2 dxzpp,
'zr 0

x f d xop oP„", „,„,(xo, xo, xo),

OO 3

R.", ...(*,** * ) = j dop' (4) I r(O*,),
0 i=1

dAY(I (0) '(' ' Y (0)

Neglecting the nuclear part and taking a pointlike
Coulomb potential only the expression of the parameter
B becomes [34]

2p " 1 Qpe

h Iz. 2Rs/V, —E (13)

where v(q) is the Fourier transforzn of the effective I)II)I
potential v(r), e.g. , the M3Y potential reads v(r)

o K, —exp[ —p, r], in which rp ——e, po ——0 stand
for the Coulomb part, while K1 ——1528.75 MeV, p1 ——4
fm, K,2 ———784.4 MeV, and p2 ——25 fm stand for
the nuclear part, and in addition v(q) = g p K, ,+
(see Refs. [29—32]). p~, are the multipoles of the nu-
clear densities. jq, (qz, ) are the spherical Bessel func-
tions. 17,(0,) are the Wigner rotation matrices describ-

ing the orientation of the involved nuclei, while Y~„(R)
is the Ath-order spherical harmonics.

The nuclear densities used in our
folding procedure are described by Fermi functions [32]

p r = po 1+exp "' ' " . The param-

eters ro and a are 1.2 fm and 0.5 fm, respectively, if not
stated otherwise. They are used in order to reproduce
the elastic scattering and nuclear reaction cross sections
[33].

The shapes of different multipole terms Vp, g„g, (R) of
the potential (9) are analogous to those plotted in Fig. 2
of Ref. [32] (see also Ref. [29]).

The Froman-Nosov matrix (7) for the n decay of a zero
spin axially symmetric deformed nucleus into the o. plus
axially symmetric deformed nucleus becomes [21, 28, 10,
34]

The approximate expression of the parameter B calcu-
lated by Froman [26] is

5kRp ( kRp) 4 2 kRp

4~« (i4)

while Nosov [27] got a slightly different expression but
close to Froman's:

5 kRo & kRo) 4 . 2kRoB=rj 2 1 — ——i
4~ rl q r) ) 5 5 q

where

(Ii Ki

vari

~I1K1w1,' Iz K2 &2 )
~l K=IK1+Kz —Ki

I

C

(I K IWo 2IIIK W1)I12K12 2I'2 )
(17)cc'PlI K'=IK1+Kz Ki I

in which c = t, I1,K1, vr1, I2, K2, 7r2 and c' = I', 11,K1, 7r1 &

I', K', ~'.

B. B,elative intensities

The general expression for the relative intensities in
cluster decay or cold fission leading to a definite chan-
nel quantum state (IzKzvrz, I2K2m2) is defined as a ratio
of two quantities. The numerator represents the partial
decay width that defines a given channel of the cluster
radioactivity (A, Z) ~ (Al, Zl) + (A2, Z2). The denom-
inator is the sum of all partial decay widths.

Thus

rI = 4Ze /(hv) is the Sommerfeld parameter tiznes factor
2, k is the wave number, P2 is the quadrupole deforma-
tion, and Bo stands for the nuclear radius.

Taking into account the channel coupling
within the JWKB approximation the quantity

(I' K'~' ~I1K1~1 I2K27fz)
l K=IK1+Kz —Ki from the expression of the hin-

drance factor (1) becoznes

(Ii K, mi m I1K1~1 ) Iz Kz ~2 )
~{IiKi vari —+I1K1m1, Iz Kz~z) l K=IK1+Kz —Ki I

l K [00+(g.s.)-+00+(g.s.);00+(g.s.)] '
~l=o K=o

p (Ii Ki ~i m Ii K1vr 1,Iz Kz &2 ) (~I{I1K1~1.,I2K2~2) (~c)
P(IiKimi~I1 Kl ~1 I2K2~2) (~Il Kl ~1 jI2 K2 ~2 Ip'C J

Ei +id( (IiKi rri ~ IlKl)rlo I2K2zr2)R(Qco Qp)

Qz +ldz (IiKizri ~ I1KllrlI I2K27r2)R(Qco QO)

i i i
—1

HF(I; KF; oip; mI1 K'12pk, I2K2n2) z2(~'~c& Wog
—1

HF(I K 7ci~II11K1 I'1 (I2Ko2 2) 2R(Q Q )Ii Ki ~1IzKz~z c~ 0
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where Qp ——M(A, Z) —Mi (Ai, Zi) —Mq(A2, Z2) and
Q = Qp —EI K —EI K . The quantities E~ and
d~' ' ' ' ' "' ' ' are defined S c IIA The
quantity R(Q, Qp) is defined as follows:

Pi=p(Q)R(q Qo) =
p (q )

.

For the o.-decay relative intensities one set of quantum
numbers IKvr is replaced by I=o, m=+:

I(Iy Kymf )
rel

H =Hp+H', (21)

where

age field of neutron and proton systems in the form of
the axially symmetric Saxon-Woods (or Hartree-Fock),
monopole pairing, isoscalar and isovector particle-hole
and particle-particle multipole, and spin-multipole inter-
actions between quasiparticles as well as the so-called
o.-like four nucleon interaction [11].For the particle-hole
and particle-particle multipole and spin-multipole inter-
action parts we use a separable interaction [11] of rank
N&1:

P &
F~d& (I;K,7r; ~ IyKy~f)R(Q~, Qp)

Qi Fidi (I,K;~; -+ IyKyfry)R(q„qp)
—1

HF(If K;1Tf ~If Kf 7ff ) R(Q Q )
—1 )

HF(If KfWf ~IfKf Vlf) 'R(q q )Iy Kf ~y c) 0

Hp ——) [H, " (r) —G PtP ]+H4,

in which

H, (~)=) E,at a,

(22)

(23)

where Qp ——M(A, Z) —My(Af, Zf) —M and Q,
Qo —EI*,K,., P = a, a,+, (24)

III. ENLARGED SUPERFLUID MODEL

The enlarged superfluid model (ESM) Hamiltonian for
nonrotational states of deformed nuclei includes an aver-

H4 ———G4PtP~P Pp, (25)

H'=)

1

2

N
——) .). ).("p."+«i.")Q.'~~. (&)Q-~~-(~r) + G.'"P.'),„.(~)P-~~-(~)

Pp, (y n=1 ay=+1

N ().). ~ ).("p +i1"1 ) LA„(r)T Li (&r)+G "P LA„(7)P L~ (&)
LApo +=1 (q=+i

(26)

where

(&„("„"„)(r)(~&Lji,„) (27)

T~LAP~ P (g ~ (P)(g.&L)~ „) (28)

The properties of the above particle-particle and particle-
hole matrix elements are discussed in Refs. [11, 13].
The symbol ~ = —

2 stands for the proton system and
7 = + 2 stands for the neutron system, at (a, )
are the fermion operators which create (destroy) a nu-
cleon in (from) the single particle state

~

s u ), where
0. is the sign of the projection of the angular momen-
tum of the state onto the nuclear symmetry axis, 8 be-
ing the rest (N, n, B,vr, ...) of the quantuin num-
bers that label the single particle energy levels. The

term H4 from Eq. (5) is an efFective, coherent two pairs
(four nucleon) interaction term, which induces the dy-
namical o,-like four nucleon correlations in the superQuid
phases of atomic nuclei 12]. G are the pairing coupling
strengths, G " and G " are the coupling constants of
the particle-particle interaction [ll], and Kp~, Ki~ and" are the isoscalar and isovector coupling con-
stants of the particle-hole multipole-multipole and spin-
multipole interactions [13]. G4 is the four nucleon inter-
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~
BCS) = (u,.+ v,.at +at ) ~

0), (29)

where u, + v, = 1 and
~

0) denotes the absolute vacuum.
Thus the constrained energy functional is

W= (BCS
i

Hp —) A N
i
BCS)

=) ) 2(E..—~.)..' —G.&.' —G.~„'x.'. (3o)

Here A denotes the nucleon Fermi level, % is the nu-
cleon number operator,

= (BCS
~ ) at +at

~
BCS) = ) u, v,

action constant and 0 = +1. The functions R " (r)n(pp)
and %,

' "" (r) stand for the radial parts of the particle-
~(pp)

particle multipole-multipole and spin-multipole separa-
ble interactions, while 8

~
&i(r) and % l" &~(r) stand for

the radial parts of the particle-hole multipole-multipole
and spin-multipole separable interactions.

