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We investigate the role of relativistic and nonrelativistic optical potentials used in the analysis
of (e, e'p) data. We find that the relativistic calculations produce smaller (e, e'p) cross sections even
in the case in which both relativistic and nonrelativistic optical potentials fit equally well the elastic
proton-nucleus scattering data. Compared to the nonrelativistic impulse approximation, this eKect
is due to a depletion in the nuclear interior of the relativistic nucleon current, which should be
taken into account in the nonrelativistic treatment by a proper rede6nition of the e8'ective current
operator.
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I. INTRODUCTION

The quasielastic (e, e'p) reaction has been extensively
studied over the last years as a powerful tool to obtain
information on the momentum distribution of the nuclear
bound states and to extract experimental information on
absolute spectroscopic factors.

Although high precision measurements of cross sec-
tions for this reaction are already available [1—3], the ex-
traction of spectroscopic factors from experiment is still
not free of ambiguities. The origin of the uncertainty has
to be found in the complexity of the reaction and the dif-
ferent approaches proposed to handle it, which produce
different cross sections even within the impulse approx-
imation (IA) scheme considered here. It is clear that
a reliable determination of spectroscopic factors requires
an accurate description of the mechanism of the reaction.

One major puzzle at present is the discrepancy between
spectroscopic factors obtained from relativistic and non-
relativistic analyses of data.

Traditionally, differential cross sections for quasielas-
tic electron-nucleus scattering have been calculated us-
ing nonrelativistic approaches to the nuclear currents.
The analyses of (e, e'p) data are generally made (see
Refs. [1—3] and references therein) within this nonrel-
ativistic framework using the DWEEPY program [4,5],
which provides a rather complete description of the pro-
cess. A fully relativistic formalism for the quasielastic
(e, e'p) reaction has appeared over the last years [6—8],
and applications to the extraction of spectroscopic fac-
tors comparing with the experimental data have become
available recently [9—11].

The typical values of the spectroscopic factors obtained
within these relativistic analyses (about 70'%%uo for the 3siI2
state in 2 sPb) are much larger than those obtained in
the nonrelativistic analyses (about 50'%%uo for the same shell
as above [2]). These higher values are consistent with
theoretical predictions [12] as well as with the spectro-
scopic factors obtained from other methods [13]. Yet,
the difference with respect to the nonrelativistic results

is distressing and remains to be explained.
In Ref. [11]we studied the differences between the rel-

ativistic and the nonrelativistic treatments of the (e, e'p)
reaction and, in particular, we investigated the causes
leading to the discrepancies found in the spectroscopic
factors obtained in the two formalisms. Two diferent as-
pects of the analysis were identified in said reference as
the main sources of discrepancy. First, the treatment of
the Coulomb distortion of the electron, which at present
is only exact within a relativistic formalism. We demon-
strated that a complete treatment of this distortion is
necessary in order to obtain reliable spectroscopic factors
in heavy nuclei. Second, the different quenching of the
(e, e'p) cross section produced by the relativistic and the
nonrelativistic optical potentials, which are introduced to
take into account final state interactions. We showed that
this quenching can differ typically by 15%, even though
both relativistic and nonrelativistic optical potentials fit
the elastic proton-nucleus scattering data for the partic-
ular proton energies and mass target nuclei under study.
In this paper we elaborate more on this last point.

The optical potentials used in (e, e'p) are generally de-
termined from elastic nucleon-nucleus scattering data. It
is well known that these data are only sensitive to the
asymptotic behavior of the wave functions. Wave func-
tions that are difI'erent in the nuclear interior but are
identical in the asymptotic region give rise to equal elas-
tic observables. However, this is not necessarily the case
for inelastic (p, p') scattering or for (e, e'p) reactions.

In Ref. [14] it was shown that the results for inelastic

(p, p') scattering may difFer when using different optical
potentials that give nearly equivalent fits to the elastic
observables. In particular, in that reference, results ob-
tained with a Dirac-equation-based (DEB) optical po-
tential were presented. As discu-sed in the next section,
the DEB potential is obtained from the relativistic op-
tical potential when the Dirac equation is transformed
into a Schrodinger-like equation for the upper compo-
nent. Though derived in this particular way, the DEB
potential can be used in the nonrelativistic formalism as
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another phenomenological optical potential. The advan-
tage of treating the DEB potential on the same footing as
other nonrelativistic optical potentials is that with this
potential the Schrodinger equation produces the same
elastic scattering as the Dirac equation.

Concerning the (e, e'p) process, several questions have
emerged in the last years, namely (i) to what extent dif-
ferent optical potentials fitted to elastic proton-nucleus
scattering data may difFer in their predictions on (e, e'p)
cross sections, (ii) what are the features of these optical
potentials to which the (e, e'p) reaction is sensitive while
elastic proton-nucleus scattering is not, (iii) is the nuclear
interior probed by the (e, e'p) reaction responsible for the
discrepancies found between the relativistic and the non-
relativistic approaches? In this context, some proper-
ties of final state interactions and optical potentials have
been already studied within a nonrelativistic framework.
In Ref. [15], the role of nonlocality in the treatment of
final state interactions and its eQ'ect on the extracted
occupation numbers from (e, e'p) was investigated, and
the estimated efFect was about a 15%%up increase in the oc-
cupation probabilities. In Ref. [16] a phenomenological
analysis was carried out to show that the (e, e'p) cross
sections are sensitive to the behavior of the optical po-
tential in the nuclear interior. In this last reference it was
also argued that an increased absorption in the nuclear
interior, with respect to the absorption produced by the
traditional parametrization of the optical potentials, is
more consistent both with (e, e'p) data and with micro-
scopic calculations of the optical potentials. These ar-
guments were already taken into account in constructing
the nonrelativistic optical potentials given in Refs. [2,3]
and used in this work under the name standard nonrela-
tivistic optical potentials.

