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Within a multichannel, multirank model of wide applicability, resonances in complex systems
are studied. In particular, compound resonances, which are well observed in nuclear systems can
be clearly examined as arising from bound states in subsystems of the coupled-channel system. A
less well known, and until now little understood, form of resonance is the quasicompound resonance
(or structure). These are seen as arising from resonances in subsystems of the multichannel system.
The nature of the two types of resonances is contrasted, in their behavior as the strength of coupling
increases. Compound resonances arise in6nitely narrow; but of fixed height and increase in width,
whereas quasicompound structures arise as small "bumps" of finite width, and increase in height.
After presentation of the general theory, these properties are illustrated in a simple numerical model
calculation.

PACS number(s): 25.40.Ny, 24.10.Eq

I. INTRODUCTION

Resonances play an important role in nuclear physics
(as in other branches of physics). Usually the word "res-
onance" is interpreted in the sense of "single-particle
resonance, " a quantum effect resulting from a trapping
of the wave function inside a potential (which may be
purely nuclear or nuclear plus centrifugal and, perhaps,
Coulomb). By contrast, the concept of a compound res-
onance in nuclear physics implies a resonance in a com-
plex nucleus resulting from underlying structure in its
subsystems. Compound resonances (or bound states em-
bedded in the continuum) arise out of bound states in
subsystems, are typical of a multichannel problem, and
are usually very narrow (proportional to the square of
the coupling between the elastic channel and the channel
carrying the bound state). They have been extensively
studied [1],and are also well confirmed as existing in na-
ture, in many nuclear systems. In particular compound
resonances have been certainly identified in nucleon- C
low-energy scattering, through a mechanism of excita-
tion of the 2+, 4.43 MeV state of C (see, for example,
Ref. [2]). Another kind of resonance in a complex nu-

cleus, a quasicompound resonance, can also result from
subsystem structure. Quasicompound resonances, which
are due to resonances in subsystems, were originally de-
fined by Beregi and Lovas [3] and have been investigated
by others [4,5]. While they have been the subject of theo-
retical study, they are more difEcult to identify in nature.

In this paper, we study compound and quasicompound
resonances in a unified and quite general framework. In
this way, we are able to compare the behavior of the
two types of resonances and see the differences. It is

also a framework in which exact numerical calculations
are readily performed. While compound resonances have
been more extensively studied, both experimentally and
theoretically, quasicompound resonances (or structures)
have a firm theoretical basis and should also be observ-
able. We give clues how to identify such structures. The
model is a multichannel, multirank system that has been
developed in detail elsewhere [6]. The model, though
simple, has very general features. In particular, the re-
striction to multirank interactions is no limitation, since
it has been demonstrated that any interaction can be re-
duced to a multirank one by the Sturrnian expansion [7]
or as in the work of the Gratz group [8].

Section II develops the theoretical framework in de-
tail. Section III deals with the cases of the compund
and quasicompound resonances within this framework.
Section IV contains a calculation in a simple model sys-
tem, to illustrate the points made in the previous section
about the behavior of the compound and quasicompound
resonances. It is possible that a physical example for a
quasicompound resonances can be found in the same C
system as in Ref. [2]. This is a subject for future work.
Finally, there are two appendixes with some mathemati-
cal details.

II. THEORY

Consider a two-body, multichannel scattering problem,
defined by the following multirank potential (represented
in momentum space k):

V, (kk') = ) Vktv" (k)b,",", tv,", (k')v k', (2.1a)
nnl =1
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V„(kk') = ~k(m, (k)lb„ liU, (k'))v k'. (2.1b)

where c = 1, 2, . . . , C is the channel label, and stands
for all quantum numbers defining the channel; angular
momentum expansion is intended, label l being inside c;
c = 1 means the elastic channel; n = 1, 2, . . . , N is the
rank label; and to indicates the form factors in momen-
tum space, as defined in Ref. [6].

