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Relaxation rates are calculated by numerically solving the Kadanoff-Baym equations for an
extended system of nuclear matter. The time evolutions of initial nonequilibrium distributions in
momentum space, defined by two Fermi spheres, is studied. Comparisons are made with the (semi-)
classical method used in BUU, VUU, etc. Danielewicz has found that at a nucleon density of ~ 0.3
nucleon/fm® and an equilibrated temperature of about 70 MeV, the quantum relaxation rate is
smaller than the classical by a factor of about 2. These results are confirmed. The calculations
are extended to lower temperatures (energies) and densities and this ratio is found to be essentially
unchanged over a wide range although there are deviations from this rule as seen in the text. The
quantum evolutions are started either with an uncorrelated or a correlated initial distribution. The
latter are obtained with imaginary time stepping. The relaxation time approximation was previously
found to be excellent for the classical evolution. It is found to be as good for the quantum evolution.
The memory time is in the present calculations found to be less than 5 fm/c (i.e., ~ 1.7 x 10723 5).
One concludes that quantum-mechanical effects have to be incorporated in the models of heavy ion
collisions and nuclear dynamics. Not until this is done comprehensively will one be able to readily
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assess the role of two-nucleon collisions in the equilibration process.

PACS number(s): 25.70.—2z, 05.20.Dd, 05.60.+w, 21.65.+f

I. INTRODUCTION

The transport models mostly used in the analysis of
nuclear collisions are based upon the Nordheim-Uehling-
Uhlenbeck extension of the Boltzmann equation to in-
clude the Fermi-Dirac blocking in the collision term [1,2].
Including also the scatterings by the Vlasov mean field
yields the semiclassical BUU, VUU, Landau-Vlasov, etc.,
models. These provide a good basis for understanding a
variety of effects seen in nuclear collisions such as en-
ergy dissipation, collective transverse flow, etc. The ex-
traction of quantitative results from these classical quasi-
particle models applied to collisions in the dense nuclear
medium has however been questioned repeatedly.

In previously published work collision rates were cal-
culated using the classical collision term in homogeneous
nuclear matter. The result was expressed in terms of a
density and temperature dependent relaxation time [3].
In the present report quantum-mechanical corrections are
included in the calculation of relaxation times.

One quantum-mechanical correction discussed repeat-
edly is replacing the free cross section (or T' matrix) in
the collision term with a medium corrected effective in-
teraction [4-8]. Other corrections involves also including
the energy dependence, i.e., the time delay of these in-
teractions, which has not yet been done.

Another correction stems from the situation that in
the nonequilibrium systems formed in nuclear collisions
the single-particle states have finite lifetimes. The widths
of these states are not included in the classical treatment
where the individual NN collisions conserve energy. Fur-
thermore, all interactions are pointlike in time and retar-
dation effects are neglected.

All these effects are contained in the quantum-
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mechanical treatment of the dynamics of many-body sys-
tems by Kadanoff and Baym [9], with a simultaneous use
of a many-body effective interaction such as the Brueck-
ner K matrix (but preferably with hole-hole propaga-
tor included). The Kadanoff-Baym (KB) equations de-
scribe the system in terms of one-body Green’s functions.
In the quasiparticle approximation and neglecting mem-
ory effects they reduce to the Markovian dynamics in a
Boltzmann-like classical transport equation. In this lat-
ter case individual nucleon-nucleon scatterings conserve
energy while those allowing for the finite width of the
states in the correlated medium are neglected. A related
effect is that all interactions are pointlike in time while
the memory effect which is contained in the Kadanoff-
Baym equations are neglected.

There are several studies of memory and correlation
effects based on approximate solutions of the KB equa-
tions, e.g., Refs. [10-13]. In this paper are shown some
“exact” numerical results of calculations with these equa-
tions. It will be the subject of a future investigation to
do comparisons with the approximate solutions and thus
obtain further insight into the quantal corrections.

A numerical study of a quantum theoretical time-
dependent density-matrix theory (TDDM) that includes
a collision term was done by Tohyama in two-dimensional
geometry [14].

Other noteworthy work somewhat related to the
present includes works by Ko et al. [15].

Danielewicz solved the Kadanoff-Baym equations nu-
merically for nuclear matter [16]. He calculated the re-
laxation of a system consisting of two Fermi spheres sep-
arated by a momentum corresponding to an equilibrated
temperature of 70 MeV and a total density of ~ 0.3
nucleon/fm3. His detailed investigation revealed that the
quantum evolution has an equilibration time almost twice
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as large as that of the classical. We confirm this result
and the comparison is extended to lower energies and
densities.

