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Effects of finite excitation energy of environment on fast quantum tunneling
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Quantum tunneling under the influence of an environment with nearly degenerate spectrum is

considered. We first give a general derivation of the zero point motion formula in the sudden tun-
neling limit. The eAects of a finite excitation energy of the environment are then considered by
a perturbation method. Examples of linear oscillator coupling and rotational coupling show that
the finite excitation energy can be represented by a dissipation factor and reduces the tunneling
probability estimated in the limit of sudden tunneling. These examples clearly show that the ap-
plicability of the sudden tunneling approximation is governed by the details of the coupling as well

as the relative time scales of the tunneling and the environmental degrees of freedom. We discuss
some applications to heavy-ion fusion reactions.

PACS number(s): 25.70.Jj, 03.65.Sq, 21.10.Re, 74.50.+r

I. INTRGDUCTIGN

Quantum tunneling in systems with many degrees of
&eedom has attracted much interest during the past
decade in many fields of physics and chemistry [1,2]. This
problem is often called macroscopic quantum tunneling.
One of the major interests in this area is to assess the ef-
fects of the environment on the tunneling rate of a macro-
scopic variable.

In nuclear physics, heavy-ion fusion reactions are typi-
cal examples of this problem. When the bombarding en-

ergy is below the Coulomb barrier, fusion takes place by
quantum tunneling of the relative motion between heavy
ions. It is now well established that the fusion cross sec-
tion at energies below the Coulomb barrier is enhanced
by several orders of magnitude due to the coupling of the
relative motion to nuclear intrinsic motions [3]. A stan-
dard way to address this problem is to numerically solve
the relevant coupled-channels equations for the relative
motion. A drawback of this approach is that the number
of coupled-channels equations becomes very large if many
channels are considered. It requires a long computer time
to solve the equations, and sometimes it is not easy to
understand physically the origin of the efFects of chan-
nel coupling. For these reasons, simplified treatments in
the adiabatic or in the sudden tunneling approximations
are often used [4]. The adiabatic formula is applicable if
the motion of the macroscopic degree of freedom is ex-
tremely slow compared with that of the internal degrees
of freedom [5—7]. This corresponds to cases where the
excitation energies of the internal motions are very high.
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In the opposite limit, where the tunneling motion is very
fast or where the internal states have an almost degener-
ate spectrum, the so-called zero point motion formula is
applicable and gives a clear understanding of the effects
of channel coupling in terms of the barrier distribution
[4,8—13].

In most of the realistic cases, however, it is important
to take deviations from these limits into account in order
to quantitatively estimate the tunneling rate. In previous
papers [5,6], we developed formulas to handle deviations
from the limit of adiabatic tunneling by introducing the
concept of the mass renormalization [5] or the dynamical
norm factor [6]. In this paper we consider nearly sudden
tunneling, where the tunneling process is fast, and dis-
cuss how the formula for the tunneling probability in the
sudden tunneling limit is modified by the Rnite excita-
tion energy of the environment. This study is especially
important to analyze recent data of heavy-ion fusion re-
actions, where the excitation energy of nuclear intrinsic
motions is small, but not negligible [14,15].

In Sec. II we derive the zero point motion formula for
the tunneling probability based on the influence func-
tional method [4] without assuming particular properties
for the environment. This is an alternative derivation
to Ref. [8], which used a Green's function method. In
Sec. III we derive a formula for the barrier penetrability
which modifies the zero point motion formula by tak-
ing the finite excitation energy of the environment into
account. The path integral method is superior to the
Green's function method, because it enables us to use a
time-dependent perturbation theory in order to discuss
the effects of the finite excitation energy. In Sec. IV we

apply our general formulas to particular examples, i.e.,
to the problem of a linear oscillator coupling and to that
of a rotational coupling. These examples help us to un-
derstand the physical meaning of the modi6cations. The
finite excitation energy leads to a kind of dissipation fac-
tor multiplying the zero point motion formula for the
tunneling probability in the sudden tunneling limit. The
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dissipation factor suggests that not only the ratio of the
time scales of the environmental and the tunneling mo-
tions, but also the properties of the coupling form factor
govern the validity of the sudden tunneling approxima-
tion. We apply our modified formula of the tunneling
probability to calculate the fusion cross section between
&48, x52Sm and 0 and between ~ Pt and 60. We sum-
marize the results in Sec. V.