In this paper we compare the (e, e'p) difFerential cross
section obtained with the nonrelativistic treatment pro-
vided by the DwEEpY program using diA'erent nonrela-
tivistic optical potentials, as well as with the results ob-
tained with the fully relativistic treatment [ll]. We show
that the results for (e, e'p) with relativistic and nonrela-
tivistic optical potentials dier even in the case in which
both types of potentials give exactly the same results for
elastic proton-nucleus scattering. We also explore the
reasons for the discrepancies.

The paper is organized as follows. In Sec. II we discuss
the choices taken for the optical potentials within the rel-
ativistic and the nonrelativistic formalisms, and what are
their distinguishing features, focusing on Pb. In Sec.
III we summarize briefly the relativistic and nonrelativis-
tic formalisms used in this work, and discuss the results
for (e, e'p) cross sections for 2O Pb obtained with various
potentials. Some results for Ca are also given. In Sec.
IV we present the main conclusions.

II. RELATIVISTIC AND NONRELATIVISTIC
OPTICAL POTENTIALS

The usual procedure to take into account final state in-
teractions in the (e, e'p) reaction is to introduce as input
a phenomenological optical potential with parameters fit-

ted to reproduce elastic proton-nucleus scattering data.
Two difFerent approaches are widely used in the con-
struction of the optical potentials, which correspond to
relativistic or nonrelativistic descriptions of the proton-
nucleus scattering. Though microscopically derived op-
tical potentials are available in the literature (for a re-
cent review see Ref. [17]), in this work we use empirical
parametrizations. As in our previous work [11], we use
phenomenological optical potentials based on complex
central and spin-orbit potentials, in the nonrelativistic
case, and on standard Lorentz scalar and timelike vector
complex terms (S-V) in the Dirac phenomenology.

To be specific, in the relativistic case we use the
parametrization denoted as fit 2 in Ref. [18] of the scalar
(Us), vector (Uv), and Coulomb (Uc) potentials to solve
the time independent Dirac equation in configuration
space:

[ice ~ V —P(M + Ug) + E —U —Uc]4' = 0, (2.1)

where 4—:(ill„p, @g „) is a Dirac four spinor. The po-
tentials of Ref. [18] are obtained from global fits whose
parameters are functions of both projectile energy and
target mass number. The parameters have been fitted to
elastic proton-nucleus observables (cross sections, analyz-
ing powers, and spin rotation functions) and the range of
applicability covers spherical nuclei with mass numbers
40( A (208, and energies 65 MeV ( E ( 1040 MeV.
A new parametrization has been reported recently [19],
extending the range of applicability to 20 MeV and in-
cluding C and 0 in the fit. For the mass number and
proton energy of our concern here, the agreement with
experiment is comparable to that of Ref. [18].

In the nonrelativistic treatment we use for the outgo-
ing proton the solutions of the Schrodinger equation with
two types of potentials: (i) the DEB potential, obtained
from the relativistic one as discussed below, and (ii) the
phenomenological parametrization of Ref. [2], involving
Coulomb, complex central, imaginary surface, and com-
plex spin-orbit terms:

U(r) = Vc (r, Bc) —Vf (zv—)
—iWf(xiv) + 4ias Ws f(xs)
+(2/r)[Vso f (zs~) + iWscif (zwso)]a' l, (2.2)

V
2M

—UDEn y(r) = E„,y(r), (2.3)

with E„,= (E2 —M2)/2M and P(r) a bispinor. This is
the standard procedure [14] used to analyze the relation-

where z; = (r —R;)/a, (i = V, W, S,SO,WSO, C), B, =
r, (A —1)i~, f'(x) = df(x)/dx, f(x) is the standard
Woods-Saxon function, Vc(r, Rc) is the Coulomb po-
tential of a homogeneously charged sphere with radius
Bc = g5/3(r ) ~ . The parameters are given in Table
I.

The DEB potential is obtained by rewriting the Dirac
equation [Eq. (2.1)] as a second order difFerential equa-
tion for the upper component (see Appendix A) to obtain
the equivalent Schrodinger equation:
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TABI E I. Parameters of the standard nonrelativistic optical potentials for Pb and Ca from
Refs. [2] and [3], respectively. Depths are in MeV and distances in fm.

208Pb
40C

208Pb
40C

208 pb
40C

27.93
26.97

Tv
1.223
1.225
av

0.719
0.706

9.000
7.177
rw

1.137
1.410
aw

0.742
0.570

3.16
0.
&S

1.272

as
0.622

Vso

4.000
4.379
rso

1.116
1.034
aso

0.676
0.648

&so
-0.835
-1.066
rwso
1.088
0.999
awso
0.719
0.620

ship between the large S-V potentials in the Dirac phe-
nomenology, and the usual spin independent and spin-
orbit potentials in the Schrodinger equation. As it is
known [14], the DEB potential contains an efFective cen-
tral potential that results &om a partial cancellation
between the S-V relativistic potentials plus important
quadratic terms, and a spin-orbit potential that origi-
nates &om additive contributions &om the S-V poten-
tials:

UDEB ——V~+ V, cr ~ k, (2.4)

where

V~ = [(UV+ U~)2 —2Z(UV+ U~) —U,= 1 2

2M
—2M' + V~], (2.5)

with

1 DA 1 OA 3 (OAi
VD ——

rA Br 2A clr2 4A2 ( Br )+ (2.6)

E —Uv —Uc'+ M+ Us
A(r) =

+ (2.7)

and

1 1BA
2M rA Br (2.8)

A well-known feature of this procedure [17] is that the
DEB potentials, and in particular the real central part,
show a more dramatic energy dependence than the stan-
dard potentials with Woods-Saxon shapes. This is es-
pecially important for proton energies larger than 200
MeV where the real central DEB potential weakens its
attraction in the interior of the nucleus but not at the

surface [17]. The departure from standard Woods-Saxon
shapes is characteristic of the Dirac approach, and is due
to the presence of nonlinear terms in the central po-
tential. Even when the S-V potentials have standard
Woods-Saxon shapes, the nonrelativistic potentials ob-
tained &om them will in general have nonstandard ge-
ometries. Although these changes start to be sizable
above proton energies of 200 MeV, they are also present
to a lower extent at the energies of interest in this work
[100 MeV for the ejected proton in the (e, e'p) reaction].