The KB equations and the classical limit are shortly
reviewed in Secs. II and III. Some computational details
are shown in Sec. IV and the results of the numerical
study is then given in Sec. V. Section VI contains a
summary and comments.

II. QUANTUM EVOLUTION

Only a short presentation of the relevant equations is
given here. Detailed derivations are found in the book
by Kadanoff and Baym [9] and in [17-19]. In homoge-
neous nuclear matter and neglecting the mean field the
KB equations reduce to

J

d3P1

£ (pot, ) = —iﬁ/ (2m)3 <%(P —-p1) | T2(p+p1,t,t) | 3(p— P1)> G> (p1,t,t) .

Here T< is defined by
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The notations are conventional; G” and G< are essen-
tially the occupation numbers for hole and particles, re-
spectively. Specifically the distribution function f(p,t)
is given by

<p | T (P,t,t') | p> = / dt"dt"'dp"dp" (p | T*(P,t,t") | :(p" — p""))

XGZ (P", t")GZ (pm, t/l!) <%(pn

The effective interaction TF (essentially the Brueckner
K matrix but with hole-hole ladders) is defined in terms
of an integral equation formally written as

TH =V +VGTGE TS, (2.5)

where V is the “free” N-N interaction potential.

III. CLASSICAL EVOLUTION

The classical limit of the Kadanoff-Baym equations has
been discussed repeatedly in the literature [9,17,19]. This
is often done using the KB ansatz

G<(p,T,7) =if(p,T)a(p,T,7),
G>(p,T,’7’) = —i[l - f(p7T)]a(p7 Ta T) 9

where T = (t +t')/2 and 7 =t — t' and a is the spectral
function defined by

(3.1)
(3.2)

a(p,T,7) =i[G”(p,T,7) — G<(p,T,7)] - (3.3)

This ansatz leads however to inconsistencies in time argu-
ments of the memory effect. The discrepancy with other
approaches was discussed by Jauho and Wilkins [20]. A
generalized GKB ansatz was introduced by Lipavsky et
al. [21,13] differing from the KB in the time argument of
the distribution function. Following this work we use the
ansatz

f(Pvt) = _iG< (pat’t) . (22)
The scattering rates ¥ are given by
(2.3)
-p") | T~ (P,t,t") | p) . (2.4)
[
G<(p,T,7) =if (p,T - L2I> a(p,T,7), (3.4)

G”(p,T,7) = —i [1 —f (p,T - I—;—|)] a(p,T,T).
(3.5)

The spectral function can be written as

a(’T) — e—l/2F-reiw-r"

(3.6)
where T is the width of the particle state and w its en-
ergy. Neglecting the mean field as done in the present
calculations w = p?/2m. In the limit of zero width, i.e.,
the quasiparticle limit, the time integration in Eq. (2.1)
reduces to

/dT cos[(w + wy — w' — wy)T/R|[FFLf f1 — fHF'F],
(3.7

with f = f(p,t —7) and FF =1 — f, etc. With the KB
ansatz the time argument would have been t — 7/2 in-
stead of t — 7. The memory effect involves an integration
over past distribution functions. This effect is evidently
important if the relaxation time is short compared to the
memory time itself and its importance has been demon-
strated in several calculations [10-13]. If neglecting the
effect, i.e., with f = f(p,t) and F = 1— f, etc., the time
integration reduces to a § function over energies, i.e., the
energy is conserved in each binary collision.

The result is in our case the Boltzmann equation
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with the Nordheim-Uehling-Uhlenbeck modification for
fermions.

For the case of the local interaction used here [Eq.
(4.1)] this classical equation is given by [16]

1o} d , ,

OIEet) s [ GRant(|p ' | /m)(m? /1617
x| V(p' —p) P [FFf' fi — fHLF'F{],

(3.8)

where f = f(p,t) and F =1 — f, etc.