Since the game is played mainly in space c n and
partially in subspace n, we adopt from now on the short-
hand notations outlined in Appendix A. Although a lit-
tle cumbersome, the notations lead to great formal sim-
pli6cations in the following. Following these notations,
Eq. (2.la) may be written in compact form as follows:

If channel c is closed, k is pure imaginary and the real
Fredholm matrix may be written as follows:

ih, = k, = Qp, f, . (2.6b)

We are interested in a factorization of Sqz of the type
Sii ——N/D. This can be obtained by extracting in M
the imaginary part of the elastic channel, namely,

M„=P„=(b )„+h„y,, ' ' x dz,
toc X toc &

X2+ h2

(2.6a)

As shown in Ref. [6], the elastic scattering matrix may
be written as follows: where

M.. = R... + 'ah. , l~.) (~.. Ih. „ (2 7)

S» = 1 —»a(~il(M)»'l~i)

where i is the imaginary unit and

(2.2)

if c = c' = 1, and

(2.8a)

M„= (b )„—h„y,, '
.

' x dx (2.3a)
toc x toc x
k, +xe —z

is the Fredholm matrix, while
otherwise. By writing

hi. l~.) = IC'. )

(2.8b)

jr
Oc = Pc) +y =a

2
(2.3b)

or, more explicitly,

2m.pc= ~2 ) P1=P
bg, to," = C",

(2.3c)
Eq. (2.7) may be put into the form

are real constants, m, being the reduced mass of the
channel. In Eq. (2.3a) and in the following, the outgo-
ing solution is intended if not otherwise stated, namely,
M = M, . The channel momentum k, is defined as(+)

follows:

M = R+ ial@)(4I, (2 7')

which is of the type (A10). We may therefore invert M by
means of Eq. (Allb), and then substitute into Eq. (2.2).
After some algebra one gets

where

k, = Qp, f„ki ——k, (2.4a) 1 —ia(~il(R ')ill~i)
1+ ia(ii~il(R ')lllu 1)

(2.9)

E', = E —g„E'g ——E (2.4b)

M. = P + b, ia IiU, )(u) I, (2.5a)

is the channel energy, E the total energy, and gz
0, g2, . . . , g~ are the threshold energies.

If channel c is open, k is real and the complex Fred-
holm matrix assumes the following expression:

which is an expression of the desired form. Note that, if
only the elastic channel (c = 1) is open, R is real and
Sii unitary (ISiil = 1), as expected.

In order to analyze the resonant behavior of the S ma-
trix (2.9), we make now the fundamental assumption of
the weak coupling limit: All couplings bettveen channels
are small of order e, and only terms up to e are retained
throughout. This amounts to writing the strength as fol-
lows:

P„=(b )„+h„HAPP
' x d2:,

toc 2; toc 2:

c

(2.5b)

where PP means principal part. Here and in the follow-
ing, when the momentum variable is not explicitly shown,
the physical channel momentum is meant, namely,

b„=h„B,+ e(1 —h„)B'„,. (2.io)

(b )„=h„B, —e(1 —h, )B, B'„,B,,

By inverting b up to ~, and taking into account that the
first term of the right-hand side of Eq. (2.10) is diagonal
in c [see Eq. (A5a)], one gets

l~.) = I~.(k )) .
) B, B,',„B,„B',„,, B,,

c"yacc'

(2.ii)
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Then the matrix R, defined by Eqs. (2.7), (2.8), may be
written as follows:

for any c g 1. In the latter case note that

M', =P', (2.13c)

R, = b„R', —e(1 —b„)B, B'„,B,, is real if c is closed and

+e ) B B &sB B s& tB
c"yacc'

(2.12)

where

for c= 1, and

R,'=B +p ' ' xdx=M'„(2. 13b)
X — —Z6c

Rz: By + pPP 2 2
x dx: Py 2 13a

c

M', = P', + ia,
~
w, ) (iu,

~
(2.13d)

is complex if c is open. It is also worthwhile to note that
(i) Ri = Pi is the real part of the Fredholm matrix of
the elastic channel, in the zero-coupling limit (e = 0) and
(ii) R', = M'„ for any c g 1 is the Fredholm matrix of
the uncoupled c channel.