II. CENERAL DERIVATION
OF THE ZERO POINT MOTION FORMULA

We assume the following Hamiltonian for a system con-
sisting of a macroscopic motion R and an environmental
degree of freedom (:

8
H(B, () =—,+ U(B) + Hp(() + V(B,(), (I)

h2 0
Hp(&) = —2D~, +Up(&) .

M and D are the masses for the macroscopic and in-
ternal, i.e. , environmental, motions, respectively. U(B),
which we call the bare potential, is the potential in the
absence of coupling between the macroscopic and inter-
nal systems. Hp(() is the Hamiltonian for the internal
motion, and V(B, () is the coupling Hamiltonian.

In the path integral formalism, the S matrix of the
transition from an initial position R, on the right side of
the barrier with initial internal state n; to a final position
Rf on the left side with final internal state nf is given
by [4]

S„,„,. (E) =
1/2

I
R, ~~ (M2)

Ry —+ —oo

where the Green's function for the internal motion along a given path R(t) obeys

ih —u(R, t) = [Hp(() + V(R, ()]u(R, t),~ 0
(4)

with u(R, t = 0) = l. In Eq. (3), E is the total energy of the system, and P; and Pf are the classical momenta at B;
and Bf, respectively. Sq(B, T) is the action for the macroscopic motion along a path R(t) and is given by

S, (R, T) = Ct[-,'MB(t)' —U(B(t))] .

In many situations, we are interested only in the inclusive process. In that case, the barrier transmission probability
is given by

P(E) = ) .IS-, ,-; I'

(ijh) ET dT e (i/h) ET
R' (M') p 0

Ry m —oo

»jPM R t, Z' R g, Z'

The effects of the internal degree of &eedom are here included in the two time influence functional pM, which is
defined by

~M(R(t)»R(t) T) = ).(u'lu (B(t) T)luf)(uxlu(R(t) T)lu*) . (8)

We assumed that the energy dissipation is small compared with the total energy and that the potential energy is
independent of the channel at Rf. We thus took Pf outside the sum over the final states. Note that the summation
over the final states in Eq. (8) can be performed by choosing any convenient complete set.

Let us now introduce the sudden tunneling approximation. In this limit, the excitation energy of the internal
motion is set to be zero. Hence we discard Hp(() in Eq. (4). The time evolution operator u can then be solved as

u(R, t) = exp
l

—— dt' V(R(t'), () l

0

If the coupling Hamiltonian V(B, () does not contain the conjugate momentum operator of (, the time evolution
operator u is diagonal in the coordinate space of the environmental degrees of freedom. Denoting the eigenvalue of (
by x, the two time influence functional therefore takes the form
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OO T T

pM(R(t), T; R(t), T) = dx~(xnan, )] exp —— dt V(R(t), x) — dt V(R(t), x)
—OO 0 0

(10)

Inserting this expression into Eq. (7), the inclusive barrier penetrability in the sudden limit is found to be

P(E) = dx~(x~n;) ~' lim
R~ ~oo ( )Ry —+ —OO

(i/h) RT

x VB t exp i A,

T 2

dt[-', MR' —U(R) —V(R, x)]

dx~(x~n, ) ~'Pp(E, U(R) + V (R, x)),

where Pp(E, U(R) + V(R, x)) is the barrier penetrability across a one-dimensional potential barrier U(R) + V(R, x)
when the energy is E. This is a general expression of the zero point motion formula. This approach clearly shows
that the weight factor in the zero point motion formula is given by the square of the ground state wave function of
the environmental degrees of freedom, which was found in Ref. [8] for special environments.