To find the superfluid solutions we first should deal
with the mean field. As a trial wave function for the
ground state of the atomic nucleus we use a BCS-type
wave function, and the mean field is described by the Ho
part of the total Hamiltonian:

and the correlation function becomes

1 )

~lc. =ntz~(K~)
~

O) Q, (Ap, ) ~
O) =O, (36)

where

A simple inspection of the gap equations shows that the
proton and neutron equations are coupled, i.e., it is possi-
ble that the superfluidities of the proton and neutron sys-
tems may be generated by one another, even in the case
when for one system, in the absence of four nucleon inter-
actions, Belyaev s condition [12] is not satisfied. Due to
the additional term G4y the strengths Gp( ) + G4+ ( )
may increase and fulfill Beliaev's condition for the super-
fluid solutions. This mechanisin explained [11] in several
cases the origin of the odd-even staggering of the charge
radii of isotopes of one element (see Ref. [35] also). More-
over, the gap equations can have [11]for some nuclei more
than one set of solutions, a fact which opened a new area
of research —the superfluid isomers.

To find the excitation spectrum and the corresponding
wave functions we add to the Ho the H' part and use
the recipe from Refs. [11,13, 36, 37]. Within the ESM
the wave function for any ground or excited state of the
atomic nucleus is given by

8g

is the so-called pairing correlation function or order pa-
rameter, and

1E. . . = E. . . ——(G„(„)+ G y„(„))v,

n.'.(K~) = 1

for the ground state of an even-even nucleus,

nt. (K~) = QJ(Ap)

(37)

(38)

1 2 4——G4v v
8p(n) ~ 8n(» )

8n(p)

(32)

are the modified (from the values E. . .) single particle
energies. Usually these self-consistent field corrections
are omitted [13].

The minimization of the function W given by Eq. (30)
with respect to the variational parameters leads to the
following gap and constraint equations:

for an excited collective state of an even-even nucleus,

n'.„(K )=) c,(K ),',
qb

+) ) Dp"'(Kvr)o. p~ Qt(Ap) (39)

for the ground state or excited state of an odd-mass nu-
cleus, and

—(Gpl„) + G4g„(„))) e, ' = 1

8p(n)

) [1 —(E, —A )e, ']=N

(E. —A )2+ A2,

n.„.„(K ) = ) c„,.(K ) ..
qpbpq 8

+) ) Dp"'
p (K~)

APi PpypPngn

x nest
apt QJ(Ap, ) (4o)

for the doubly even mass deformed superfluid nuclei. For
odd and odd-odd mass deformed superfluid nuclei the
above equations are modified according to the blocking
effect [13].

The Bogoliubov-Valatin u, and v, parameters are
parametrized according to the formulas

for the ground state or excited state of an odd-odd nu-
cleus.

In terms of quasiparticle operators the phonon Q, (Ap)
operator is given by the expression

(u2 &

)
(34)

Q'(~u) = Q,'"'(~~) + Q,'"'(~~)

where

(41)
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Ql ' "l(&p) = —) [Q„~*A(ss') —y„",*At(ss')
ssl

+@„",*A(ss') —P"„",*At (ss')]

with

A(ss)=22)pnipnA(ss)=2 25ng
P P

sp, tLs Gs —p + @VsG

(42)

(43)

(44)

motion) to a shape corresponding to the two daughter
nuclei in contact.

Second, the two daughter nuclei tunnel through the
potential barrier in their relative motion, without further
change in shape.

The favored cluster transitions follow the Geiger-
Nuttal [19] law, which can be qualitatively explained by a
mechanism according to which the emitted cluster is con-
structed mainly from strongly correlated pairs of nucle-
ons situated around the proton and neutron Fermi levels.
This mechanism leads to almost the same magnitude of
the reduced widths for the isotopes of the element stud-
ied and consequently to small hindrance factors [10, 21,

When the collective energy w,". " = (Q; (A p) HQt (Ap) ) is
very close to a two quasiparticle energy e, + e, then
the structure of the operator Q, (Ap) is dominated by
the corresponding two quasiparticle component, and the
state becomes mainly a two quasiparticle state. The ex-
pressions for g,",",', P„"I', Q„"i', P„"i', &~(K7r), D&~'(~~),

(~m), D&"'
& (Kvr) are given in Ref [13]; h. ow-

ever, the energies u, g and the pairing gap parameters en-
tering these expressions are modified [ll] due to the new
H4 additional term introduced in the ESM as compared
to the quasiparticle phonon nuclear model (QPNM)
[13,37, 36].

IV. THE CLUSTER SPECTROSCOPIC FACTOR

In the previous paper [7] we derived the expressions
for the hindrance factors of cluster radioactive decays
including the cluster spectroscopic factors and their in-
ternal structure: the cluster overlaps and the intrinsic
overlap integrals. The overall approach is analogous to
that developed for the n decay [10, 21, 28, 14]. Within
this approach we view the decay process as composed of
two main steps. First the mother nucleus makes a kind of
phase transition from the initial state, which could be of
any structure (Fermi liquid [14],superfluid [13,38], spher-
ical or deformed, one or many n cluster states [39—41],
one or many combined heavy cluster states, etc.), to the
final state composed of at least one cluster, which is going
to be emitted, and the residual nucleus, which may also
have any structure as above. One mechanism of such a
transition could be cluster condensation, e.g. , o. conden-
sation [38], cluster formation [42, 43], or what is usually
assumed the formation of the cluster (e.g. , the n clus-
ter) from the already formed condensates of smaller clus-
ters (e.g. , Cooper pairs, bosons in the interacting-boson
model, etc.) [7,11—13,17,10,21,28, 14,38,42,39,43]. An-
other (less studied) mechanism could be the slow shape
deformation [44] from any initial shape configuration of
the studied many particle system through shapes that are
energetically very unfavored (a large amplitude collective

7].
The unfavored transitions do not follow the Geiger-

Nuttal law, because of the large variations of the reduced
widths [10,21, 28, 14], which have a key role in the under-
standing of the decay process and require a precise knowl-
edge of the structures of the initial and final quantum
states. From such transitions we can learn much about
the structure of atomic nuclei and the mechanism of the
decay phenomenon. The unfavored transitions have large
hindrance factors and are characterized by the fact that
the nucleons used to build the cluster are collected from
difFerent groups of strongly correlated and/or uncorre-
lated nucleons entering the structure of the initial state.
In this last case it is necessary, first, to break up the cor-
related groups of nucleons and then to build the cluster
which is going to be emitted.