Figure 1 contains the real and imaginary parts of the
DEB potential, for the particular case of Pb and for
a proton energy of 100 MeV, compared with the stan-
dard nonrelativistic optical potential given by Eq. (2.2)
and Table I. The DEB potential has been obtained using
Eqs. (2.5)—(2.8) and the phenomenological S-V relativis-
tic potential of fit 2 in Ref. [18],calculating the Coulomb
potential U~ from the empirical charge distribution of
the target nucleus, as it is done in said reference. As can
be seen from Fig. 1 the real central potentials, which in-
clude the Coulomb contributions, are similar in shape at
this energy, DEB being deeper in the interior and more
repulsive at the surface. The depth of the imaginary
central potential is also larger for DEB showing a depar-
ture from a Woods-Saxon shape near the surface. We
have checked that these features prevail independently
on whether we use fit 1 or Bt 2 of Ref. [18], or even the
energy-dependent A-independent fit of Ref. [19], for the
nucleus and energy considered here. Actually these three
fits produce very similar fully relativistic (e, e'p) cross
sections [20]. It should be mentioned, however, that the
imaginary part of the DEB central potential varies for
these three fits, and depends more than the real part
on the particular choice of the S-V relativistic potential.
For the three fits mentioned above, the real parts of V~
are practically identical, while the imaginary parts have
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FIG. 1. Nonrelativistic central (Vc) and
spin-orbit (V, ) optical potentials for Pb
and 100 MeV proton energy. Solid lines cor-
respond to the potentials [Eqs. (2.5)—(2.8)]
obtained after the reduction of the Dirac
equation with the S-V relativistic optical po-
tentials of Ref. [18]. Dashed lines correspond
to the Schrodinger optical model with the pa-
rameters of Ref. [2].
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somewhat difFerent depths. We consider here fit 2 be-
cause the imaginary part of V~ produced by fit 2 is the
shallowest and closest to the standard potential.

The spin-orbit potentials show a similar shape in both
the DEB and standard potentials, with a somewhat
larger strength for DEB.

Clearly the comparison in Fig. 1 is useful to under-
stand the relationship between results obtained in the
nonrelativistic treatment of (e, e'p) with DEB and stan-
dard optical potentials, as discussed in next section. In
addition, using the DEB potential helps to understand
the relationship between results of relativistic and non-
relativistic treatments.

It can be shown (see Appendix A) that the solution
of the equivalent Schrodinger equation [Eq. (2.3)] is re-
lated to the upper component of the solution of the Dirac
equation [Eq. (2.1)] by

(2.9)

with

(2.10)

1.0

0.8

~ 0.6

g 0.4-
0.2

imag.

0.0
0

I ~ I ~ ~ ~

5 j.o 15
r(fm)

FIG. 2. Real and imaginary parts of A(r) in Eq. (2.7) using
the S-V relativistic optical potentials of Ref. [18] for Ph
and 100 MeV proton energy.

In Fig. 2 we show the real and imaginary parts of A(r)
as obtained from Eq. (2.7). The imaginary part is very
small and has been neglected in the subsequent calcula-
tions. The real part is clearly difFerent from unity in the
interior of the nucleus. We get a steady value of about
0.63 [K(r) 0.79] in the interior going to unity asymp-
totically.

Thus the distorted wave P(r) generated by the DEB
potential is equal to the upper component of the Dirac
equation only asymptotically [lim, ~ K(r) = 1). This
means that Eq. (2.1) and Eq. (2.3) will produce the
same elastic proton-nucleus observables, which are only
sensitive to this asymptotic behavior, but for processes
where the nuclear interior plays a role, both equations
can lead to difFerent results. On the other hand, solv-
ing the Schrodinger equation (2.3) for P(r) and using the
Darwin factor K(r) is equivalent to solving the Dirac
equation (2.1) for 4„~(r). Hence, comparing results for

(e, e'p) with relativistic and nonrelativistic treatments
based on the same relativistic potential allows us to dis-
entangle eKects due to difFerent features of the optical
potentials from efFects due to the fully relativistic treat-
ment.

III. RESULTS FOR (e, e'p) CROSS SECTIONS

In this section we first summarize briefIy the formal-
ism used to describe the (e, e p) reaction both relativisti-
cally and nonrelativistically. More details can be found in
Refs. [10,11,20]. We base our calculations on the impulse
approximation (virtual photon absorbed by the detected
nucleon), which is known [21] to be a reliable approxirna-
tion at quasielastic kinematics.

In Refs. [9—11,20] it has been shown the importance of
treating correctly the electron Coulomb distortion, espe-
cially in heavy targets, in order to obtain reliable spectro-
scopic factors from experiment. For the purpose of this
work it is, however, advantageous to switch ofI' the elec-
tron Coulomb distortion, treating the electron current
in the plane wave Born approximation (PWBA). The
reasons for this are that the role of the various optical
potentials stands out more clearly and that at present
the electron Coulomb distortion cannot be treated ex-
actly within the nonrelativistic framework. Hence, in
this work all the calculations are made in PWBA (no
electron Coulomb distortion) and the difFerences in the
results presented come only &om the various approxima-
tions to the nuclear current. In impulse approximation,
difFerences between relativistic and nonrelativistic analy-
ses can occur due to the bound nucleon wave function, to
the current operator, or to the final nucleon wave func-
tion in the pe% vertex. Therefore, we first discuss the
choice of these ingredients within the two formalisms.

All the results in this section correspond to (e, e'p) re-
duced cross sections in parallel kinematics (momentum
transfer parallel to missing momentum, q ~~ p) with a
fixed value of the kinetic energy of the outgoing proton
(Tp =100 MeV). Since these results do not include elec-
tron Coulomb distortion, we do not compare them with
experiment (for such a comparison see Ref. [11]).