III. EFFECTS OF FINITE EXCITATION ENERGY

In this section, we discuss the efI'ects of a small but finite excitation energy of an internal motion on the tunneling
rate. We treat Hp((), which was neglected in the previous section, by a perturbation theory. To this end we first
introduce the interaction representation defined by

u (R, t) = exp
~

— dt' V(R(t'), () ~
u(R, t),

('
(h p

Hp(R, () = exp
~

— dt' V(R(t'), () ~ Hp(() exp
~

—— dt' V(R(t'), ()
(

(5 p p
' ) (14)

Equation (4) for the time evolution of the internal motion then leads to

ih u(R, t—) = Hp(R, ()u(R, t) .
Bt

The first order solution of this equation reads

t
u" (R, t) =1+ —. td'H (pR( 't), () .

LA 0

If we denote the intrinsic state at the initial time t = 0 as n;, then the first order solution of the internal wave function
in the coordinate representation at time t is given by

(xlu(R t) ln') = exp
~

—— «' V(R(t') *)
~

i
p

( t'

x 1+ — dt' exp
ih p (h p

(dt" V(R(t"), x) H (x) exp —— dt" V(R(t"), x) (x~n;) . (17)

t

Note that the second derivative operator in Hp(x) operates on both exp —
& jp dt" V(R(t"), x) and (x~n;). Equa-

tion (17) therefore becomes
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(xlu(R, t)ln, ) = exp
I

—— dt'V(R(t'), x)
I (xIn;)

& e
' )

x 1+ —. dt' ih
2D

„0 V(R(t"), x) 1 ' „BV(R(t"),x) )
Bx2 2D

&&
Bx )

ih
+e, +—

exp
h 0

„BV(R(t"),x) d(xIn;) 1

Bx dx (xIn, )

dt V(R(t'), z)
I (zIn;) exp

I

——e, t
I

(18)

1 ', ih
X exp — dt'

0 2

„„ol'V(R(t"),x) 1 ' „BV(R(t"),x) i
Bx 2D l o Bz )

ih
+D

„„OV(R(t"), ) d(xIn, ) 1

Bx dx (xIn;)

where e, is the eigenvalue of Ho for the initial internal state n;. By a procedure similar to the one used to obtain
Eq. (12), the barrier penetrability is found to be

where E, = E —e; and

P(E) = dxI(xIn;) I
Po(E, , U,@(R,z)), (2O)

, O'V(R(t'), x) 1 ( ', BV(R(t'), x) i
Ox' 2D l o Bz )

ih
U,~(R, x) = U(R) + V(R, x) +

2 0

ih '„,BV(R(t'), z) d(zIn;) 1
D 0 Bz dx (xIn )

2
ih dR' O'V(R', x) 1 dR' &V(R', z))

(dR') gx2 2D (d&') gx )
ih d(xIn;) 1 dR' BV(R', x)
D dz (*In') R, ('„",') ax

(21)

(22)

The time dependence of the macroscopic coordinate R in Eq. (22) is obtained by evaluating the integrals over the
path and the time in Eq. (7) in stationary phase approximations for each value of x:

dB 2—[E, —U,g(R, z)] . (23)

The sign in front of the square root was chosen to be consistent with Eq. (3), which corresponds to the incident
beam from the right-hand side (rhs) of the potential barrier. Since U,fr depends on R(t), Eq. (23) should be solved
self-consistently. The velocity becomes imaginary in the classically forbidden region. If one keeps B to be real in this
region, Eq. (23) leads to an imaginary time. 'Ariting t = i7, ~ be—ing positive, the time evolution of R is given by

dB .dR 2= —i = — —[U,~(R, x) —E, ] .
d7. dt (24)

Consequently, the effective potential for B under the barrier reads

U,p(R, x) = U(R) + V (R, x) +

(
l2D

h d(xIn;)
D dz

ih d(xIn;)
D dx

dR' BV(R', x) ' dR' BV(R', x) i
R ( ') Bz ~ (,') Ox

1 ~ dR' OV(R', x) ih ' dR' 8 V(R', x)
(-I-.) -. (".".) ~* 2D -. (".",')

1 ' dR' OV (R', x)
(*In ) R, ("„",'') ax
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where Bo is the outer classical turning point. We have
separated the integral over R in Eq. (22) into that in the
classically allowed region between B; and Bo and in the
classically forbidden region between Bo and B. Equation
(25) shows that a channel coupling leads to an imaginary
potential in the classically allowed region. On the other
hand, it renormalizes the real potential in the classically
forbidden region.