There are clusters containing 4n particles, with n an
integer. As examples we have the already observed
2 0, Ne, etc. nuclei emitted from some translead nu-
clei. There are other clusters, such as for instance 1 C,
which may be composed of groups of 4n particles (n
type groups) and one group containing less than 4n par-
ticles (deuteron- or triton-type groups). In order to use
Moshinsky-type transformation brackets [45] we have to
follow Ref. [17].

In the next subsection we study the 0 case and after-
wards we give the general procedure for calculating the
intrinsic overlap integrals.

A. Intrinsic overlap integrals for O decay

The 0 cluster contains five o.-type groups of nucle-
ons. After a sequence of Moshinsky [45] transformations
and orthogonal transformations for rearranging angular
momenta, the spatial part 4p of the wave function 4p
from Eq. (18) of Ref. [7] (defined in terms of products of
20 [@ ~ (ru)] spatial harmonic oscillator wave functions)
can be expressed in terms of 20 harmonic oscillator wave
functions of the same frequency w. Some (19) of these
harmonic oscillator wave functions are functions of Ja-
cobi coordinates (p&):

( ) F1 F2 (~ ) 1. 3 r4 ( ) r1 + ~2 3 4
Pi ~ P2 ~ & P3

y'2 2

(~ ) r5 r6 (~ ) r7 r8 (~2)
P~ = ~ ~ Ps

r5+ r6 —~7 —~8
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(~ ) X9 &10 (cx ) &11 X 12
Px

(cx ) &13 &14 (cx ) &15 &16
Px — ~ ~ P2

( ) X 17 X 18 ( ) ~19 &20
Px = ~ ~ P2 = ~ )

4 81r — 5r
2~2

16 20
'=13 ~' .=17 ~'

2~2

(,) ~9 + X'10 —&11 —&12
P3 2

r13 + r14 —r15 —r16
P3 2

)

( ) &17 + x18 &19 r20
P3 2

8 12g„xr„—2g 9r;
2~6

12 203 E'=xs r'
/120

(45)

and one of them is a function of R = ~20R2oo where I-o( R) =(@;. I~p).
~20Z;—1&i

XC.2OO =
20

(46)
This overlap integral can be expressed in terms of o.-type
overlap integrals

is the center-of-mass coordinate.
Further, we may express the wave function 4p as prod-

ucts of four particle spatial wave functions
I v, l,m, )

coupled to a given angular momentum l, (where v, =
n~' l~' * l' ~' l1 ~ 1 & 2 ) 2 & 3 ~ 3 & 4 ~ 4 & 12 ) 34»

I-, (~R) = (v;.'t I v-; ~-;m-; &
=

I

(2) ( 2nP
'll) ( +&1 )

(5o)

I 4p) =
I v, l,v, l, (l „)v,t, [l ]

xv, t,v, t, [l ];lm). (47)

2~ -', [g'. , (2~.-* +i.-* )—(2)V, +i., )]

i P2 + ix2)
Na.

The spatial part of the 0 nucleus intrinsic wave func-
tion we express, as in Ref. [7], as follows: xX)v i (v, )C)v & ~ (nR . ),

57 j 19

The coefficients ( g are the overlap integrals (@,„t I
4po )

from Eq. (21) of Ref. [7].
Let us write down the overlap integral

where p,.„'t = p& x 4999(pp&*) is the intrinsic n-particle
oscillator-type wave function. Here, however, the oscilla-
tor parameter P is equal to PA, &om Eq. (48). The oscil-
lator paraxneter a (n = g s ) is defined by the mother
nucleus oscillator f'requency. The quantity X)v x (v, )
contains three Moshinsky [45] brackets:

X)v i (v, ) =

where

(~ (-;) + -', )!
g p~( ')g ; ) ( ')g( ') ( ')g(~')g( ')y

1 12 ~ 1n (a )n (a) n ( . ) n (a) &=1
P1 P2

( . ON *l ' 'l * 'l 'l *)( . 0N. l . iN 'l *N *'t 'l *)( ') 2 34 ( n3 3 n4 4 34 / g ( ) ' '
I 1 12 2 34 34

P2 P3

a~

(-;) (-;) (-;) (-;) (a) (a)
g ~ f 3 g 1 Z 1r g 3 4 34 g » 34

0 0 0 0 0 0

h 4 h

s=l

n, ' !(2t, * + 1) .". ' ~xi( ') + &(~') + - ~ (—1)". *

(~') + l(~*) + x i -x'. "=9 ( xx, ' k, *

) k( *)i+2-
(52)

The tilde above the suxn in the above expression stands for the restriction P, x (2k, ' +l, '
) = 2k,. +l, in per-

forming the summation.
The intrinsic overlap integral for 2 0 decay can now be expressed in terms of the X)v x (v, ) quantities:
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Q —Pk

2- —,'[P,'. , g'. , (2 ~ '~+l', &) —(21V+&)]

) n —p

N k

where
20O

X~~ (va& va, vaa va4 va, /a&&lTlD)

I.op(nR) = ) ( 1,

2 t' 2np1,

+ r)
XX~1 (Va, Vaq vaqVa4Va5/a, q/T/D) @Nina(nR) yi

N~ 1
".N~ 5 Nz N z)

X~ 1 (N, /, N, l, l „N,/, )X&~&~(N, /, N, l, ) XN, l, (va, ), (54)
i=1

where X~0L~ has the expression [17)

XN L (vD) = ). ( po + 2)' (D) (D) (D) (D) (D)(n OND /12
I nl /1 n2 /2 /12

Ap~ o

Ap~

with

= (—1)
2 J

+/ +-) )- k ~k +/ +
ND!(2/D + 1) - (~P)'0+»o ( kD —ND

kz)

(55)

(56)gD ~l l l n( )!(2l( ) + 1) .". ~n( ) + l(D) + -' l (—1)".
k~ ( D) 0 0 0 (D) (D) 1 ) ~~(a) 0 (D) k(D) k(D) ~;"j n, +l, +2 ! = ( na ~ j 8

Here vD = n1, l1, n2, l2 . The tilde above the sum in the above expression stands for the restriction P,
(2k, +l, ) = 2kD+lD in performing the summation.

X~~L has the expression [17]

XN L (VT)= )
np~ n p~1 2

(np + -', )!
(np ONT, l12

I
n1/1n2l2l12)(np ONT/T

I NT, /12ns/2/T)
Dp~ 0

where

(,)
.