A. Relativistic formalism

Results for the (e, e'p) reaction obtained through a
fully relativistic formalism have appeared in recent years,
either computing the nuclear matrix elements in config-
uration space [9—ll] or in momentum space [6—8]. While
the latter formalism may be somewhat more elegant and
better suited to deal with p-dependent terms in the cur-
rent operator, the first one is more adequate when the
Coulomb distortion of the electron wave functions has to
be taken into account.

For the relativistic formalism in configuration space
that we use here, the basic equations that determine the
reduced cross section are given explicitly in Refs. [10,11],
in terms of the electron and nuclear currents. The cal-
culations have been performed with the relativistic code
developed by one of us [20]. We give here the basic equa-
tions in PWBA.

We work in the laboratory kame in which the target
nucleus is at rest and use the notation and conventions of
Ref. [22]. We denote by k,". = (e;, k, ) the four-momentum
of the incoming electron and by k&

——(ef, ky) the four-
momentum of the outgoing one. The four-momentum
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where u(k, (7) represent four-component relativistic free
electron spinors [22], NI„if' is the occupation number of
the (nlj) shell, and J~(w, q) is the nucleon current

y))(~, ))) = Jdy ~' " yy(y) y))'y))(y)), (3.2)

where 4~ and 4~ are the wave functions for the ini-
tial bound nucleon and for the outgoing final nucleon,
respectively, and J~ is the nucleon current operator to
be specified later. These are the three ingredients that
change when one considers a relativistic treatment or a
nonrelativistic one.

Within the relativistic &amework the bound state wave
function for the proton, 4'~, is a four-spinor with well de-
fined angular momentum quantum numbers K~ p~ corre-
sponding to the shell under consideration. We use four-
spinors of the form

of the exchanged photon is q" = k," —kf —— (cu, q).
P& —(Myi, O) and P& i = (E~ i, P~ i) denote the
four-momenta of the target and residual nucleus, while
PF = (EF,PF) is the four-momentum of the ejected pro-
ton.

Using plane waves for the electrons and. considering
knockout from a given (nl j) shell, we write the ampli-
tude for the (e, e'p) process in distorted-wave impulse
approximation (DWIA) as [11,20,21]

me (-1)
Wif — 'l(kf-) (Jf)+ivy(ki) 0'i)

2 NIy)if) J~(M) Q) )
QEi Ef q

(3 1)

be mentioned that since the wave function (3.5) corre-
sponds to an outgoing proton, we use the complex conju-
gates of the radial functions and phase shifts (the latter
with the minus sign).

For the nucleon current operator we take the free nu-
cleon expression

J~ =Pyle +Z 0 qI )2M (3.6)

where Fj and F2 are the nucleon form factors related in
the usual way [22] to the electric and magnetic Sachs form
factors of the dipole form. As discussed in Refs. [11,27],
DWIA results depend on the choice of the nucleon current
operator. Here we have chosen the operator that is closer
to the one used in the nonrelativistic calculations in the
DWEEPY code.

The numerical calculations involve (i) computation of
the radial functions in configuration space; (ii) numeri-
cal integration; and (iii) summation of partial waves. The
accuracy of the numerical procedure is tested by compar-
ison to the exact result in the plane wave limit (PWIA).
Typically our calculations involve 30—40 partial waves for
the ejected proton and numerical integration over a range
of 15—20 fm in steps of 0.1 fm. The parameters (num-
ber of partial waves, radii, and step size of integration)
are adjusted so that differences with exact PWIA cross
sections are less than 0.1%. Finally, it should also be
mentioned that recoil e8'ects, though small, are taken
into account by replacing q in Eq. (3.2) by q(A —1)/A,
»d PF by [PF(A —1) + PA, ]/A.

B. Nonrelativistic formalism

that are eigenstates of total angular momentum with
eigenvalue j = ~r.

~

—1/2,

P"„(r) = ) (l m —,
'

(T~ j p)Yi (r)g'
m&o

(3.4)

with l = K for z ) 0, l = r —1 for r (—0. f„and g„
are the solutions of the usual radial equations [23]. The
mean field in the Dirac equation is determined through
a Hartree procedure from a relativistic Lagrangian with
scalar and vector S-V terms [24]. We use the parameters
of Ref. [25], and the TtMQRA code [26].

The wave function for the outgoing proton 4~ is a
scattering solution of the Dirac equation (2.1), which in-
cludes S-V global optical potentials, as d.iscussed in Sec.
II. This wave function is obtained as a partial wave ex-
pansion in configuration space,

@F(r) = 4~ ) ~ —ib„' .l
(l i

2Ey ~,p, ,m

(3.5)

where 4'~(r) are four-spinors of the same form as that in
Eq. (3.3), except that now the radial functions f„,g„are
complex because of the complex potential. It should also

In the nonrelativistic formalism, the numerical cal-
culations have been done with the code DWEEPY [4]
that uses as input nonrelativistic optical potentials and.
bispinor bound nucleon wave functions. As already indi-
cated, the calculations have been done switching oA' the
Coulomb distortion of the electron wave functions. The
nucleon current operator used in this code was obtained
[5,28] through a Foldy-Wouthuysen procedure up to or-
der (p/M)4, based on the current operator in Eq. (3.6)
for free nucleons satisfying the relation

CF'P
ciovTIl E I lip+ (3.7)

Thus, at variance with the relativistic formalism, the
nucleon current in Eq. (3.2) is calculated using a non-
relativistic current operator and bispinors for the ini-
tial (bound) and final (scattering) proton wave functions.
The outgoing proton wave functions are obtained as so-
lutions of the Schrodinger equation with the DEB and
standard. optical potentials defined in Sec. II. The bound
proton wave functions are generally obtained as solutions
of the Schrodinger equation with real central and spin-
orbit Woods-Saxon type potentials [ll]. However, for
the nonrelativistic results presented here we have used
instead. the upper component of the relativistic bound
nucleon wave function, normalized to 1. This minimizes
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difFerences in the cross sections coming from the use of
difFerent bound nucleon wave functions in the relativistic
and nonrelativistic formalisms. Indeed, we have checked
that in this case both formalisms give the same results
in PWIA (i.e. , in the limit of no final state interactions).
Thus, with this choice, we ensure that the difFerences
among the various results presented here are solely due
to difFerences in the outgoing nucleon wave functions gen-
erated from the difFerent optical potentials. Though in
principle in the nonrelativistic case one would take the
upper component of the relativistic bound state wave
function after projection of the positive energy part, in
practice for the solutions of the TIMQRA code this makes
practically no difference (we shall come back to this point
later on).