Equations (20) and (25) hold in general as long as the
tunneling process is fast. We call Eq. (20) a revised zero
point motion formula. In the next section, we apply this
formula to two concrete examples. We thereby clarify the
physical meaning of the correction terms and the condi-
tions for the validity of the revised formula.

h' d' 1
Ho(() = — + D—~ ( (26)

V(R() = f(R)(,
where Ru and f (R) are the excitation energy of the os-
cillator and the coupling form factor, respectively. If the
initial state ~n;) is the ground state of the oscillator, as
in the case of heavy-ion fusion reactions, then

in Ref. [16] using the eikonal approximation to discuss the
effects of the finite excitation energy of the target nucleus
on heavy-ion fusion reactions. The internal and coupling
Hamiltonians for this system are

IV. EXAMPLES: PHYSICAL INTERPRETATION
AND APPLICABILITY

OF THE SUDDEN TUNNELING
AP PROXIMATION

A. Linear oscillator couple. ng

Let us first consider a linear oscillator coupling. This
system has been examined by Esbensen, Wu, and Bertsch

(x~n;) = (2vrno) '~ e (28)

where no ——gh/2Dur is the amplitude of the zero point
motion of the oscillator.

We can recover the earlier result of Ref. [16] as follows.
Provided that there is no excitation in the classically al-
lowed region, Eq. (20) becomes

P(E) =-
271 Ao

due ' o Po E, , U(R) + xf(R) — no —
qR, f(R')

Ro

" da'
isa ~

f(R')
Ro L a~ J

where E, = E —zku. Equation (29) coincides with Eq. (32) in Ref. [16] if the classical velocity in the tunneling
region can be approximated by

dR
d7. [U(R) + xf (R) —E. ], (30)

although this does not satisfy the self-consistent relation (24).
In this system the efFects of the finite excitation energy can be cast into a more transparent form. To this end, we

start from the general first order perturbation expression for the inHuence functional. From Eq. (19), it reads

pM(R(t), T; R(t), T) =
2vrno2

OO R2
z[A+A'+(B+B')~] (C+C')~ —

2 cu(T —T)

dt f (R(t)), A = —— dt f(R(t)), (32)

dt
t T t

dt' f(R(t')), B = —— dt dt' f(R(t')),
0 o

T 2 2 . T 2 t
dt o

i

dt' f(R(t') ) ~, C = —— dt dt' f(R—(t') )~ E, (34)

Using the Gauss integration formula

—[aa +(b+c)x] (b+c) /4a (35)

(2bc+c )/4a d
—(a~ +be)

) (36)
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Eq. (31) becomes

l ~(R(t)»R(t) T) = pM(R(t) T'R(') T»- (37)

with

p~~(R(t), T; R(t), T) =
27l cxo —oo

~(A+A )

and

[2(A+A )(B+B )~+(B+B ) ~ ]~ /& (&+& )~ ——'~(T —&)

Here p~ is the inHuence functional in the sudden tunnel-
ing limit and y is the correction factor due to the finite
excitation energy ~. If we assume a constant coupling
form factor, i.e. , f (R) = I", then y becomes

~~i~(T T) I' (—„o ) —~ca(T T)—(40)

up to the first order of Lu.
The parameters T and T in Eq. (40) are integration

variables in calculating the tunneling probability based
on Eq. (7). They turn out to be the tunneling time in
semiclassical evaluations of the integrals over the path
and the time. Denoting the tunneling time by To, we
obtain [17]

(41)

where Ps(E, ) is the transmission probability in the
limit of sudden tunneling with energy E, ~ = E —2'.
Equation (41) clearly shows that the finite excitation en-
ergy of the environment leads to a kind of dissipation
factor which reduces the barrier penetrability estimated
in the sudden limit.