Inversion of R up to e gives (remember that, follow-
ing Appendix A, although we display the term cc', the
inversion of R is meant in the whole space c n, while
only for the parts diagonal in c, namely, K' and B, is the
inversion reduced to subspace n)

(R ) = h RI + (1 —g )R' B
+ 2 RI—1B—1BI (B—1HI —1B—1 B—1)BI B—1RI—1

c"gcc
(2.14)

In order to derive the scattering matrix (2.9), we need

(iUl~(R )11~oui) = (iUil(P' ')»livi) + ~' ).(~ilP' 'B 'B' (B.'M'. 'B. ' —B.')B!iBi'Pi 'I~i)
c+1

(2.i5)

det M'*

det M',

1 —ia, (iu, ~(P' i),~u), )
1+ ia.(~.l(P' ').I~.)

(2.i6a)

Here b, is the corresponding (uncoupled) phase shift, and
M' the (uncoupled) Fredholm matrix, namely,

det M.' = p.e-'-
= det P', [I+ ia, (u), ~(P' '), ~io, )j
= det P', + ia, (u), )P', )m, ), (2.16b)

p, = (det P,')2 + a,'(iU, ~P', ~u). )2, (2.16c)

Note that the term linear in e disappears, because of the
factor 1 —8' in Eq. (2.12).

It is convenient now to write down the expression of
the scattering matrix for any open channel c, in the zero-
coupling approximation (e = 0). This can be done by
employment of Eqs. (Alla), (Allb), (A12a), (A12b):

A ~detA = A. (2.16f)

Of course, the above expressions hold in particular for
the elastic channel c = 1, which is always open. By sub-
stitution of Eq. (2.15) into Eq. (2.9), and introducing
the uncoupled elastic phase shift bq, the elastic scatter-
ing matrix in the weak-coupling approximation may be
written as follows:

e" —i«'cos ~i E.gi(W. ~(M' '). —B.IW-)
e * ' + ia~ coshi g,&i(W, ~(M' i), —B,~W, )

'

(2.17)
where we have introduced the vectors

(W, i
= (ioiiP' B B',B,

~W.) = B.-'B.',B I ', '~~, ) .

(2.18a)

(2.18b)

Note that in the uncoupled limit (e = 0), Sii ——Sii ——

e2'~' as expected. If all (c g 1) coupled channels are
closed, all M', are real, so that (W, and B, being real
anyway) IS»12 = 1 as expecte

Pc
(2.16d) III. RESONANCES

det P'
cosh

Pc
(2.16e)

A. Compound resonance (the bound state embedded
in the continuum)

where we have introduced the matrix of minors, namely,
for any matrix A:

Let us consider the channel c = o.. Assume that at the
channel energy E' 0 (or equivalently at the total energy
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Ep ——ll~ + 8 p) the channel o. is closed (Ep ( e E p (
0), and exhibits a proper bound state in the zero-coupling
limit. The label 0 is meant to characterize completely the
bound state (among others possibly present in the same
channel at different energies). This means that ) (W, l(M' ), —B,lW, ) = X

Ck 7 (3.3a)

Now consider Eq. (2.17), separate the resonant channel
o. from other channels, introduce the parametrizations
(3.2a), (3.2b), and write

where

det M' (8 p) = detP' (E p) = 0,

is obviously real and where

M ' (t p) = P' (t p) = (B ')
tU~ X 'W~

X +hp

(3.1a)

(3.1b)

col

X = —(W lP'lW ),
Qck

(3.3b)

Z. = ) (W.l(M-'). -B.lW. ) -(W.lB.lW. ),
c+1 ck

(3.3c)

ihp ——kp ——Qp, fp. (3.1c)

We assume that the level is well insulated, and ex-
pand the function detM' in the neighborhood of Zp,
in the spirit of a one-level Breit-Wigner approximation,
namely,

where, according to the Breit-Wigner philosophy, all
quantities are intended to be calculated at resonance
(E —Ep)

Substitute Eq. (3.3a) into (2.17), manipulate, and com-
pare with the standard Breit-Wigner-like scattering ma-
trix, namely,

det M' (E) = det P' (E) = p (E —Ep), (3.2a)
bg E —E —4 —i—

2S11 —S„ rE —Ep —A +i—
2

(3.4)

det M.' (3.2b)
Prom comparison, the following expressions of the back-
ground scattering matrix S11, width I', and shift factor
A are obtained:

4 = ae sin b1 cos 8]X

e' ' —iae cos b1Z
&

—ib& + ia&2 cos b] Z~

2ac
1+ a'(~11(P'1) '1~1)

21

«'~-(~11(P') 'l~l)
1+a'(~ll(P1) '1~1)'

1 —ia((col lP'1 llol) + e'z )
1+ ia((lp, lP', 'lip, ) + e'z )

det M'* —iae det P' Z~
det M' + iae2 det P', Z

(3.5b)

(3.5c)

We are interested in the cross section (normalized to 1),
namely,

[(E —ep) sill 41 ——cos 41]
0

(E —eo)'+ (-', )' (3.6c)

=1 2

4
(3.6a)

The following should be noted.
(i) In absence of background (41 ——0), the cross section

becomes

(3.6b)

with ep ——Ep + 4, and shows a maximum at E = ep, of
magnitude 1, and width I'.

(ii) If and only if all channels c g 1,n are closed, the
background is unitary (41 is real and, in the particular
case of 2 channels only, 41 ——bl).

(iii) Up to e2, the "spectator" channels (c g 1, n) do
not inBuence the width and shift, but only the back-
ground (3.5a), through Z

(iv) In the case of real 41, the cross section becomes

M.' = r.'+ ia.~.2 = &,e-'-, (3.7a)

QP/2 + a21p4 (3.7b)

act@2

tan b P' (3 8)

and exhibits a maximum (where o = 1) at E = ep—
2 tan C'1 and a minimum (where o = 0) at E = ep +
—COt 4'1.r
2

(v) The width and shift are proportional to e2. The
compound resonance starts infinitely narrow at the res-
onant energy, as the coupling is switched on. Then it
shifts and broadens as the coupling increases.

It is interesting to consider the particular case of rank-
1 potentials. In this case all matrices in space n become
numbers, and we have, in particular,
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Bi mi
c B B gi )

R'2
X

Qcx

We obtain finally the width and shift:

(3.9)

(3.10)

It is interesting to apply Eq. (3.12) to our case, and re-
derive Eq. (3.11a). In what follows remember that angu-
lar momentum expansion is implied, and that the channel
index contains all quantum numbers, including l.

The normalized bound-state wave function in the un-
perturbed channel o, , with respect to the momentum co-
ordinate p, is

( B~~ 2ac 'rp~

(B,B.) p. ~M,r, ~'

( B~ a E rU]
2 2 4

2'
(B&B~) 7~+1 IM11 I'

(3.11a)

(3.11b)

~-(p) ~»
4 (~ps)= —&p„,

p +P

u)2(q)q dq

(k2 +»r')' '

(3.13a)

(3.13b)

where all functions are calculated at Ep.
The Feshbach theory (see, for example, Ref. [9]) gives

in the weak-coupling limit the following general expres-
sion:

(3.12)

The scattering wave function of the unperturbed elastic
channel is

p mg(p)erg(k) ~pk
k2+ ze —p2

The detailed expression of Eq. (3.12) is the following:

Q (8 p, p)zv (p)~p dpB', u)&(q)~q dq@I+l(E p, q) (3.15)

M'(E) = +1 ~.'(»)» dp
p2 )—E
pcs

and therefore

From Eqs. (3.13a), (3.13b), (3.14), (3.15), Eq. (3.11a) can
be found, provided one takes into account that

I

in the usual Breit-Wigner form, namely,

r
2t for

E —Ep —i—
2S =e

, rE —Ep+ I,—2

( r. &detM' (Ep) oc E —Ep+i ~e
2 )

This means that, at resonance,

(3.16a)

(3.16b)

1

dE
Eo det M' (Ep) = [det P' + ia~(ur~~P' ~m~)]@, oc i e

2
Take also into account that, at resonance, (3.17)

and therefore

M'(E p) = 0, In the framework of the Breit-Wigner philosophy, to cal-
culate all slowly varying functions at resonance, we may
write

~.'(»)» d»

P + 6 p P~B~

So the identity between our expression (3.lla) and the
general Feshbach equation (3.12) is demonstrated.

a-(~- IP'. l~-)cos
pcs

det P'
sin

p = (detP')' + a'(m iP' iso )2.