I

K) + +, ) ) ~ ( )
.'I + +-',

2 ) NT!(2/T + 1) - "~ (~j)&T+»T ( kT NT
kg

(57)

l(+) l(+) l(&)
~k (VT) = +0' o'o " +0"o'o

I~ 4h
s=1

!(2l, + 1) " (n( + l(T) + -'')

„(T)+ l(T) + 1
2

(-1)".
p(T) )

(58)

Here PT: A1 li A2 l2 l12 A3 l3 The tilde above the sum in the above expression stands for the(T) (T) (T) (T) (T) (T) (T)

restriction g 1 (2k, +l, ) = 2kT+/T in performing the summation. The expression for X'~
1 (v, ) is given. in

Eqs. (5O) and (51).
20OThe expression for X'~& ( v, , v, , v, , v, , v, , l „,/TlD ) can be directly obtained fram the following equation:

I v, v, v, v, v, l „/T l D, /1n) = (n &,~, / ~, &, ..., np, lp, N, L;l
I

va, va, va, v ,v , l „lTlD., l)
n ( 1),l ( 1),...,np, lp, NL

P1 P1

x
I

n ~, &, / ~, ~, ..., np lp N L'/7B)
Py P1 (59)

In the above equation in the left-hand side is the wave vector containing 20 oscillator wave functions @„,1f,f(nr, ),
whose angular momenta l; are coupled as follows:

)(~') + g(~*) )(~')
1 2 12I, + l, = l

)(~') + )(~') g(~') )(n;) )(cx;)
3 4 34 12 34

+l, = lT, l, +l, = LD, lT +lD ——I (6o)

The right-hand side contains 19 oscillator wave functions 1IJ
~ (np&), that depend on Jacobi coodinates p1, and

one 1111VL~(nR). From Eq. (59) by assuming r1 ——r2 —— . ——r20 ——x we obtain
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20~
4"iv, (v~, v~, v, v, v, l „l7 l~ ) =

(a1) i (a1) i ~ ~ i p) p

(n &,i, / ~, &, ..., nz, /z, X, I;/
~
v, v, v, v, v, l „/~/~. , l)

P1 P1

5 3

X

i=1 k=1

(n (., ) + -')!
pa

A ( ) .
pa m=1

(np + —,')! (np + —,')! (ni + —,')!

iv f~~~ (/'I+/+ —,')!) k! (k+l+ -', l
q 2 ) N!(2/+1) „- ~'+2" ( (61)

where

Bi,(v) =
i=is=1

L(a~)
5

&0' o

i ')t(2/( *)+1) — i-'i /' i )+/(, )+ i) (

(
(n) (cx, ) i ) k ' =0 '! *) —k! *) ) k'! ')t

2 l12 gL3 l4 l34 CtL12 l34 l{a . ) gL(a ) L(a ) l(a12) gL{a1 ) l(a3) LT' Cl(a4) l(a5) LD gLT l~l
0 0 0 0 0 0 0 0 0' (62)

Here v = v, , v, , v, , v, , v, , l „,lT, I,~. The tilde
above the sum &om the above expression stands for the
restriction P,. i P, i (2k, ' +l, *

) = 2k+/ in per-
forming the summation.

B. Cluster overlaps for ~ 0 decay

According to Eq. (19) from Ref. [7] the cluster over-

laps are de6ned as an expansion in terms of the general-
ized coefficients of fractional parentage (GCFP) [15, 16],

GCFP = (4& @~- ~)C„'+' '), (63)

which is an overlap integral of three totally antisymmet-
ric wave functions with given total spin and parity (even-
tually isospin). The above functions are defined in terms
of the products of single particle oscillator wave func-
tions with the same frequency (here id~+ ). The final

If Kf ~ynucleus wave function
i

4'&f ) may have, especially for
heavy cluster decay, a different oscillator frequency (id~

/id~+~). If so, we may expand the
~

@& ) in terms of

ML, M(K Ir M Kf7I f) —(0
~
O(K 7c )4 Ic ~

0)

where

(64)

an analogous wave function, but with the oscillator fre-

qency id~+ . The expansion coefficients Cp = (@&
) (iII&~

~

~II~~ ) are given in Eq. (20) of Ref. [7].

Here the (@&
~

iII~~ ) coefficients depend on the

chosen basis
~

@~~ ), while the (iII~~
~

@@~ ) coeffi-
~A ~A+a

cients are the oscillator frequency dilatation [46] coeffi-
cients and they can be expressed in terms of polynomials
in x = (co~+4+ id~)/(~d~+4 —~d~) [I„„,= (n/m(id~+4)

~

(l)

(L]
n' m/(~~) ) = N!!,(x) x" F( n, n'; n———n'—

~(L] ( ) I ( +l)I'( '+1) I'( + +l+ —)
j ' k j I'( +l+ )I'( +l+ —) I'( +1)I'( '+1)

~

~

~

~1
l+—

1 ——, 47 . Thus we may include Cp in the

nuclear structure coefficients from Eqs. (36)—(40).
The calculation of the amplitude of the reduced widths

can be reduced [7] to the calculation of the matrix ele-
ments

@Kg~y ~ ) = ). ). ). ). +1"8~." .2(vi'''vs
~

~i' ~»)
Vl'' VS T1 ''TS ~l ' ~12 &1' '~12

(65)

The dominant term in the matrix element (64) contains the favored 0 cluster transitions. The expressions for this
term in the case of the transitions between doubly even, odd, and odd-odd mass nuclei are

(o+ ~0+)., = ) )
V1...V4

IMX~~A+ + + +,+ + + + + + (ViViV2V2VsVsV4V4
~

idi(diCd2id2ldsidstd4&4Cdsidsids&s)

4 6

I 4 h

s=l
f i f i

h 4 4 2 7

j=l
(66)
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M~M(K;7r, -+ Kf —Ki7l f —7l i) odd
f

) Cq(K 7r ')C'q(Kfvrf) + ) ) Dp" (K 7r )'Dp'" (Kf7rf) ) )
V] '' V4 4Py ' '4PQ

LM
&&oddA+ —+ + +;+ + + + + + (V1V1V2V2V3V3V4V4

~
~1~1~2~Ll2~3~3~4~4~5ld5~6~6)

4 6

'll Vf i
8 8

h J h

s=i
(67)

ML, M(Ki~i ~ Kf = Ki rrf = rri)odd-oddf

) Cq (K;m;)C (Kf7l f) + ) ) D&"'
& (K,~;)D&"'

& (Kf7l f) ) )
&Pi Pp YpP Y Vy ' ' V4 4Py ' ' 4Pg

LM
&&odd-oddA+ + + + + + + + + + (V1V1V2V2V3V3V4V4 ] ~1~1~2~2~3~3~4~4~5~5~6~6)

4 6
f i f

I 4 h 4 ~ 4 l 2 2
8=1 i=1

(68)

Here the summations are performed within the condition
that any two indices should not be equal and, moreover,
none of them should be equal either to q or to P in the
case of odd mass nuclei and to qz, q, Pz, or to P in the
case of odd-odd mass nuclei, respectively.

These formulas represent a straightforward generaliza-
tion of the formulas presented in Ref. [20] that cor-
respond to the favored o. transitions. The coefBcients
A . (v1. vs

~
u1 .~12) are the cluster trans-

fer amplitudes analogous to the o. transfer amplitudes
[see l'L, M' ' ' in Ref. [28] or A. . . , (v1v2

~
u1u2)

in Ref. [20]). These cluster transfer amplitudes are the
intrinsic overlap integrals determined by the ESM sin-
gle particle basis. Taking into account the expansion of
the Nilsson-like wave function in terms of oscillator shell
model wave functions (y, = g„i a„&'. ] nljoO, )), the

coefficients A, , , „(v1.. vs
~

u1 .~12) can be
expressed in terms of intrinsic overlap integrals (49) de-

termined by a spherical basis (59). The cluster overlaps
for the favored transitions are de6ned, e.g. , in the case
of the favored transitions between doubly even nuclei, by

$=1 V8 V8 L j./=1 4Pj 4Pj '

The explicit expressions of the matrix elements
MLrM(K;m; -+ Kfmf), etc. from Ref. [20] can also be
generalized in the case of unfavored 0 cluster transi-
tions; however, we do not reproduce them here.