Note that the tunneling probability in the limit of sud-
den tunneling is given by an average of the tunneling
probability over a distribution of potential barriers [see
Eq. (12)]. In deriving Eq. (41), we assumed that a com-
mon tunneling time exists for all the barriers. This is the
case in the constant coupling model if one can approxi-
mate the potential barrier by a parabola. In general, one
should calculate the penetrability according to Eq. (29)
or modify Eq. (41) by taking the variation of the tunnel-
ing time into account for different potential barriers.

We can derive &om Eq. (41) an interesting conclusion
concerning the validity of the sudden tunneling approxi-
mation. The tunneling time To can be approximated by
vr/0, 0 being the barrier curvature of the bare potential
U(R), if the coupling is not too large. Therefore Eq. (41)
implies that the applicability of the sudden tunneling ap-
proximation is governed by two parameters. The one is
the ratio of the energy scales for the intrinsic and the
macroscopic motions, si„——ur/O. In other words, it is
the ratio of the time scales of the tunneling motion and
of the intrinsic motion. The other is the ratio of the
coupling strength to the curvature of the bare potential
barrier, s2„——I"no/hO [6].

02
E 10'

10
O 10"
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1 0-2
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10
c 100
cn 1 0-5
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Ec m

-U 0 (MeV)

FIG. 1. Excitation function of the fusion cross section for
Sm + 0 scattering. A linear oscillator coupling is as-

sumed. The energy is taken relative to the height of the bare
potential barrier. The dotted and dashed lines are the fusion
cross section in the absence of channel coupling and the re-
sults of the exact numerical solution of the coupled-channels
equations, respectively. The thin solid line was obtained by
the zero point motion formula. The thick solid line was calcu-
lated with Eq. (41) by taking the dissipation factor due to the
finite excitation energy of the intrinsic motion into account.
See text for the values of the parameters.

We now apply our results to heavy-ion fusion reactions.
Figure 1 shows the excitation function of the fusion cross
section in the reactions between Sm and O. We chose
this system in order to illustrate the effect of a typical
vibrational coupling. The same system was previously
studied by Esbensen, Wu, and Bertsch [16]. In this case,
the first excited state of Sm gives ~ = 0.55 MeV. The
bare potential is assumed to be a parabolic function with
curvature hO being 3.5 MeV to mimic realistic heavy-ion
fusion reactions. The value of o.o was estimated to be
0.0636RT, Rz- being the radius of Sm, based on the
B(E2) value for the transition f'rom the first excited 2+
state to the ground state in Sm. We assumed the
charge radius parameter to be 1.2 fm. In heavy-ion col-
lisions, the coupling form factor f(R) consists of nuclear
and Coulomb parts. We determine them following the
collective model. In our applications, we further assume
a constant coupling model [6,18] and replace f (R) by the
value at the position of the potential barrier, E = —15.5
MeV/RT. We plot the fusion cross section calculated
by several methods as a function of the energy relative
to the height of the bare potential barrier. The dotted
line is the fusion cross section in the absence of chan-
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nel coupling. The dashed line shows the results of the
direct numerical solution of the coupled. -channels equa-
tions. The thin solid line was obtained by the zero point
motion formula. It clearly overestimates the fusion cross
section compared to the exact coupled-channels calcula-
tion (dashed line). The thick solid line was calculated
with Eq. (41) by taking the disaiJ)ation factor due to the
Gnite excitation energy of the intrinsic motion into ac-
count. We observe that it reproduces very well the results
of the exact coupled-channels calculations. Note that at
low energies the dashed and. thick solid. lines are indistin-
guishable. Because of the effects of multiple reflection,
our simple formula (41) does not work near the fusion
barrier. This is because the tunneling time To cannot be
determined unambiguously if multiple reHection plays a
significant role.

B. Rotational coupling

We next consider the eKects of coupling of the relative
motion to the rotational motion of a static quadrupole

deformed nucleus. If we assume axial symmetry and in-
troduce the no-Coriolis approximation [19—21], the inter-
nal and. coupling Hamiltonians for this problem are given
in the rotating frame by [8]

(42)

V(R, 0) = 5
PP2(cos 0)f(R),4' (43)

where Q, P, and f (R) are the moment of inertia for the
rotational motion, deformation parameter, and coupling
form factor, respectively.