C. Discussion of results

In Figs. 3 and 4 we show the reduced cross sections
p(p), for proton knockout from the shells 3sig2 and 2dsy2
in Pb, respectively, obtained in various approxima-
tions as functions of the missing momentum p. The result
of the relativistic calculation (solid line) is compared in
each figure with the results of nonrelativistic calculations
obtained with the standard (long dashed line) and DEB
(dashed line) optical potentials. The dotted line shows
the result obtained using the solution of the Schrodinger
equation with the DEB potential multiplied by the factor
K(R)

One can clearly see in Figs. 3 and 4 that, taking the
relativistic result as a reference, the large discrepancy
found in the nonrelativistic calculations with the stan-
dard potential decreases substantially when using the
DEB potential. As expected, the nonrelativistic result
gets closer to the relativistic one when using the optical
potential that gives an equivalent fit to elastic nucleon
scattering. We recall that the standard potential is a
particular 15-parameter fit to 46 data on elastic proton

20SPb 3s,~,

10 '

(D

———— DEB——standard
1 I I I I I

—50 0 50 100 150 200 250
p(Me V)

FIG. 3. Comparison of various (e, e'p) reduced cross sec-
tions for the shell Bsig2 of Pb (see text).

I I

Pb 2d3y2

I I I I I

—50 0 50 100 150 200 250

p(Mev)

FIG. 4. Same as Fig. 3 for the shell 2dg(2.

scattering at 98 MeV from Pb, while the relativistic
potential (and hence the DEB potential) is a global fit
over a wide range of proton energies and mass numbers
involving more than 4000 data points. These two fits are
not equivalent and hence it is not surprising that the two
potentials —standard and DEB difFer (see Fig. 1) and
produce difFerent (e, e'p) cross sections, the latter giving
more absorption for the cases studied here.

This allows us to conclude that a large part of the dis-
crepancy between relativistic and nonrelativistic results
is reduced when using relativistic and nonrelativistic op-
tical potentials that give equivalent fits to elastic proton-
nucleus scattering. Yet, it is also clear from Figs. 3 and
4 that even with the DEB potential there are still sizable
difFerences between the nonrelativistic result and the rel-
ativistic one. The latter is only recovered when the Dar-
win factor K(r) is also taken into account. This means
that the (e, e'p) cross section is sensitive to the increased
reduction in the nuclear interior of the relativistic outgo-
ing nucleon density. This reduction is clearly seen when
one plots the ratio between the relativistic (4yp @~)
and the nonrelativistic (PtP) density profiles. Said ratio
is mainly given by the real part of A(r) shown in Fig.
2. The efFect of the Darwin factor is irrelevant to elas-
tic proton-nucleus scattering but is important in (e, e'p)
processes that are sensitive to the nuclear interior.

One may wonder whether it is legitimate to use KP
when working within the nonrelativistic formalism and
whether the above comparison is actually meaningful. It
is easy to convince oneself that this is indeed the case
when using the DWEEPY program as done here. The
simplest way to show that is to consider the direct Pauli
reduction [19,29] of the relativistic nucleon current. To
carry out this reduction, four-component wave functions
with only positive energy components are built,

( +-.(p)
@+(p) = ~+(p) p y (p)( E(p)+M " )

out of the fully relativistic four-component wave func-
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tions using the positive energy projection operator [22],
and an effective nonrelativistic current operator J„, is
defined such that

with 4„and 4„ the upper components of the rela-
tivistic initial and final wave functions. In practice, once
the operator J„,is obtained the nonrelativistic current is
calculated using initial and final wave functions that are
solutions of ordinary Schrodinger equations.

It can be shown [29] analytically that to third order
in (p/M) the operator in Eq. (3.9) J„, is identical to the
nonrelativistic current operator obtained by the Foldy-
Wouthuysen procedure and used in the code DWEEPY.
We have also checked that up to fourth order the dif-
ferences are negligible (less than 0.1% for the energies
considered here). Equation (3.9) is then a useful bridge
to understand the relationship between the relativistic re-
sults and the nonrelativistic ones with the DEB potential
in Figs. 3 and 4, as well as its meaning.

To this end we first compare in Fig. 5 the fully rela-
tivistic results (solid line) for the 3siy2 and 2dsy2 shells
in Pb with the results obtained with the relativistic
code when using initial and final nucleon wave functions
projected on the positive energy plane (dashed line). One
can see that the differences between the results are small,
being only noticeable at relatively high p. This shows
that the coupling to the negative energy contributions of
the Dirac solutions does not play an important role in the
fully relativistic result and cannot be responsible for the
observed discrepancies between the relativistic and non-
relativistic results in Figs. 3 and 4. It then follows, tak-
ing also into account Eq. (3.9) and the correspondence
between J~, and the current operator used in DWEEPY,
that in order to recover the relativistic result one has to
use the upper components of the initial (bound) and final

10'

J„', = K*(r)J„,KI3(r) . (3.10)

Since DWEEPY uses J„, rather than J„', , we cannot re-
cover the relativistic results when using P(r) and/or
Pii(r) unless we insert the corresponding K factors. A
similar remark was first pointed out in Ref. [30] in the
context of photonuclear reactions, where the effect of the
S-V potentials in the interaction Hamiltonian was stud-
ied up to second order in a 1/(E + M) expansion.

Clearly J„', depends on the relativistic potentials used
in the calculations and for the purpose of comparing re-
sults obtained in the nonrelativistic framework, it is ad-
vantageous to stick to a single definition of the current
operator, as that used by DWEEPY, adding the required
modifications a posteriori. It should also be pointed out
that in standard nonrelativistic analyses, the bound nu-
cleon wave function Bts observables (rms radii, binding
energies, etc. ) that depend on the nuclear interior. Thus,
to the extent that this nonrelativistic wave function fits
similar phenomenology as the fully relativistic one, the
study of the effect of K~ (r) is not as meaningful, for the
purpose of this paper, as that of K(r). This is why we
focus here on K(r).