C. General remarks concerning the calculation
of the intrinsic overlap integrals

for any cluster decay

The approach presented above for the 0 cluster de-
cay could be generalized for other cluster decays in which
the emitted cluster is a spherical doubly even nucleus.
For example, in the case of C decay, the X~~ matrix
entering the intrinsic overlap integral

p q 2 2 p2 ~a +*=a + =I ( ~'."'+" ')+&.I=. (2"' '+" ') —(2~+i)
I co =C

xXiv, (v~, v~, v~, v~, v~, l~„lllD)@pvi~(aR) (69)

can be built from 3 0;-type X~'& matrices, one triton-type X~& matrix, and two deuteron-type X~& matrices, finally

arriving at the following expression:

~4C DD DD
Xivi (v, v, v, l „lTn1 l1 n2 l2 lip) =

(ay ) tl (a~ ) &
~ .&+p )l p

pg py

(n &., l, l l., l, ..., n~, l~, N, L;l ] v, v, v, l „lTn1 l, n2 l~, l)

(n (,. l + 2)!
(-;)!

pa m=1

(np + 2)! (n~+ 2)'
Ap 0

iv (~vrl (N+l+ -', )! . k! (1+l+ —,'5
g 2 y N!(2l+ 1) ~'+'" l,

(70)
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where

3 4

1 01
i =1 s=1

nl 'l~(2ll 'l + 1)
— '. *' (nl, l + &l™,l + i l

' ' —k' ' ) k' "+ 2 ~

„(r~l)(2l(Dl + 1)
— & '

t
ir ) + l(D) + i ) ( 1)~'. '

8 1 ns 58 2 X
8 8 / 8

~ I 4h

i=1

l1 ' l2 '
l12

' l3 l4 /34 12 34 (a ) l(a1 ) l(a2) l(~12 ) (aug) (a3) T l1 L~ l~(ai) (ai) (ai) (ai) (ai) (ai) ( i ) ( i) n l l

0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0

Here v = v, , v, , v, , l „,lT, lD. The tilde above the sum in the above expression stands for the restriction P,.
i (2k, * +I, '

) + g . i (2k. +l ) = 2k+1 in performing the summation.
In performing the above integral we have used the trans formations f om the nucleon coordinates ri to the Jacobi

(p, ) and center-of-mass (K) coordinates

r3 —r4
pg

(c 2) r7 rs
P2

(,)
P2

r1 —r2
pi = ~ )

(~,) r5 —r6
pi

(~,) r9 —r10
pi

4 8
m=1 r~ ~=5 r~

r1 + r2 —r3 —r4

(n2) r5
P3

+ r6 —r7 —rs

8 —2
121r29r

2~O

(~ } r9 + r1o —r11 —r12
P3 )

r13 —r14
12 142P, ir; —6+, i&r;

~S4

14

R = ~'='"
~i4

in an analogous way as in the 0 case.

V. a DECAY

By using the enlarged superHuid model (ESM) [11],
we calculated the quasiparticle phonon structure of the
ground state of the Fm nucleus, which emits o. and

0 clusters. We calculated also the ground and several
excited states of the daughter nuclei Cf and U, re-
spectively. The results are reproduced in Tables I and
II. The structures of these states are very close to the
structures given within the quasiparticle phonon nuclear
model (see Refs. [36] and [37], respectively).

In calculating the 2 Fm and Cf excited state struc-
ture the ESM parameters used are G„= 0.14 MeV, G„

0.12 MeV, and G4 ——0.25 keV. The parameters of the
average field are taken from Ref. [36]. The deformation
parameters used are P2p ——0.26 and P4p

——0.035. They
are taken &om the calculations of Cf static deforma-
tions (see Ref. [36]). The particle-hole quadrupole and
octupole parameters used [see Eq. (26)] are K"" = ep~ ——

0.664 keV fm, v. & = v1" ——62.4 eV fm, K, I" = vz" ——

8.6 eV fm, and v ~ = K1 ——1.2 eV fm . The particle-
particle quadrupole parameters used [see Eq. (26)] are
G " = Go + = 12 eV fm . All the other coupling con-
stants entering Eq. (26) and not mentioned here have
been taken equal to zero. For U the above parameters
are the same except the deformation parameters (P2p ——

0.23 and P4p ——0.08), which are taken from experiment
[48,49]. These values are close to the values obtained
in the calculations of sU static deformations (see Ref.
[37]).

In the calculated structures we restricted the valence
single particle space to 52 proton levels and 52 neutron
levels cent ered around the Fermi levels and the num-
ber of the quadrupole and octupole phonons with Ap, =
20,22,30,31,32 and i=1,2 (see Ref. [11]), following the
recipe used within the quasiparticle phonon model devel-
oped in Ref. [36].

Within the B-matrix approximation [7] we calculated
the HF 's for the favored and some unfavored o' decays of

Fm to the ground and some excited states in Cf nu-
cleus. The expressions of the reduced widths within the
superfluid model are given in Ref. [20]. The results have
been compared with the calculations of Ref. [28] and the
experimental data [50] [see Table III(a)]. They are not
far from our previous calculations [10]. A relatively good
agreement with the experimental data is obtained. The
data denoted by HFMpR have been obtained by using the
reduced widths &om Ref. [28]; however' the penetrability
ratios and the Froman-Nosov matrices have been calcu-
lated with the M3Y double-folding potential (see Sec.
IIA). From Tables I and III(a) we conclude that the n
decay of the Fm ground state to the 2 106.33 keV7+

state of Cf can be considered as the favored o. tran-
sition. The explanation of small (close to unity) HF's
in this case is based on the picture according to which
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TABLE I. The calculated, within ESM, structure of some ground and excited states entering
the n decays of Fm(g. s.).

Nucleus I K &expt @theor Structure

"'Fm 7+
2 2

(MeV) [63, 54]

0.0
(MeV)

0.0 97.91'%%uo [613] — + 2.1% [624)—

251gf

251gf

1+ 1
2 2

7+ 7
2 2

0.0

0.10633

0.0

0.116

+2.1'%%uo [613] & Q2p + 2.5%%uo [611] 2 Qp2

84.21%%uo [620] -' + 0.04% [631]

+4.1%% [622] —', Q22 + 2.5%%uo [620] —,
'

Qgp

87.23%% [613] — + 6.04%%ui) [624]—

251gf 3+ 3
2 2 0.17?7 0.176

+2.1% [611] 2 Qg2 + 2.5% [725] 2 Qp2

82.92%%ui& [622] — + 1.09'%%uo [611]—

251Cf ll 11
2 2 0.3704 0.380

+8.04%%uo [620] 2 Q2$ + 2.5%%uo [752] p Q3p

87.88% [725] '2'

235U 7+ 7
2 2

7+ 7
2 2

0.445716

1.236

0.458

1.458

+6'%%uo [613] 2 Q32 + 4.04'%%uo [615] 2 Q31

71.0$% [624] — + 7.09'%%uo [613]—

+9.04%% [743] —,
' Q„+ 1.05% [725] —", Q„

61.02% [613] — + 9.09'%%uo [624]—

+19.04% [624] 2 Q2p + 1.05% [725] '2' Q32

the cluster (in this case an a particle) is built from the
fermions just situated at the Fermi surface, where strong
pairing correlations occur and, in addition, one may ne-
glect the differences in structure of the parent and daugh-
ter states. On the other hand, for the other o. transitions
to the intrinsic states [see Table III(a)], the hindrance
factors are large, and this is explained by the fact that
during the formation process of the 0. cluster at least
one Cooper pair is destroyed and one nucleon from this
Cooper pair is coupled with the uncoupled nucleon of the
mother nucleus in order to participate in the formation
of the n cluster. The theoretical HF's for unfavored o.
transitions are, as a rule, larger than the experimental
ones, except those corresponding to the o. transitions to

the members of the Cf ground state rotational band.
Within the ESM picture small spins of the anal states
are more favored than large ones.