The initial wave function in this problem is given by

(OiT),;) = Y()o(O) . (44)

The inclusive tunneling probability up to the erst order of
the excitation energy of the erst excited 2+ state, E2+ ——

6h2/2g, is obtained as

P(E) = f dB)Yss(B)~ Ps E, U(R) y Rf(R)Ps(c—cs())

3 . &1 "dR'
Pf(R—')P2(cos0) — E2+ ~

— —
&&, Pf(R')—sin 0 cos 0 (45)

We assume that there is no excitation in the classically allowed region.
Similarly to the case of vibrational coupling, the eKects of the finite excitation energy of the rotational motion can

be expressed in terms of a dissipation factor on the penetration probability in the limit of sudden tunneling. The
equations corresponding to Eqs. (31)—(34) in this problem read

pss(R((), T; R((), T) = f dB~Yss(B)~ s '(' ' )( + ')

x(1+P2(cos0)(B+ B*)E2+ + sin 0 cos 0(C+ C*)Ez+)

dx e ~ l[1+b(3x —l)E2+ + cx (1 —x )E2+],
0

(46)

(47)

with

—Pf (R(t)) (4S)

4 Pf(R(t))
5

T
B= —— ct' —Pf(R(t'))

4~

—Pf(R(t'))
l

5

—Pf(R(t')) ~

5

—Pf (R(t'))4'
c = (C+C*) .

(
dt i

——
o ( n o

~ T ~ t
B = —— dt

I

—— dt'
)r). ()

c = —— dt
i

——
i

—— ct'
() ( 2)

)3q(
2) ( h ()

a = (A+ A*)/2, 6 = (B+B*)/2,

(49)

(50)

(53)

(54)
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Using

f
1

a(3~' —1)

0
1

4 a(3x —1)

0

a(3x —1}
)

t'—
~

e" — dx e ~"-'l ~,6a ( o )
1 2 1 t'2

e ——e
6a 2a

(55)

(56)

the inQuence functional can be rewritten as

with

pM(R(t), T;R(t), T) = 1 —
~
be e, ~

E,*, p'M(R(t), T,: R(t), T) e
~

—e, ~

e"E,*, ,
f 3bec c l . s — - (b c

6a 12a2) q2a 12a2)

pM(R(t), T;R(t), T) = a(3x —1) (58)

pM is the in8uence functional in the sudden tunneling limit. We now assume a constant coupling form factor, i.e. ,
f (R) = I". Following the same procedure used to go from Eq. (38) to (41), we obtain

( 1 PEE*—ToT E* T (P(E) = 1-- —'e " '
P&(E) — " 'P,... E- PS—

3 h 5 6h )
(59)

An equation similar to Eq. (41) can be obtained by
noticing that the penetrability in the sudden approxima-
tion and the bare penetrability are related by

5 P2y 2T2 q
Pg(E) =

i
1 e —

i
Pb „(E) (60)

5 l & 2 5
Pb „E— pF = exp —

I

—— p+To ~ Pb ..—(E)4 ) ( 5 4

in the case of weak coupling. Equation (60) is obtained
by expanding the exponential on the rhs of Eq. (58) up
to the second order of the coupling strength a. Moreover,
we can write

s,„=E2+To/6,
5 P+To/&—

4m

(64)

(65)

They correspond to the parameters 81„and s2 in the
case of vibrational coupling. Since (3+2—1) and x2 (1—x2)
vary between —1 and 2 and between 0 and 4, respectively,
Eq. (47) suggests that our perturbative procedure works
only when the following conditions are satisfied:

difference is the factor of 5 in the exponent, which origi-
nates from the difference of the original coupling matrix
in the two cases.