It is interesting to compare the function K(r) with the
Percy factor (PF) as defined in Ref. [31]:

(scattering) nucleon wave functions. This explains why
in Figs. 3 and 4 the nonrelativistic calculations with the
DEB potential reproduce the relativistic result once the
factor K(r) is taken into account.

Although not explicitly shown here, the situation is
similar with regard to the bound nucleon wave function,
i.e., if in the nonrelativistic calculation we use for the
bound state the solution (Pz) of the Schrodinger equa-
tion with the DEB potential corresponding to the rela-
tivistic S-V potential used in the TIMQRA code, we have
to take into account an extra factor K~(r). This re-
Hects the fact that, as seen from Eqs. (2.9)—(3.9), the
nonrelativistic current operator consistent with the non-
relativistic solutions of DEB potentials is related to that
in the right-hand side of Eq. (3.9) by

10

(1 M
f(r) = exp

~

—P V~
~q2 26' (3.11)

&10 -'

10

"-'50
I ~ I I

50 150 250
p(Mev)

FIG. 5. Comparison of the fully relativistic results (solid
lines) with results obtained after projection of initial and final
nucleon wave functions on the positive energy plane (dashed
lines).

where P is a nonlocality range parameter and Vc is the
central potential in Eq. (2.5). Analogous to K(r), the
PF produces also a reduction of the wave function in the
nuclear interior. In fact, the PF calculated with the DEB
potential has a similar shape to the function K(r). It is
worth pointing out that the need for the PF emerged
from a completely different starting point. Namely, from
the analysis of nonlocalities of the nonrelativistic optical
potential, parametrized in terms of the nonlocality range
parameter P.

In Fig. 6 we show the effect in the (e, e'p) reduced cross
section due to the inclusion of the PF [f(r)]. We show
nonrelativistic results obtained with the DEB potential
and compare them with the relativistic result. The re-
sults in this figure correspond to the 2ds/2 orbital in

Pb and to two values of the P parameter (P = 0.85, 1.0
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10 '.-
I I I I

Pb Bdayp

fm). As can be seen in the figure, the efFect of the PF
is similar to the efFect of K(r) shown and discussed in
Figs. 3 and 4. Actually for P = 1 the result obtained
with DEB+PF reproduces quite well the relativistic re-
sult. This is consistent with the fact that for this P value
the depth (0.83) of the PF is comparable to the depth
(0.79) of K(r) With th. e most commonly used value of
P (P = 0.85), the efFect of the PF is not sufficient to
reproduce the relativistic result.

We have checked that the efFect of the PF for P = 1
with the DEB potential is similar to the effect of K(r)
also for the 3s&/2 orbital in Pb and for the orbitals
2si~2 and 1dsy2 in Ca also considered in Ref. [11]. In
Table II we summarize the results for all these orbitals.
In this table we give, for each orbital and nucleus, the
ratio between the nonrelativistic and the relativistic re-
duced cross sections at their maxima. Following the order
of appearance in the table, the five nonrelativistic cases
considered are (1) the standard optical potential (given
in Ref. [2] for 2osPb and in Ref. [3] for 4 Ca), (2) the
DEB optical potential, (3) DEB including the Percy fac-
tor with P = 0.85, (4) DEB including the Percy factor
with P = 1, and (5) DEB including K(r). From this table
it is clear that the trend observed in going from the stan-
dard optical potentials to the DEB+K(r) case is similar

I I I I I

—50 0 50 100 150 200 250

p(Mev)
FIG. 6. Comparison of the relativistic (e, e'p) reduced cross

section to nonrelativistic ones obtained with the DEB poten-
tial and Percy factors for two values of the nonlocality param-
eter P (see text).

for all the shells studied in Pb as well as in Ca. Com-
pared to the relativistic calculation, the standard optical
potentials produce too large (e, e'p) cross sections with
ratios between 1.2 and 1.6. These ratios are reduced to
values between 1.1 and 1.3 when the DEB potential is
used. The nonlocal corrections introduced by the Percy
factor act in the right direction and the cross sections
become closer to the relativistic results, particularly for
P = 1, where the agreement with the relativistic result
is comparable to that obtained with K(r). With the in-
clusion of the function K(r) the relativistic results are
recovered within a reasonable 1% to 5% deviation.

At this point one may wonder if the similarity between
the efFect of K(r) and PF for P = 1 fm could be regarded
as more than a mere coincidence. Actually, also the func-
tion K(r) is related to nonlocalities. Indeed, as explained
in Appendix A, the function K(r) appears when convert-
ing the Schrodinger-like equation with a nonlocal poten-
tial for 4„p into an ordinary Schrodinger equation with
no first derivative terms. This agrees with the gener-
ally accepted notion that the relativistic approach may
already include an important amount of nonlocal effects
in the nonrelativistic formalism. Nonlocal terms in the
nonrelativistic equation may be partly justified just as
well as the spin-orbit terms in the nonrelativistic equa-
tion is justified by looking into the nonrelativistic limit of
the Dirac equation. It is well known that the central po-
tential derived from S-V potentials which are local and
non-energy-dependent contains a linear dependence on
the energy. The relativistic optical potentials themselves
already contain some energy dependence, although rel-
atively weak for the energies of interest here compared
to the explicit energy dependence of the DEB potential
shown in Eq. (2.5).

However, the analogy between the Percy and K(r) fac-
tors has to be considered with caution until a rigorous
study of the role of nonlocalities is made, starting &om
nonlocal analyses in both relativistic and nonrelativistic
formalisms. This goes beyond the scope of this paper
where we point out this numerical similarity as a "strik-
ing coincidence" that may encourage further work along
these lines.