The channel radial regular and irregular wave func-
tions have been calculated by using the Coulomb poten-
tial plus the realistic M3Y double-folding potential [51],
in which one uses an effective interaction derived from
the G-matrix elements based on the acid soft-core N%
potential [52] in the form assuming only one pion ex-
change potential (OPEP) force between the states with
odd relative angular momentum [33]. This potential is
obtained numerically, and then is interpolated by cubic
spline functions to improve the accuracy of the numerical
integration. It is well known that the barrier penetra-

TABLE II. The calculated, within ESM, excitation energies (in keV) of Cf and U ground
and several excited states.

7
21+
25+
25+
23+
27+
2
5
2
3
2

235 U
@expt
[64, 63]

0.0
0.0768
129.297
332.841
393.211
445.745
633.088
637.786

235 U
@QPNM

[371

0.0
5.0
100
310
450
490
300
680

235 U
@ESM

0.0
0.2

140.0
360.0
410.0
458.0
660.0
663.0

1+
27+
23+
29+
2
9
2
11
27+
2
1
2

251 gf
@expt
[64, 63]

0.0
105.73
177.69
426.0
434.0
370.4

251 Cf
@QPNM

[36]

0.0
50.0
170.0
370.0
320.0
380.0
390.0
630.0

251( g
@ESM

0.0
116.0
176.0
414.0
474.0
380.0
421.0
525.0
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TABLE III. (a) The calculated, within ESM, hindrance factors for favored, weak unfavored, and unfavored o. transitions
from Fm(g. s.) to the members of the rotational bands of several intrinsic states of Cf. (b) The calculated I=O penetra-
bilities, penetrability ratios (E~) for the favored Fm(g. s.) -+ n + Cf transition, and the inner (r, ) and outer (r ) turning
points (in fm). For further explanations, see the text.

Ey (keV)
[63, 65]

106.33
166.31
239.33
325.3
424.1

7+
2S+
211+
2
13+
2
15+
2
17+
2

HFexpt
[25, 48]

1.24
12.9
52
125
390

HFMPB.

[28]

0.62
6.34
21.07
178.3
544

HFEsM

0.95
8.75
28
210
570

Ef (keV)
[63, 65]

0.0
24.82
47.83
105.7
146.5
237.7

1+
23+
25+
27+
2
S +
211+
2

HFexpt
[25, 48]

4500
2800
500
120
610
3300

HFMPR
[28]

1621
1003
246
416
399
1416

&FEsM

2100
1300
265
475
455
1710

177.7
211.6
258.4
319.4

3+
25+
27+
2
g+
2

R, R,
Ti) TO

Po (r;)
Pp (8.25 fm)

I'4

2700
2500
3300
7300

Rasm.

0.613
0.195
0.032

15604
14719
16084
24440

18150
17305
18955
28540

0.461 x 10
0.605
0.189
0.031

(b)

370.4
442.0

TQ —1e2)

a=0.5

0.829 x 10
0.258 x 10

0.438
0.082
0.007

11
2
13
2
15
2
17
2

540
840

Tp —1 ~ 2)
a=07

0.383x 10
0.304 x 10

0.534
0.102
0.009

3179
3704

804687

3355
3950

847315

Tp —1o3)

a=0.7
0.389x 10
0.307x 10

0.534
0.102
0.009

9.4
44.8

6.5
38.9

6.1
38.9

6.1
38.9

TABLE IV. The calculated Froman-Nosov matrix for the
favored Fm(g. s.) —+ n + Cf transition.

8

1.0437
0.3215
0.0576
0.0022
0.0002

0.3215
1.3869
0.2351
0.0575
0.0012

4

0.0576
0.2351
1.3122
0.2154
0.0471

0.0022
0.0575
0.2154
1.2998
0.1933

0.0002
0.0012
0.0471
0.1933
1.2855

bilities are very sensitive to assumptions about nuclear
potential (radius, slope, etc.) and channel radius. The
nuclear densities used in our folding procedure are de-
scribed by Fermi functions (see Sec. II A and Ref. [32])
with ro ——1.2 fm, and a~ ~ = 0.5 fm. For Cf we
used difFerent sets of density parameters and concluded
[see Table III(b)] that the penetrability ratios (E~) are
relatively stable, i.e., they do not depend very much on
the parameters entering the partner densities and they
are close to the values given by Rasmussen's formula [see
Eq. (5) and Refs. [25, 18]). Since in the expressions
of the hindrance factors we need the penetrability ratios
(F~) only, we believe the predictions we give are more
credible. In Table III(b) the I= 0 M3Y penetrabilities
calculated at the inner turning point and at the channel
radius R, = 8.25 fm as suggested in Ref. [28] are given.
The penetrability ratios (E~) entering the hindrance fac-

tor for the favored transition are calculated with Ras-
mussen's formula [see Table III(b), column 4] and as ra-
tios of the penetrabilities for difI'erent density parameters
of the 2s~Cf nucleus [see Table III(b), columns 5, 6, and
7). The deformation parameter of the 2 ~Cf density was
taken as above, i.e. , P2 ——0.26. We also report in Table
III(b) the values for the inner and outer turning points
for the l = 0 penetrabilities. Our Froman-Nosov matrix
is very close to the It@& obtained in Ref. [28] (see Table
IV for the %&0& entering the expression of the hindrance
factor for the favored transition).

The radial scattering wave functions are calculated at
the experimental resonance energies using the Numerov
algorithm. At a distance of 15 fm the nuclear folding
potential V makes practically no contribution, and the
regular solution is normalized to have the asymptotic be-
havior of the Coulomb functions [53]. The value of the
irregular solution at this distance is obtained f'rom the
Wronskian relation, and then the whole irregular solution
is obtained integrating backwards to the origin. How-
ever, at small distances the fragments interact strongly,
and this asymptotic solution is gradually replaced [14, 7]
by the "internal" wave function supposed to describe the
compound system before decay.

VI. CLUSTER DECAY

We also calculated [see Table V(a)] the favored and
weak unfavored 0 cluster transitions from the Fm
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TABLE V. (a) The calculated, within ESM, hindrance factors for several Fm(g. s.) -+ 0
+ U transitions. (b) The same as Table III(b), but for the favored Fm(g. s.) ~ 0 + U
cluster transition. For further information, see the text.

Ey (keV) [54]

1236.0

Favored band

I f
f
7+
2
g+
211+
213+
2

HFEsM

11

18
31

509.92
587.82
682.57

Weak unfavored band

Eg (keV) [54] IP
445.716

g+
211+
213+

HFEsM

185
428
729
1224

P), I"I,,
+O

Pp (r, )
Pp (10.41 fm)

I"2

Q4

Rasm.