(3.18a)

(3.18b)

(3.18c)

B. Quasicompound structure

Let us consider the channel c = o.. Consider the case
where, at the channel energy 8 p (or equivalently at the
total energy Ep —g +E' p ), the channel n is open (Ep &
r», 8 p & 0) and exhibits a resonance. We assume that
the uncoupled S matrix of the resonant channel can be
separated in a background times a resonant part, written

(W i(M' ) iW ) = e'~
E Ep+z 2

(3»)

X' =(W iP'iW), (3.20a)

Now it is convenient to extract in Eq. (2.17) the resonant
channel c = n, and use the properties (Alla), (Allb),
(A12a), (A12b) to write down the fundamental quantity
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CX det P'
eo —Eo ——oe cos bq(sin bqX~ + cos hq Y ),

A = —2am cos b1Y~.

(3.28a)

(3.28b)

It is convenient to write

e'&. (X' + iY') = (X + iY ),

and after a certain amount of algebra one gets

o. (W iP' iur )'
CX )

Pn

fp (W fP'iW)
E -( -IP'.

I -) )

(3.20b)

(3.21)

(3.22a)

(3.22b)

The following should be noted.
(i) In the zero-coupling limit, the resonant width I'„

approaches the natural width I', I'„—I', and I' ap-
proaching zero as e [note that I „ is positive in the weak-
coupling limit, because of I', while I' is positive by
virtue of Eq. (3.22a), (3.27b)). Both shifts approach zero
as 6

(ii) The resonant (Breit-Wigner) part of Sqq is obvi-
ously not unitary because at least channel n is open. Let
us analyze its behavior in detail. From Eq. (3.26) it is
seen that in the weak-coupling limit, the height of the
cross section at resonance becomes

Let us consider the case P ~ 0, which means no back-
ground in the "mother" resonance. In this case, X
X', Y + Y'. Particular care must be taken with Y'
[Eq. (3.20b)], because without background, detP' = 0
at resonance, and therefore a divergence seems to appear
in Y . Nevertheless, it will be shown in the Appendix 8
that at resonance also the numerator in Eq. (3.20b) van-
ishes under broad conditions, and Y is therefore finite.

After substitution Eq. (2.17) may be put in the canon-
ical form

r„—r.
b E —ep —4+z 2S11 S11 E —e, + zr-+r.

2

(3.23)

The meaning of the parameters in Eq. (3.23) is better
understood by neglecting the background (Szf = 1):

S11 ——
E —ep —4+ z

.r„—r,
2

r„+r,
2

(3.24)

and considering the normalized cross section [see
Eq. (3.6a)j, namely,

~'+ r.'
4 4 (@ e )2+ (r, +r„) (3.25)

It is immediately seen that this cross section has a max-
imum in E = ep, of height

+2++2
( o) (r r )2

(3.26)

and width I' = I' +I'„. In this sense ep may be defined as
the true resonance energy, and following this definition,
ep —Ep is the shift between the true and the unperturbed
resonance. The parameter 4 is a further shift factor,
while I„I'„, and I' have the meaning of elastic, reaction,
and total width.

In Eq. (3.23) the background has still the form (3.5a),
with the position (3.3c), while by expansions up to e, the
following expressions are found for all widths and shifts:

&r. l'
cr(E = eo) =

& -)
2ax. &

COS 61 )- )
(3.29)

a condition never satisfied in the weak-coupling limit.
(iii) In conclusion, the quasicompound structure starts

as a small bump in the cross section, as the coupling is
switched on, and increases in height as the coupling in-
creases (quite differently from the compound resonance,
which starts as a sharp resonance in the cross section, as
the coupling is switched on, and increases in width as the
coupling increases).

We give fi.nally the formulas for the particular case of
rank-1 potential, namely,

B1~xo] 2a~

t B,a.p,' r (3.31a)

(B,.~, l' f r.cot/
B~B P,') ~2

2a.~.2 &

(3.31b)I )

IV. EXAMPLE: A MODEL CALCULATION

and is therefore infinitesimal like e . This means that in
the very-weak-coupling limit the quasicompound struc-
ture looks like a small bump in the cross section and
not like a resonance (at least in the absence of back-
ground, but when the background is added the shape is
changed and the maximum is substituted by a maximum-
minimum sequence, but the perturbation is still very low
as long as the coupling is small).