IV. COMPUTATIONAL DETAILS

To make the calculations reasonably short and to allow
for direct comparison with Ref. [16] the effective interac-
tion T* [defined by Eq. (2.5)] is here approximated by
the simple Gaussian form potential used by Danielewicz
[16] and defined by

V(p) = 7%/ ®Voe =177 (4.1)
For the Green’s function scattering rates in Eq. (2.3) one
then obtains [16]

> ' d*py [ d&°p / 2
2<(p,t,t) = 4h (27I')3 / (27‘_)3 | V(p p) I
xG=(p,t,)GZ(p +p1 — P', ;1)
XG> (py,t',t) . (4.2)
The same parameters are used for n and V, as used by
Danielewicz [16]. Thus 7 = 0.57 fm and V, = —453 MeV.

The quantum evolution equations are solved for var-
ious initial (uncorrelated) distributions f(p,0) that de-
fine G<(p,0,0) by Eq. (2.2) and G>(p,0,0) = —i +
G<(p,0,0). In spite of the apparent complexity, the cal-
culations with the KB equations are relatively simple in
comparison with the corresponding classical limit, i.e.,
Eq. (3.8). The simplicity is however restricted to the
choice of a local potential as in Eq. (4.1). In this case
the convolution theorem for Fourier transforms speeds
up the evaluation of the integrations in Eq. (4.2) enor-
mously.

In addition to doing calculations with initially uncor-
related distributions, they were also made with initially
correlated distributions obtained by imaginary time step-
ping as described in detail by Danielewicz [17,16]. This
implies first preparing an initially correlated system by
repeated imaginary time stepping along positive and neg-
ative axes iterating to self-consistency. The time stepping
is then extended to the real axes as well.

The numerical work was in essence performed as in
Ref. [16], but the computer program was developed inde-
pendently. As noted above the scattering rates in Eq.
(4.2) were calculated by means of Fourier transforms.
Danielewicz used a cylindrical coordinate system while
Cartesian coordinates were used here although all results
reported here are for cylindrically symmetric systems.

The system was contained in a box of size 8 x4x4 fm™?
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in momentum space with a mesh ép = 0.2 or 0.15. The
time stepping was made in a predictor corrector method
with a time mesh 6t =0.5 fm/c. Much computing time
was used to ascertain that these meshes were adequate.
The time differential 8G (or f) at time ¢t was calculated
from the average of the derivative at time ¢ and time
t + 6t, with the derivative at time t + §t calculated from
a first iteration. The evolution was in general studied for
20 time steps. The integration along the imaginary axes
was in general done for +3 fm/c.

In the cases of the correlated initial distributions the
correlated Green’s functions were obtained in a 15-step
iterative calculation.

In the quantum evolution the number of particles was
in general conserved to within 0.2% and the energy to
less than 1% over the 20 time steps usually used.

In the Boltzmann case the calculations were made as
in the previously published report [3]. The integrations
were made on a mesh either with trapezoidal or Gaussian
weights. The particle and energy conservation was some-
times less accurate in this case being more sensitive to
the sharp cutoff of the zero-temperature Fermi spheres.

V. RESULTS OF CALCULATIONS

A. Zero temperature calculation

If the classical equation (3.8) is time evolved starting
with a Fermi distribution it will be stationary, because
this is a solution of 8f /8t = 0. This is not the case for the
quantum evolution. In this latter case it is the Green’s
functions for the correlated system that is stationary.
An initially uncorrelated distribution time evolves with a
build-up of correlations and after about 5 fm/c one finds
a stationary distribution function that differs from the
initial Fermi distribution. This is exemplified by Fig. 1
in a calculation starting with a T=0 Fermi distribution at
a density of 0.185 nucleon/fm3. The step function in the
figure is the uncorrelated distribution function at temper-
ature T' = 0 while the second curve shows the stationary
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FIG. 1. The solid lines show the distribution function
f(p,t =5 fm/c) at normal density. f(p,t = 0) was an uncor-
related Fermi distribution of temperature 7' = 0 and is shown
by the step function.
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distribution obtained after correlations have developed
at 5 fm/c. The occupation numbers at the bottom of the
Fermi sea are seen to be depleted to about 0.7.

The time evolution of this calculation is illustrated by
Fig. 2. The potential energy, shown by the lowest curve
is seen to initially decrease until the correlations are built
up. As the potential energy decreases during the first
3-4 fm/c, the kinetic energy shown by the upper curve
increases, while the total energy shown by the middle
curve is seen to be constant at about 24.5 MeV, which is
of course also the kinetic energy of the initial uncorrelated
Fermi distribution, because the KB equations conserve
total energy (as well as particle number).