The conditions for Eq. (59) to be a good approxima-
tion can be expressed in simple terms if one introduces

(61)

if the incident energy is well below the barrier. We then
obtain

isi„s2,
i
(( 1,

1».ls'. «4.
Equations (60)—(63) further require

(66)

(67)

5 2P2T3
P(E) = 1 ——E2+

l

" . ' e&(&')
I

Ps(E)

(62)

2

4 (
exp " ' P.(E) .

15 ( h ) h

(63)

This corresponds to Eq. (41) in the previous subsection
for a vibrational coupling. Note that the dissipation fac-
tor in Eq. (63) has the same dependence on various pa-
rameters as that; for the oscillator coupling. The only

(68)

Let us now use our formulas for rotat;ional coupling
to describe heavy-ion collisions. Figure 2 shows the fu-
sion cross section in the reaction between Sm and 0
as a function of the bombarding energy relative to the
height of the bare potential barrier. Sm is a typi-
cal deformed nucleus with prolate shape. The excitation
energy of the erst 2+ state E2+ of this nucleus is 0.12
MeV. The deformation parameter P was estimated to be
0.3 from the B(E2) value for the transition from the first
excited 2+ state to the ground state. The bare poten-
tial is assumed to be a parabolic function with curvature
AO being 3.5 MeU as in the case of the collision between
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FIG. 2. Excitation function of the fusion cross section for
Sm + 0 scattering as an example of rotational coupling.

The meaning of each line is the same as in Fig. 1 except
that the thick solid line was obtained with Eq. (59) instead
of Eq. (41).

~48sm and ~60 in Fig. 1. The coupling form factor E
was chosen to be —22.16 MeV. This is the value of the
sum of the nuclear and Coulomb coupling form factors of
the collective model at the position of the potential bar-
rier. The meaning of each line in Fig. 2 is the same as in
Fig. 1, except that the thick solid line was calculated with
Eq. (59). The condition (68) does not hold in realistic
heavy-ion reactions, because the deformation parameter
is too large. Hence one should use Eq. (59) rather than
Eq. (63) for quantitative estimation of the effect of the fi-
nite excitation energy. By taking into account the eBect
of the finite excitation energy, the results of the exact
coupled-channels calculations are well reproduced.

As an example of the rotational coupling for an oblate
nucleus, we next consider the reaction between Pt and

O. Although Pt lies between the p-unstable and rigid
rotational limits in the interacting boson model [22], we
assume that Pt has a static oblate shape. The defor-
mation parameter P, coupling form factor I", and excita-
tion energy of the first 2+ state E2+ of Pt are obtained
as —0.2, —26.7 MeV, and 0.3 MeV, respectively. Figure 3
shows the fusion cross section as a function of the bom-
barding energy relative to the bare potential barrier. We
used the same bare potential as in Fig. 2. The meaning of
each line is the same as in Fig. 2. We again observe that
the results of the exact coupled-channels calculations are
reproduced very well with our formula (59) except for the

near-barrier region where we must consider the eÃect of
multiple reQection.

Before we conclude this section, we would like to men-
tion the role of high-lying states in our calculations. We
derived our formulas (41), (59), and (63) by assuming
that the vibrational excitation and the rotational band
are not truncated at any excited states. Therefore, in
order to be consistent, one has to perform the coupled-
channels calculations and the calculations of P~(E) by
including all the members of the vibrational or rotational
excitations which significantly aKect the barrier penetra-
tion.

In the example shown in Fig. 2, the contribution from
the 6+ and the higher states is negligible. Accordingly,
the coupled-channels calculations and the estimate of
P&(E) have been performed by including up to the 4+
member of the rotational band. This was essential to
obtain a good agreement between the calculations of our
revised zero point motion formula and the exact numer-
ical solutions of the coupled-channels equations. The
situation is similar in the case of the vibrational cou-
pling discussed in Fig. 1 and for the oblate deformation
in Fig. 3, though in these cases the contribution from the
two-phonon state and from the 4+ state is less important.