We may render a little more quantitative these con-
siderations, by saying that Eq. (3.23) describes a "true"
resonance if and only if there is an energy near ep, where
ImS11 ——0 and ReS11 & 0, because in this case the phase
shift b1 crosses the value 2. In absence of background it
may be easly shown that this may happen if and only if

(3.30)

r„=r. —2am sinb1cos81Y
I' = 2am cos b1X

(3.27a)

(3.27b)
We give here a purely numerical calculation, with the

aim of showing the features of the cross section in the
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TABLE I. Parameters of the interactions.

Channel
1

(elastic)
2

threshold

Parameter

Bg

P~
P2
B11
B22

2

fl2

~2O

I2
Eo

Compound resonance
0.70

-20.88406

1.0
0.5
1.0

-0.62462
3.0
-]..0

2.0

Quasicompound
0.70

-20.88406
1.0
0.5

-0.39525
0.39187

1.0
0.9975
0.20

1.9975

The off-diagonal B's [Eq. (2.10)] are all set to 1.0: Bi2 = B2i = Bi2 = B~i = 1.

case of compound resonances and quasicompound struc-
tures. We assume a two-channel model, S-wave separable
potential of rank 1 in channel 1 (the elastic channel that
gives the background) and of rank two in channel 2 (this
channel carries the "mother" bound state or resonance).
The form factors are chosen (for the sake of simplicity)
as suggested in Ref. [10], namely,

we get a compound resonance whose position tends to
Ep = 772 + E'2p = 2, and whose width tends to zero, as the
coupling tends to zero. To check the conclusions drawn
in the weak-coupling approximation, we have Gtted the
calculated cross sections (treated as if they were ex-
perimental data), by the Breit-Wigner form (3.6c). The

1
myx = x + ~2

X

2 V 2 2+~22

(4.1a)

(4.1b)

(4.1c)

1.0
1.00

0.75-

0.50-

0.25-

1.5 2.0 2.5

e = 0.5

3.0

The philosophy is to have the simplest model able to
carry the structures whose behavior we plan to analyze.
We choose p, = 1, a, =

2 [see Eqs. (2.3b), (2.3c)], and

B2 = B2 = 0; this assumes diagonality in the rank
index. As far as the notations are concerned, remember
that lower labels refer to channel, while upper labels refer
to rank (or dropped if the rank is 1). For the definition of
strength parameters in particular, see Eq. (2.10) and Ap-
pendix A. The above assumptions lead to the following
Fredholm matrices:

0.75—

0.50-

0.25—

1.00

e, = 0.75

e =1.0

M2

M2

M2" = M,"

1 + . 2 )

1
(4.2a)Bi 2Pi (Pi —xk)

B 2P (P' —ik )
(4.2b

1 (2p2 —ik2) + (p2)

P,'+ 2P,' —ik,
(P' —k )(P' —k )'(P.'+ P')' 4.2d

0.75-

0.25-

1.00,

0.75-

0.50—

e =1.5

The range parameters P [Eqs. (4.1)] and strength pa-
rameters B, and B„, [Eq. (2.10)] are given in Table
I.

The parameters for the compound resonance give rise
to a bound state at the energy 82o ———1.0 in the (insu-
lated) channel 2. By coupling the two channels together
and putting the threshold at the energy g2 ——3.0, cross
sections [as defined in Eq. (3.6c)] are obtained, as shown
in Fig. 1, for increasing coupling values. As expected

0.25—

0.00
1.0 1.5 2.0

F (fm-2)

3.0

FIG. 1. Compound resonances: cross sections for increas-
ing couplings. Only the lowest four values of e from Table II
are shown.
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TABLE II. Compound resonances, Breit-signer parame-
ters.