Although the initial uncorrelated system is at T' = 0,
i.e., in its ground state the final correlated state is not.
During the build-up of correlations the total energy is
conserved by Eq. (2.1), while the ground state of the
correlated system should have a lower energy because of
the binding. Therefore the temperature is actually larger
than zero even though in the presentation of results of the
calculations they are always labeled by the temperature
of the initial uncorrelated system (see Sec. V C) although
the actual temperature of the correlated system then is
larger. The ground state for the correlated system is
obtained by the method of imaginary time stepping re-
ferred to in Sec. IV. The occupation numbers obtained
in this case are shown in Fig. 3, from which one finds
a depletion to about 0.90, i.e., appreciably less depletion
than in Fig. 1. For comparison, Brueckner calculations
with realistic interactions gives a depletion to about 0.82
[22]. The total energy is reduced relative to the uncor-
related case by about 8 MeV /nucleon with a potential
energy of —19 MeV /nucleon and a kinetic energy of 32
MeV /nucleon to be compared with —22 MeV /nucleon
and 48 MeV /nucleon, respectively, in the uncorrelated
case.

The spectral function a and the width I is readily cal-
culated from Egs. (3.3) and (3.6). A width of ~ 32
MeV (almost independent of momentum) is obtained in
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FIG. 2. The kinetic, total, and potential energies per nu-
cleon is shown by the top, middle, and bottom curves as a
function of time as the correlations build up in an initially
uncorrelated nuclear matter of zero temperature and a den-
sity of 0.185 nucleon/fm?.
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FIG. 3. Similar to Fig. 1 but with imaginary time stepping.
Note that the depletion of occupations in the Fermi sea is now
reduced because of a lower temperature.

the present case for the correlated system. This agrees
qualitatively with Brueckner [23] and other theories in
calculations with realistic forces. In the present calcula-
tions the width is however not zero at the Fermi surface
as would be anticipated. In the uncorrelated system, i.e.,
at the onset of the time evolution the width is of course
zero for all momenta.

B. Quasi-particle limit

The correlation effects should decrease as the quasi-
particle limit is reached at low density and high temper-
ature. Figure 4 shows the thermalization of an initial
distribution of two Fermi spheres with the temperature
10 MeV and chemical potential —12 MeV separated by
2.5 fm~!. The equilibrated temperature is then 33 MeV.

-07

in QUAD

TIME (fm/c)

FIG. 4. The logarithm of the quadrupole moment of the
distribution in momentum space as a function of time. The
solid line is for the classical case, the broken line for the quan-
tum case with an uncorrelated initial distribution, while the
dotted line is for an initially correlated system. This figure
illustrates the near agreement between the three cases. The
temperature as defined in the text is here 33 MeV and the
density is 1/10 of normal nuclear matter.
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The classical distribution (solid line) equilibrates with
Tre1=39 fm/c. In the quantum cases the relaxation is ini-
tially smaller but reaches a value of 7,=36 fm/c after
about 5 fm/c. As discussed in Sec. III one has to neglect
not only the correlations but also the memory effect to
recover the classical equation, Eq. (3.8). Numerically
this requires however an integration over a sufficiently
long time that the § function over energies in the Boltz-
mann equation is recovered. This may explain the delay
in establishing a constant relaxation time in the quantum
case. The difference in relaxation times is numerically ac-
ceptable. One has to bear in mind that the two computer
programs are widely different. Although the system is a
priori expected to be quasiparticle there is still a bind-
ing energy of ~ 4 MeV and the actual temperature of the
quantum distributions is slightly higher than that of the
classical which also may explain why the quantum relax-
ation time is somewhat smaller. It should be noted that
the reverse is seen in the results of higher density that
are shown below. Which is the most important difference
in the present case, memory or width, is unknown.

C. Relaxation rates

To study the equilibrations and compare the quan-
tum and classical cases the time evolution was in gen-
eral started with a distribution consisting of two Fermi
spheres at zero temperature separated by some momen-
tum. Two separate calculations are made in the quan-
tum case. In the first the time evolution is started with
the initially uncorrelated state. In the second the sys-
tem was first time evolved by imaginary time stepping as
described in Sec. IV.

For the presentation of the results, the total density
p and the temperature T of the final equilibrated distri-
bution serves as parameters. The temperature was ob-
tained from the kinetic energy and density of the initially
uncorrelated system of the two spheres by inverting the
well-known expression for the kinetic energy as a function
of temperature for an equilibrated Fermi distribution. In
previous work it was in fact found that this parametriza-
tion is very useful. To a very good approximation the
relaxation rate is found to be the same for different dis-
tributions in momentum space if only the final temper-
ature and density is the same [3]. This ansatz was also
used by Bertsch in his expression for the relaxation of a
quadrupole deformation [25].