IV. SUMMARY AND FINAL REMARKS

In Ref. [11] we found that the relativistic optical po-
tentials from Ref. [18] are able to explain simultaneously

TABLE II. Ratio between various nonrelativistic and the fully relativistic reduced cross sections
for p values close to the maxima of the two outermost shells of Pb and Ca.

208Pb 40C

p (MeV)
Standard
DEB
DEB nonlocal (P = 0.85)
DEB nonlocal (P = 1.0)
DEB K(r )

38' /2
0

1.59
1.11
1.06
1.00
1.01

190
1.57
1.30
1.14
1.01
1.03

2d3/2
100
1.36
1.14
1.07
1.00
1.02

180
1.48
1.29
1.11
1.01
0.98

2sy/2
0

1.16
1.11
1.06
1.03
1.05

150
1.48
1.32
1.14
1.07
1.05

1CL3/2
—140
1.25
1.09
0.99
0.97
0.98

110
1.31
1.19
1.13
1.07
1.07
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the elastic proton-nucleus scattering data and the (e, e'p)
cross sections, while the most commonly used nonrel-
ativistic ones fail to do that with reasonable spectro-
scopic factors. As in previous work [11] the nonrela-
tivistic calculations are done here with the code DWEEPY
that uses as input local nonrelativistic optical potentials
and bound nucleon wave functions. In this paper we
investigate why the relativistic and the nonrelativistic
optical potentials lead to different (e, e'p) reduced cross
sections, even though both are fitted to elastic proton-
nucleus scattering data. To this end we have followed
the already known procedure of building a nonrelativis-
tic optical potential from the relativistic one that led to
the same elastic scattering observables.

By this procedure we obtain a nonrelativistic optical
potential (DEB), as well as a function K(r) relating the
upper component of the Dirac solution with the solution
of the Schrodinger equation with the DEB potential. The
function K(r) is less than 1 in the nuclear interior and
goes to 1 asymptotically. It is this latter fact that guar-
antees that the DEB potential fits equally as well as the
relativistic one the elastic proton-nucleus scattering data
at proton energies of our concern here.

We find that the DEB potential differs from the stan-
dard nonrelativistic potential and leads to lower (e, e'p)
cross sections. This rejects the fact that the two poten-
tials correspond to nonequivalent fits of elastic proton-
nucleus scattering. We find that the large discrepancy
between the results of relativistic and nonrelativistic cal-
culations is partly reduced when using the DEB optical
potential, instead of the standard one, in the nonrela-
tivistic formalism. This shows that better agreement
between relativistic and nonrelativistic results is found
when the potentials used give equivalent fits to elastic
proton-nucleus scattering. Yet, even with the DEB po-
tential the (e, e'p) cross section turns out to be larger
than the corresponding relativistic result. The latter is,
however, recovered in the nonrelativistic calculation with
DEB after inclusion of the function K(r), showing the
sensitivity of (e, e'p) to the behavior of the wave func-
tions in the nuclear interior.

The role of dynamically enhanced lower components
is not relevant for the (e, e'p) processes discussed here,
as shown by the fact that the relativistic calculations
produce nearly the same results independent of whether
one uses the complete solutions of the Dirac equations
for initial and final nucleons or one uses their positive
energy projected counterparts. This is crucial to under-
stand why the results obtained with the nonrelativistic
formalism using the DEB potential and the Darwin fac-
tor K(r) reproduce the results of the fully relativistic
calculations within at most a 1—

5%%uo deviation.
The above-mentioned results reproduce the fully rel-

ativistic ones because they amount to a strict two-
component reduction of the nuclear current in which neg-
ative energy contributions, which are small anyway in
the (e, e'p) processes, have been neglected. On the other
hand if one forgets about the Darwin factor K and uses
the function P corresponding to the DEB potential when
calculating the (e, e p) cross sections in the nonrelativis-
tic framework, one finds a sizable deviation from the fully

relativistic result. This is in contrast to the case of elastic
proton scattering where the relativistic results are recov-
ered with the DEB potential independent of whether the
factor K is taken into account or not. Since the elastic
proton-nucleus scattering data are only sensitive to the
asymptotic behavior of the wave function, these experi-
ments cannot provide information on the function K(r)
in the nuclear interior. Therefore, the behavior of this
function, and its effects on observables sensitive to the
nuclear interior, are predictions of the model.

We have compared the effect of the function K(r) that
has a relativistic origin with that produced by the Percy
factor that simulates the effect of nonlocalities in the non-
relativistic optical potentials. We have shown that both
functions produce nearly identical absorption for a nonlo-
cality parameter P = 1 fm. Although at first sight it may
look surprising that one arrives to similar effects from
quite different starting points, one should keep in mind
that also the function K(r) can be related to nonlocali-
ties. Indeed, when one replaces Eq. (2.9) into Eq. (2.3),
one ends up with a Schrodinger equation with a non-
local optical potential for the upper component of the
Dirac solution (see Appendix A). Thus, both the K(r)
and the Percy factors can be interpreted as corresponding
to contributions which give effective local representations
of nonlocal effects.

Independently of the interpretation of K(r), what we
may undoubtedly conclude is the following. (i) If we
compare the relativistic density for the outgoing nucleon
(4yp 4~), obtained with the S-V potential of Ref. [18],
to the naively defined nonrelativistic density PtP, ob-
tained with the corresponding DEB potential, the former
shows a depletion in the interior governed by ~K(r)

~

. (ii)
This depletion plays an important role in (e, e'p) pro-
cesses, and must be taken into account in nonrelativis-
tic calculations performed with the DWEEPY code by in-
troducing the Darwin factors, which appear in a proper
nonrelativistic reduction of the nucleon current opera-
tor. Modifications of the interaction Hamiltonian for
photonuclear reactions due to the S-V potentials have
also been discussed in Ref. [30].