0.5
0.75

1
1.5
2

0.0278
0.0585
0.1096
0.2409
0.4139

C

0.1112
0.1040
0.1096
0.1071
0.1035

0.0067
0.0103
0.0268
0.0591
0.1008

r
6

0.0268
0.0183
0.0268
0.0263
0.0252

(degree)
45.8
45.8
44.6
42.9
41.2

1.6

1.4-

1.0-

0.6-

0.4-

0.2-

0.0
1.0 1.5 2.0

E (fm-2)
2.5 3.0 3.5 4,0

FIG. 2. Quasicompound structure: cross sections for in-
creasing couplings. The curves for di8'erent e are arbitrarily
shifted relative to each other along the ordinate by 0.2 units,
for clarity, the e = 3 case being unshifted. Only the lowest
6ve values of e from Table III are shown.

results are shown in Table II. In the fitting, the back-
ground 4~ was free to vary, but the fitted values show a
slow and smooth variation. The proportionality of I' and
A to e is checked approximately up to e = 2.

For the quasicompound structure, the choice of param-
eters (Table I) gives rise to a (mother) single-particle res-
onance at the energy F20 ——0.9975 and width I'2 ——0.20,
in the (insulated) channel 2. We assume now q2 ——1, in
order to have the unperturbed quasicompound structure
still at energy E = 2 (more precisely, at Ep = 772+ E2o ——

i.9975).
The quasicompound structures for increasing coupling

values are shown in Fig. 2. Prom a comparison of Figs. 1
and 2 the diferent genesis of compound and quasicom-
pound structures is clearly seen: the first ones becoming
very narrow at constant height and the second very small
at constant width, as the couplings tend to zero. These
cross sections may be analyzed by a Breit-Wigner form
of the type (3.23) (with ~Sii ~

= 1, since we have only
two channels in our model), and the results are shown in
Table III. From observation of the table, one can draw
the following conclusions.

(i) The derivation of the Breit-Wigner parameters by
Gtting the cross section seems to be much more difBcult
than in the previous case.

(ii) The fit begins at e = 0.75 because at smaller cou-
plings, the determination of the Breit-Wigner parameters
seems to be not reliable.

(iii) The shift A is small and diKcult to determine from
the fit; its behavior is not significant.

(iv) Eo —eo, F„I', —I', seem to maintain approximate
proportionality to e up to high coupling values.

(v) It is finally important to observe that, in the con-
sidered example, from e = 3.0 to e = 4.0, we have the
transition from a bump to a "true" resonance, in the
sense defined above. Figure 3 shows the Dalitz plot for
e = 3.0 [Fig. 3(a)] and ~ = 4.0 [Fig. 3(b)], respectively.
Only in the second case does the phase shift cross the
value 2. For lower coupling values the plot is similar to
that of Fig. 3(a). It is immediately seen, from Table III,
that from e = 3.0 to e = 4.0, we have the inversion be-
tween I', and I', (I', becomes greater than I' ). It seems
therefore that the rule given in Eq. (3.30) holds in gen-
eral, in spite of the fact that it was demonstrated only in
the case of no background.

TABLE III. Quasicompound states, Breit-Wigner parameters.

0.75
1.0
1.5
2.0
3.0
4.0

eo —Ep
0.0635
0.1243
0.2724
0.5035
1.1124
1.9206

0.1128
0.1243
0.1211
0.1259
0.1236
0.1200

0.01003
0.01028
0.02350
0.01935
0.02252
0.01020

6

0.0178
0.0103
0.0104
0.0048
0.0025
0.0006

I'e

0.03631
0.05487
0.09867
0.16180
0.36013
0.65650

0.0645
0.0549
0.0438
0.0404
0.0400
0.0410

I'

0.2810
0.2734
0.2797
0.2971
0.3908
0.5165

(r„—r&)
2

0.1439
0.0734
0.0354
0.0243
0.0212
0.0198

(degree)
45.9
45.5
42.2
40.7
36.5
32.8
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0.35

0.30-

0.25—

0.20-
E

0.15—

(a)
APPENDIX A

Let A be a matrix in space c n, whose generic matrix
element is indicated by A, . We can write matrix A as
follows:

(Agg A)2
A = A2g A22

where

0.10-
A = A2~, A22, (AIb)