Because of the correlations some caution in interpret-
ing the results is however necessary with this definition
of the temperature as will be discussed below.

When time evolving the initially uncorrelated system
the correlations are building up during the first 3-5 fm/c
with changes in potential and kinetic energy as shown in
Fig. 2. In the correlated case these energies are practi-
cally constant during the evolution along the real time
axis.

In several previous publications the author has used
the relaxation time method to include the NN collisions
in extended TDHF calculations for heavy ion collisions
[24]. This involves calculating the collision term by
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(ap(rarlvt)) - _p(l‘,!",t) —po(r,l",t) (51)
coll

ot Trel[T(r7 t),p(r,r, t)] ’

where p(r,r’) is the density matrix and pg is the lo-
cal equilibrated density matrix, i.e., (in Wigner space) a
Fermi distribution with a local temperature T'(r). p(r,r)
is the nucleon density.

The relaxation time method relies on the exponential
decay of the distribution. More precisely, one expects
each multipole of the distribution in momentum space
to have a separate relaxation time. In a previous pub-
lication relaxation times were calculated in the classical
case for the quadrupole and other deformations and the
exponential decay law was verified to a high degree of
accuracy in all cases [3]. Figure 5 shows that this also
holds very well for the quantum case, after a memory
time of a few fm/c has been reached. Before this initial
time the relaxation is slower. The figure shows only the
relaxation time for the quadrupole moment, and this re-
lates to the viscosity of the system which of course is very
important for the dynamics. While the moments decay
exponentially in agreement with that, Eq. (5.1) is a good
approximation this does not hold true for the anisotropy

: — 1 used in Ref. [16]. The re-

(pz)
(P2)+(p3)
sult of the relaxation-rate calculations can because of the
constancy of 7. during the equilibration be summarized
by the widths //7e1, and these are plotted as a function
of temperature at three densities as shown in Figs. 6-8.
The solid line in each of these figures shows the classical
widths as a function of temperature at three densities cor-
responding roughly to normal, half, and double nuclear
matter density. Note that the vertical scales are different
for each density. In each case the classical width is seen
to go to zero with the temperature. This is in agreement
with the well-known behavior for any fermion system. It
increases sharply as a function of density and also with
temperature until reaching a maximum after which it de-
creases somewhat. This is in general agreement with pre-
vious calculations of relaxation times [3]. The dotted and
broken curves in Figs. 6, 7, and 8 are for the quantum

parameter ¢ = 2

TIME (fm/c)

FIG. 5. Similar to Fig. 4 except that the final temperature
now is 45 MeV and the density is that of normal nuclear
matter. Note the difference in vertical scale.
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FIG. 6. The width, i.e., A/7re, as a function of the temper-
ature of the equilibrated system. The curves are labeled as
in Fig. 4. The total density is here that for normal nuclear
matter.
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FIG. 7. Same as Fig. 6 except that the density is half
nuclear matter density. Note the difference in vertical scale.
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FIG. 8. Same as Fig. 6 except that the density is double
nuclear matter density. Note the difference in vertical scale.

3237

cases with and without an initially correlated state with
the latter showing the smallest widths.

One observes that in general the widths are smaller,
i.e., the relaxation times are longer in the quantum cases.
At the higher density shown in Fig. 8 the ratio for the two
cases is as large as two at 35 MeV. The width for an ini-
tially correlated state is smaller than for the correspond-
ing uncorrelated. For the half normal density calculations
the difference is especially large for temperatures below
20 MeV.

By extrapolating the widths for the initially uncorre-
lated systems one may be lead to the conclusion that
there is a finite width of about 10 MeV even at zero tem-
perature. This would be an interesting result with wide
implications for nuclear dynamics. It was already dis-
cussed in Sec. V A that, although the initial system is
uncorrelated, the correlations are already developed at
about 5 fm/c (see Fig. 2) with the system simultane-
ously being excited. As a consequence the uncorrelated
curves should really be shifted to higher temperatures.
The importance of starting the time evolutions with cor-
relations already built in are thus seen to be important
for obtaining meaningful results. It is however interest-
ing to see that even then the results indicate a nonzero
width in the limit of zero temperature.