0.809
0.494
0.227

Tp = 1.2)
a = 0.5

0.117x 10
0.125x 10

0.859
0.605
0.350

pp: 1.3)
a = 0.7

0.149x 10
0.124x 10

0.861
0.610
0.357

5.7
27.1

6.3
27.1

nucleus to some excited states in the U nucleus by
using the approach presented in Sec. IV. Due to the fact
that a relatively large number of nucleons (eight protons
and 12 neutrons) occupies the levels around the Fermi
proton and neutron levels, the single particle level [613]

, which has the main contribution in the structure of
the ground state of the Fm nucleus, can be found at
the relatively high excitation energy of the U nucleus.

From Table I we learn that within the ESM [11] the
I

structure of the Fm ground state contains contribu-
tions from two single quasiparticle states, namely, 97.9'%%up

[613] 2 and 2.1% [624] 2 emerging from lill and 2g9,
respectively. These states occur also in the structure of

U excited states lying at 446 keV and 1236 keV ex-
citation energy, respectively (see Table I and Ref. [37]).
By using the ESM structure for the above initial and 6-
nal odd mass nuclei, the expression (1) for the hindrance
factor becomes

HF Fin(I 'K) + 0+ U(I = I 'K = K.)
—1

2) I'i C~f ~~* Cp, (K;vr;)Cp, p,. (K;~;)(RSA)I~ ~), (73)
l

where

(RSA)I ~(K;7r; —+ Ky7ry) = ~ ~ ~

odd ~odd
V1 ' 'V4 421 ' ' '&6
ee ~ee
Vl ' V4 4 1 '''&6

oddAfav (i 1 +4
I

&1 ' ws) Hs 1 trav V~ Q i il~ V~
1

(» i'4]~i ~s) II.=i" .U .H, =i'u
(74)

in which „A& and ddA& „are defined in Eqs. (66)
and (67), respectively. C~, , are the weights of the sin-

gle quasiparticle state in the structure of the i(f) state.
The only difFerence (see also Ref. [20]) between the cases
corresponding to the odd mass and doubly even nuclei
is that in the Grst case the sum in the above equa-
tion excludes the common quasiparticle state of both
the mother and daughter nuclear states (e.g. , [613]2
for Fm i 0+ s U)

In the calculations presented in Table V(a) we ne-
glected the collective state contributions in the structure
of the initial and anal states, which may a8'ect the pre-

I

sented predictions a little. The l = 0 penetrabilities cal-
culated at the inner turning point and at the channel
radius B, = ro(Ai + A2 ) = 10.5 fm are given [see1/3 1/3

Table V(b)]. The penetrability ratios (I'i) entering the
hindrance factor for the favored transition are calculated
with Rasmussen's formula [Table V(b), column 3) and as
ratios of the penetrabilities for different parameters for
the density of the 2s U nucleus [Table V(b), columns 4
and 5]. We also report in Table V(b) the values for the
inner and outer turning points for the l = 0 penetrability.

The suggestion given in Ref. [54], pages 406 and 407,
that the levels lying at 445.71 keV and 509.82 keV should
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belong to the rotational band built on the intrinsic state
with the structure ground state octupole phonon does
not fit our results. The suggested structures contribute
only 9%, the dominant contribution coming from the sin-

gle quasiparticle state [624]—
Unfortunately, the above discussed 0 radioactivity

cases have half-lives greater than the maximum half-life
(1025 "5 sec) among the experimentally measured [4] clus-
ter decay half-lives and, hence, would be hard to measure.

The Ra and Th nuclei belong [55, 56] to the well-
known region of soft nuclei with Z 88 and N 134,
with strong octupole correlations in the ground and low

lying excited states, where the 1j15 intruder orbital in-

teracts strongly with the 2g9 natural parity orbital. The
2

HF's for both the o. and C decays of the ground state
of Ra are very difEcult to calculate at present, due to
the lack of accurate structure of the mother and daugh-
ter nuclei. Studying the experimental HF for o. decays to

Rn ground and low lying excited states [57] we learn
that —15 [57] transitions have small (( 100) HF's and of
these transitions five have HF's & 10. The correspond-
ing excited states [158.64 keV, (2, 2)+, HF = 7.9; 269.48

keV, (2, 2 ), HF = 4.5; 338.27 keV, ( —)+, HF =
5.6; 446.83 keV; (2), HF = 7.9; and 515.1 keV; HF
= 4.5] have very difFerent structure, and this fact tells

us that the structure of the ground state of Ra is not
as simple as, e.g. , the Fm case. It may contain many
more or less equal components of single quasiparticle or
quasiparticle phonon states. Unfortunately, not all the
spins and parities of the Rn excited states populated
by o, decay are known. Thus it is a dificult problem
to describe the quantum states involved in the o. and

C decay of Ra. In our opinion, it is not sufBcient
to have a description of these states within an indepen-
dent particle model only [58, 59]. Residual interactions
could play an important role [10]. The restrictions con-
cerning the valence single particle space (52 proton lev-
els and 52 neutron levels centered around the Fermi lev-
els) and the number of quasiparticles and phonons (as,
e.g. , in the case of Fm~o;+ Cf decay, where only
Ap = 20,22,30,31,32 and i=1,2 phonons have been used),
may lead to an inaccurate structure of the Ra nu-
cleus. First, the valence single particle space should be
extended and, secondly, at the next step, when incorpo-
rating the quasiparticle phonon interaction, the number
of quasiparticles and phonons should be increased. Such
a task is as hard to perform as the calculations within
the oxBAsH shell model code with realistic residual in-
teractions [7].

Within the ESM the expression for the hindrance fac-
tor becomes

—1
2

HF Ra(I,. *K;) m C+ Pb(I~ Kf) = ) I"i C~ ~~' Cp, Cpfaiv'i *a~ t(, . u~ vs- ~ (RSA),
'

l

(75)

We may obtain an analogous expression for 2 Th(g. s.) -+ 0 + Pb cluster transitions also. Here, the ratio RSA

(RSA)I
v1 ~ "v4 ~u1" cue « fav 3 LB=1 v, v, l Lj=1

(76)

of the spectroscopic amplitudes has some analogy with
that given in Eq. (74); however it does not contain the
Nilsson-like coefFicients (a~*& . *, a~~

&

. ~) that character-Of ——Ky

ize the single particle contribution in the structure of the
initial and final states and the corresponding Bogoliubov-
Valatin (u~~ v~ ) transformation amplitudes. The
coefFicients o~~A„& (Kymf, K;n;) and, A& are general-
izations of the n transfer amplitudes [A, , (vv'

~

tun'),
see Ref. [20]] and contain the overlap integrals given in
Eq. (69).