0.05
-0.4 -0.2 0.0 0.4

is a matrix in subspace n, . The inverse of A (in the com-
plete space c n) may be written as

0.20

(b) where

((A-')„
A ' = (A ')2g (A ')22 (A2a)

0.15—

0.10-

( (A
—&)&& (A ~)~2

(A ) = (A ) (A )2 (A2b)

0.05—
and where inversion is always intended in the complete
space. This is obviously different from

0.00 (A3)

-0.05—

-0.10
-0.25 0.00

Re{S}
0.25 0.50 0.75

which is the inverse of A in subspace n.
If A is diagonal in space c, namely,

A, =b, A:—b A

or, equivalently,

(A4a)

FIG. 3. Dalitz plot of the scattering matrices. In (a) the
(nonresonant) S matrix for e = 3.0 is plotted for equally
spaced energies, from E=3.0 up to E=3.3. In (b) the (res-
onant) 9 matrix for e = 4.0 is plotted for equally spaced
energies, from E=3.8 up to E=4.0.

A"", = b A"" = b A"", (A4b)

the inversion operation reduces &om space c(su to space
n, namely,

(A ')„=8„(A ')„—= 6„(A '), (A5a)
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or, equivalently,

(A-')"..", = b..[(A-')..]"" —= b..[(A-').]"". (A5b)

Then we define the row vector in space t" (3 n,

'll = V] D2 ) (A6a)

whose component

Q Q e ~ ~ (A6b)

ug) )
u2)

0

(A7a)

is a row vector in space n. Similar definitions hold for
column vectors, namely,
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(A7b)
same space, as defined in the Appendix A. Consider
the orthogonal transformation T which diagonalizes A,
namely,

By these definitions the bracket

uv = uc vc ucvc (A8) det A = deta= II a,

(Bla)
(Blb)
(Blc)

is a scalar, while the ket-bra
where T means transpose and II means product.

Let us write down the inverse matrix

ui vy

lu)&vl = u2&&»
uy v2

u2 V2 (Aga)
A = T T

(a ')„„=b„„a„',
detA = deta = (II a )

(B2a)
(B2b)
(B2c)

is a matrix in space c (3 n, and the ket-bra

v u v1 1 1 2

(Aob)

and the matrix of cofactors,

A= TaT, (B3a)
(B3b)

is a matrix in subspace n.
It is easy to recognize that both [u)(v[ and ~u, &(v, [,

are rank-1 matrices in the space of definition.
We remember a useful theorem derived in Ref. [6],

which may be formulated as follows.
Let

A = B + ]u&(vi,

det a = II„g a„.
G

(B3c)

Then apply the same transformation to vectors, namely,

TIV& = IF& (B4a)
(B4b)

Now we are able to calculate all matrix elements, namely,

det A = det B(1+(v[B [u&),

B 'I~&&vlB '
1+ (v[B 'lu&

i(1+(vlB 'Iu&)1 —Iu&(vlB '
1+& [B- [-&

(Alla)

(Allb)

By introducing the cofactors as in Eq. (2.16b), we may
write, alternatively,

where B is assumed nonsingular and ]u&(v[ has rank 1,
according to the above definition. Then the determinant
and the inverse of A may be written as follows:

(V~A[V& = ) F„ll„g„a„,

(V[A[v& = ) F„f„II„g„a„,

(V[A]v& =) f„'II„,„„a„,.

Then it is easy to demonstrate that

&V]A[V&(v[Alv& —&VIA]v&'

det A
= ) F f (F f ~ —F„f„)II„g„„a„ .

(B5a)

(B5b)

(B5c)

det A = det B + (v[B[u&,

(vlBlu) B —Blu&(vlB
det B

(A12a)

(A12b) Let det A = 0 [see Eq. (Blc)], and let this be a simple
pole (this means that the eigenvelues are not degenerate,
and this is true since A is assumed real and symmetric).
Then assume a = 0 and a„g 0 for all n g m. Then

APPENDIX B

Let A be a real and symmetric matrix in space n,
and [V), [v) ((V[, (v[) row (column) real vectors in the

Y=) F f(F f —F f )II g a

is clearly nonsingular.

(B7)
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