D. Memory time

In all the results presented so far in this paper the
time integration in Eq. (2.1) is from time zero to the
present time. Because the system has a finite memory it
is however only necessary to start the integration from
not more than about 5 fm/c back. This is illustrated
by Fig. 9 showing the relaxation at a temperature of 45
MeV for four different memory times ranging from 1 to 5
fm/c. These are for an initially uncorrelated system. The
curve for 5 fm/c (solid curve) coincides with the broken
curve in Fig. 5 in which the time integration starts at
time zero. It is seen that a memory time of only 1.5 fm/c

In QUAD

o
A T T

0 5 10
TIME (fm/c)

FIG. 9. This is similar to the broken curve in Fig. 5 except
that four different memory times (see text) are used in the
calculation. From top to bottom these are 1.0, 1.5, 5.0, and
2.0 fm/c, respectively.
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would give a small error in relaxation time. Note that
with the time mesh of 6t = 0.5 fm/c that is used in the
calculation this implies summing over only three points in
the numerical integration in this case. A memory time
of 5 fm/c agrees with Fig. 2 showing that an initially
uncorrelated system is stationary after about that time
(or less).

It should be noted that in an uncorrelated medium for
which the width is zero the memory time is infinite. The
time integration in Eq. (2.1) then starts (in principle)
from t = —oo rather than from ¢ = 0. This then leads to
a ¢ function of the energy, i.e., energy is conserved in the
two-body collisions as in the Boltzmann equation.

VI. SUMMARY AND FINAL COMMENTS

This work confirms Danielewicz conclusions [16] that
a quantum-mechanical treatment of the collision term
in nuclear collisions is essential. The computer pro-
gram used here was developed independently of his even
though the general methods were the same especially as
regards the use of Fourier transforms to compute the col-
lision rates. The present calculations were however made
in a three-dimensional Cartesian geometry instead of a
cylindrical. The predictor corrector method used in the
time stepping was the same in the two calculations. The
present calculations agree numerically with his (to the
extent that a comparison can be made).

The present calculations of the KB equations were rel-
atively simple to perform, in fact simpler and computa-
tionally more accurate than the comparable classical cal-
culations. So, for example, are the particle and energy
conservations better satisfied. The simplicity is restricted
to the use of a simple and not so realistic effective inter-
action and therefore the results can perhaps therefore not
be taken as altogether general. The interaction used here
[defined by Eq. (4.1)] depends only on momentum trans-
fer while the more general interaction 7% will depend also
on relative momentum as well as on times ¢ and t'. (In
the Fourier transformed time representation on energy w
and total time T'.) It would be desirable to include these
effects as well, even though this would require apprecia-
bly more computer efforts. A somewhat related question
regards the relation between the correlations included by
the T-matrix approximation for the effective interaction
and the correlations built up by the KB collision term.
The width found in Sec. V A, in the zero-temperature
limit and the width found from Brueckner calculations
(with realistic forces), are numerically similar but the
formal relationship between them is not established.

The momentum dependence of the effective interaction
would certainly have to be included for a reliable esti-
mate of the quantum relaxation times. Figure 10 shows
the classical result with experimental energy-dependent
cross sections at normal density showing as much as 30%
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FIG. 10. Classical relaxation rates (widths) at normal den-
sity with a momentum-dependent interaction fitting the ex-
perimental free N-N cross sections. This should be compared
with the upper curve in Fig. 6 which is for the momen-
tum-independent interaction used in the present work [Eq.

(a.1)].

smaller relaxation times. Using in-medium cross sections
[4-8] would decrease these even further. The quantum
corrections relative the classical are however expected to
be similar for both types of interactions.

The mean field has been omitted in the propagations
between scatterings in all the calculations presented here.
The correction is essentially the effective mass. The re-
laxation rates should therefore be further reduced by a
factor m* which is ~ 0.8 for normal nuclear matter den-
sity.

It is anticipated that these “exact” calculations of the
KB equations will make it possible to numerically test
the various approximate treatments of these equations.
In this paper the test was made of the purely classical
(quasiparticle) limit used in BUU, etc. Other approxima-
tions are suggested by several researchers with particular
emphasis on retardation effects, etc., with applications
not only for nuclear collisions but also in solid state. The
tests of such approximations will be reserved for future
publications. They are expected to shed some light on
the applicability and feasibility of these various sugges-
tions.
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