Recently, a paper by j'in and Onley [32] has appeared
that also discusses comparisons between relativistic and
nonrelativistic calculations for Ca(e, e'p) K cross sec-
tions. The main conclusions of these authors seem to
agree with ours. In their case the relationship between
relativistic and nonrelativistic results and its comparison
to the effect of the Percy factor are somewhat different
due to the fact that they consider a different nonrelativis-
tic scheme to the one considered here.
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APPENDIX A: DERIVATION OF THE
SCHRODINGER EQUIVALENT EQUATION

Starting from the Dirac equation [Eq. (2.1)) we write
one gets

d
ia r" cr p = ——

dr (AS)

with

&—@up p ~@down = O ~

&+@down p ' ~@up = 0
(A1)
(A2)

dA+ cr -1 1 dA+ d

(A6)

A~ = E —Uv —U~ + (M + Us ) .

Applying p cr to Eq. (A2) one gets

2 /dA+ )V @„~= —p. rrA+@g „=io r
~ dr )

++p ~+down

(A3)

(A4)

using Eqs. (Al) and (A2) to eliminate @g „ from the
second and first terms in the right-hand side of Eq. (A4),
respectively, and using the identity

This is an exact second order differential equation for

p that can be interpreted as a Schrodinger-like equa-
tion with a nonlocal potential. The Schrodinger equiv-
alent equation and the DEB potential defined in Eqs.
(2.3)—(2.8) is obtained after the elimination of the last
term (Darwin term) in Eq. (A6). To this end one
looks for a transformation, @„p(r) = K(r)P(r), under
which Eq. (A6) transforms into an ordinary Schrodinger
equation (i.e. , with no first derivative terms) and such
that 4'„~(r):P(r). This determines K(r) in Eq.
(2.10).

[1] P.K.A. de Witt Huberts, J. Phys. G 16, 507 (1990); L.
Lapikas, Nucl. Phys. A553, 297c (1993).

[2] E.N. M. Quint, Ph. D. thesis, University of Amsterdam,
1988.

[3] G.J. Kramer, Phys. Lett. B 227, 199 (1989); Ph. D. the-
sis, University of Amsterdam, 1990.

[4] C. Giusti and F. Pacati, Nucl. Phys. A473, 717 (1987);
A485, 461 (1988); M. Traini, Phys. Lett. B 213, 1

(1988).
[5] S. BofB, C. Giusti, and F. Pacati, Nucl. Phys. A336, 416

(1980); C. Giusti and F. Pacati, ibid. A336, 427 (1980).
[6] A. Picklesimer, J.W. Van Orden, and S.J. Wallace, Phys.

Rev. C 32, 1312 (1985).
[7] A. Picklesimer and J.W. Van Orden, Phys. Rev. C 35,

266 (1987).
[8] A. Picklesimer and J.W. Van Orden, Phys. Rev. C 40,

290 (1989).
[9] J.P. McDermott, Phys. Rev. Lett. 65, 1991 (1990).

[10] Y. Jin, D.S. Onley, and L.E. Wright, Phys. Rev. C 45,
1311 (1992).

[ll] J.M. Udias, P. Sarriguren, E. Moya de Guerra, E. Gar-
rido, and J.A. Caballero, Phys. Rev. C 48, 2731 (1993).

[12] V.R. Pandharipande, C.N. Papanicolas, and J.
Wambach, Phys. Rev. Lett. 53, 1133 (1984); Z.Y. Ma
and J. Wambach, Phys. Lett. B 256, 1 (1991); C. Ma-
haux and R. Sartor, Adv. Nucl. Phys. 20, 1 (1991).

[13] G.J. Wagner, Prog. Part. Nucl. Phys. 24, 17 (1990).
[14] H.S. Sherif, R.I. Sawafta, and E.D. Cooper, Nucl. Phys.

A449, 709 (1986).
[15] S. Bo%, C. Giusti, F.D. Pacati, and F. Cannata, Nuovo

Cimento 98, 291 (1987).
[16] H.P. Blok, L.R. Kouw, J.W.A. den Herder, L. Lapikas,

and P.K.A. de Witt Huberts, Phys. Lett. B 198, 4 (1987).

[17] L. Ray, G.W. Hoffmann, and W.R. Coker, Phys. Rep.
212, 223 (1992), and references therein.

[18] S. Hama, B.C. Clark, E.D. Cooper, H. S. Sherif, and R.L.
Mercer, Phys. Rev. C 41, 2737 (1990).

[19] E.D. Cooper, S. Hama, B.C. Clark, and R.L. Mercer,
Phys. Rev. C 47, 297 (1993).

[20] J.M. Udias, Ph. D. thesis, Universidad Autonoma de
Madrid, 1993.

[21] S. Frullani and J. Mougey, Adv. Nucl. Phys. 14, 1 (1984).
[22] J.D. Bjorken and S.D. Drell, Relativistic Quantum Me

chanics (McGraw Hill, New York, 1964).
[23] M.E. Rose, Relativistic Electron Theory (Wiley, New

York, 1961).
[24] B.D. Serot and J.D. Walecka, Adv. Nucl. Phys.

(1986).
[25] C.J. Horowitz and B.D. Serot, Nucl. Phys. A368, 503

(1981); Phys. Lett. 86B, 146 (1979).
[26] C.J. Horowitz, D.P. Murdock, and B.D. Serot, in Com-

putationaL Nuclear Physics, edited by K. I anganke,
J.A. Maruhn, and S.E. Koonin (Springer-Verlag, Berlin,
1991).

[27] C.R. Chinn and A. Picklesimer, Nuovo Cimento 105A,
1149 (1992).

[28] K.V. McVoy and L. van Hove, Phys. Rev. 125, 1034
(1962).

[29] H.W. Fearing, G.I. Poulis, and S. Scherer, Nucl. Phys.
A570, 657 (1994).

[30] M. Hedayati-Poor and H.S. Sherif, Phys. Lett. B 326, 9
(1994).

[31] F. Percy and B. Buck, Nucl. Phys. 32, 353 (1962); H.
Fiedeldey, ibid. 77, 149 (1966); M.M. Giannini and G.
Ricco, Ann. Phys. (N.Y.) 102, 458 (1976).

[32] Y. Jin and D.S. Onley, Phys. Rev. C 50, 377 (1994).