In order to see the contribution &om the second ex-
cited states, Fig. 4 shows the ratio of Pg(E) for the s-
wave barrier penetrabilities calculated by truncating at
the second and first excited states. The solid, dotted, and
dashed lines correspond to the cases of Figs. 1, 2, and 3,
respectively. We see that the second excited states con-
tribute significantly, especially at low energies [21]. These
ratios were calculated by the zero point motion formu-
las corresponding to each truncation [9]. Integrals over
the internal coordinates are thus replaced by the Gauss-
Hermite quadrature or the Gauss quadrature for the vi-
brational and rotational coupling cases, respectively. The
exact coupled-channels calculations almost converge at
the first excited state. This would seem to indicate that
the second excited. and higher excited states do not af-
fect the tunneling probability. Our calculations show,
however, that this convergence is caused by the cancella-
tion between the additional enhancement of Pg (E) due to
the second excited state and the eKect of dissipation dis-
cussed in this paper. Accordingly, if we estimate the re-
sults of the coupled-channels calculations and the Ps (E)

1 Q2

10'E

o 10
~ 10'

CO

cn 1Q2

10
C3c 1Q0
v) 1Q5

10 -10 -8 -6 -4 -2
Ec ~ -Up (MeV)

FIG. 3. Same as Fig. 2, but for Pt + 0 scattering.
Pt is assumed to have a static oblate shape. The meaning

of each line is the same as in Fig. 2.
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FIG. 4. Ratio of Ps(E) for the s-wave barrier penetrabil-
ities estimated by the zero point motion formula truncated
at the second and first excited states. The solid, dotted, and
dashed lines are for the systems in Figs. 1, 2, and 3, respec-
tively.
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by including only up to the erst excited state, then our
revised zero point formula does not agree with the result
of the exact coupled-channels calculations. This example
shows that one should study the convergence with respect
to the role of high-lying states of the environment based
on the zero point motion formula without including the
effects of dissipation.

V. SUMMARY

We derived a new formula for the barrier penetration
probability for a nearly sudden quantum tunneling. It
modifies the so-called zero point motion formula by tak-
ing the effects of a Bnite excitation energy of environ-
ments into account. Our formula is applicable to a very
wide range of problems without requiring specific proper-
ties for the environmental degrees of freedom. Moreover,
the formula can be applied to cases where the initial state
of the internal motion is not necessarily in a given state,
but is distributed over a number of possible states as in
the case of thermal equilibrium with a heat bath. The
formula keeps the intuitive structure of the zero point
motion formula in the limit of sudden tunneling. We
used the inHuence functional formalism in the path inte-
gral approach to derive the general formula and showed
that the weight factor there is given by the eigenfunction
of the internal, i.e. , environmental, Hamiltonian.

Using the examples of linear oscillator coupling and ro-
tational coupling, we showed that the effects of the Bnite
excitation energy can be represented by a dissipation fac-
tor which reduces the barrier penetrability estimated in
the sudden tunneling approximation. We also discussed
the applicability of the sudden tunneling approximation
and showed that it is governed by both the ratio of the
time scales in the internal and tunneling motions and the
coupling strength.

There are many interesting applications of these formu-
las. One of them is the problem of the barrier distribution
in heavy-ion fusion reactions [23]. The finite excitation

energy will affect especially the barrier distribution asso-
ciated with a nuclear surface vibration, because in many
cases the excitation energy is not negligible compared
with the curvature of the fusion barrier. As we men-
tioned in the Introduction, the fusion reaction between

Ni and Ni, where the important role of two-phonon
states in the barrier distribution has been claimed [14], is
one of such systems. Another example is the fusion reac-
tion where a light deformed nucleus is involved. The fu-
sion reaction between Si and Sm recently measured
at Canberra [15] is an example. The large excitation en-
ergy of the rotational band of light deformed nuclei will
require one to take the finite excitation energy into ac-
count in determining the barrier distribution.

Another interesting application of our study is scatter-
ing problems [24]. We can derive a similar formula for
the S matrix, which modifies that in the limit of sudden
approximation. Light could be shed on the threshold
anomaly of the optical potential in heavy-ion collisions
discussed in Ref. [25] and the problem of excitations of
valence electrons in Auger transitions of atoms [26] by
using such a revised zero point motion formula for the
scattering matrix.
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