Within such an approximation we calculated the hin-
drance factors for sRa(g. s.) ~ C + Pb and

Th(g. s) -+ 2pO + 2p Pb cluster transitions.
In Table VI we reproduce the calculated structure of

some states entering the above mentioned cluster tran-
sitions. Here Ap = 20,22,30,31,32 and i=1, 2, and 3
phonons have been used. In calculating the Ra and

Th ground state structure the ESM parameters used
are Gp: 0 14 MeV, G = 0.10 MeV, and G4 ——0.26 keV.
The parameters of the average field (see Ref. [37]) are

Vop ——55.53698 Mev, ro,p
——1-30975 fm, ap ——0.70071

and v, p: 5 56479 MeV, Vo ——37.78683 MeV, ro
1.39628 fm, a = 0.70071, K, = 7.31907 MeV. The
deformation parameters used are P2p ——0.15 and P4p
0.10. The particle-hole quadrupole and octupole param-
eters used [see Eq. (26)] are v"" = Kp" ——0.67 keV fm
v " = r1" ——0.06 keV fm, K " = K,p" ——0.01 keV fmnT 1T n7- 0~
and v ~ = K1 ——1.0 eVfm . The particle-particle
quadrupole parameters used [see Eq. (26)] are G "
G + = 15 eVfm . All the other coupling constants en-
tering Eq. (26) and not mentioned here have been taken
equal to zero. The theoretical HF's together with the
experimental ones when available and several interme-
diate quantities necessary in the calculations are given
in Tables VII(a), VII(b), VIII(a), and VIII(b). The ex-
planations for Tables VII(b) and VIII(b) are the same as
for Table V(b) given in the text. In the calculations from
the last column we have used the density parameters for
the Pb nucleus indicated in the top. The abbreviation
DSPC in Tables VII(a) and VIII(b) means the dominant
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@theorI K Z..„[66]
(MeV)

0.0
(MeV)

87.91% [633] -',
+ + 1.1% [622] —,

'+5+ 5
2 2Th 0.0

TABLE VI. The calculated, within ESM, structure of the ground and some excited states
entering the cluster transitions Th(g. s.) ~ 0 + Pb and Ra(g.s.) —+ C + Pb.

Nucleus Structure

223R

209pb

3+ 3
2 2

11+ 11
2 2

0.0

0.7788

0.0

1.116

+2.1%%uo [743] ~ Qs& + 2.5%%uo [631] ~ Q»
78.2l%%uo [631] 2 + 2.04'%%uo [642]—
+13.1% [752] o Qsg + 2.5'%%uo [761] 2 Qso
+3.1%%uo [631] 2 Q22 + 2.5%%uo [501] ~ Q31

97.23%%uo [606] — + 1.04%%uo [615]

209pb 9+ 9
2 2 0.0 0.0

+2.1% [743] — Q + 2.5% [725] —", Q30

92.92'% [615] — + 1.09% [624]—

+1.04'%%uo [615] 2 Qgo + 2.5'%%uo [624] ~ Q20

single particle configuration.
A few more comments may be in order here. First of

all, our ESM is not to be taken too seriously for very
complex structures, which would be the case of Ra.
This would be not true even for structures close to sin-
gle quasiparticle states, because the assumption of Ra
as an axially symmetric deformed nucleus seems to be
not realistic [56,55]. On the other hand, in order to have
realistic structures for both the initial and final nuclear
states, calculations within shell model codes like oxBAsH
or the ESM are practically impossible for present com-
puters. Therefore simple schematic models like that pre-
sented above would be useful.

Within the ESM the calculation of the hindrance fac-
tor IF=3, experimentally observed [9] in the case of the
transition from the ground state of 2 Ra (2 ) to the

, 1423 keV excited state in Pb, can be performed

by using the parity admixture only [60, 61]. There is an
excited level 2 in Ra, lying at 50 keV excitation en-
ergy, which can be admixed [61] in the ground state. We
roughly calculated (i.e. , assuming a parity-mixed doublet
[61]) the admixture coefficient of this first excited state
into the ground state of Ra by using the technique
developed in Ref. [60] and the parity nonconserving po-
tential used in Ref. [62]. This coefficient is found to
be of the order of 10, but higher lying states could
change this value. With this value, the hindrance fac-
tor for the above mentioned transition is of the order of
10, far away &om the experimental value. A more real-
istic result, however, could be obtained by increasing the
number of single particle valence levels and the number of
phonons and single quasiparticle states used to describe
the structure of the above nuclear states.

TABLE VII. (a) The calculated, within ESM, hindrance factors for two Ra(g. s. ) m C +
Pb transitions. (b) The same as Table III(b), but for the Ra(g.s.) ~ C + Pb cluster

transition.

Ef (keV)

0.0
779.0

I~ ~ (DSPC)
—,"(2gog. )

—",
+ (»tt)2)

[Nn A],

[642]

(a)
[ItIn A]y a„,*,

[615] 0.8
[606] 0.8

1.0
1.0

&n,

2%
78%

&ny HFe3cpt [9]

98% 600.0
97% 3.0

HFEsM

668.0
28.0

Pi, I"I,,
~O

Po (r, )
Po (10.41 fm)

E4

(b)
Rasm.

0.728
0.348
0.109

ro ——1.2,
a = 0.5

0.268 x 10
0.102 x 10

0.799
Oe485

0.225

5.7
22.2
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TABLE VIII. (a) The calculated, within ESM, hindrance factors for two Th(g. s) m 0 +
Pb transitions. (b) The same as Table III(b), but for the Th (g.s.) m 0 + Pb cluster

transition.

Ef (keV)

0.0
779.0

If i (DSPC)

(29p)2)
—",

+
(»~~)2)

[Nn A],

[633]
[622]

(a)
[Nn, A] y

[615]
[606]

(b)

n,

nlrb

0.72
0.70

an

nlrb

1.0
1.0

t n,-

1%
87%

t n~

98%
97%

HFEsM

1070
20

Pi, I'i,
~O

Pp (r;)
P() (10.41 fm)

Rasm.

0.796
0.467
0.202

ro =12
a=0.5

0.553 x 10
0.602 x 10

0.858
0.601
0.552

5 ' 7
21.7

VII. CONCLUSIONS

In this work we reported the results of several calcu-
lations performed within the enlarged superfluid model
[11], for some selected (favored and weak hindered) n
transitions in the 55Fm(g. s.) -+ n + Cf process.
The n decay mechanism used is derived [21, 10, 20] di-
rectly from the B-matrix approach to nuclear reactions,
i.e., it is assumed that the o. cluster can be found with
some probability in the structure of the decaying nucleus.
The external wave functions are calculated &om a clus-
ter nucleus double-folding model potential obtained with
the M3Y interaction. A relatively good agreement with
the experimental data has been obtained. An analogous
inechanism has been applied for the 225Ra(g. s.) -+ i C

209Pb 255Fm(g s ) ~ 20O + 235U d 229Th( )
0 + Pb processes. For these three processes the

spectroscopic factors are expanded in terms of products
of cluster overlaps and intrinsic overlap integrals. Ex-
plicit expressions for the cluster overlaps (equivalents of
the generalized coefficients of fractional parentage) have
been derived. For the intrinsic overlap integrals we con-
struct a model, which is an extension of the usual models
for simple particle decay such as deuteron, triton, and o.
decay. In these cases difBculties arise with increasing
complexity of the structure of the nuclear states involved
and due to lack of realistic structure for the Ra and

9Th ground states.
Within the ESM we overestimate the experimental HF

corresponding to the 225Ra(g. s.) -+ i4C + 2osPb process
leading to the ground state of Pb and to the Grst ex-
cited state of Pb. We cannot explain the experimental
HF corresponding to the 2 (1423 keV) state, but our
approach does not use a very large basis of either single
particle or phonon states. The HF corresponding to the

, 1423 keV state in Pb, within the ESM, has been

calculated by using the parity. admixture of the — first

excited state in the 2 ground state of Ra.
Predictions have been made for the hindrance factors

corresponding to the following cluster transitions (see Ta-
bles III and VII): Fm (ground state) —+ 2pO + 225U

(445.716 keV, 1236 keV, and their rotational bands) and
Th (ground state) -+ 0 + Pb (ground state and

, 779 keV excited state).
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