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Nuclear structure efFects of the nuclei ' ' Dy at high excitation energy
and large angular momentum
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Using the finite-temperature Hartree-Pock-Bogoliubov formalism we analyze the properties of
the nuclei ' ' Dy at the quasicontinuum region from I = 05 to 70h and excitation energy up
to approximately 16 MeV. We discuss energy gaps, shapes, moments of inertia, and entropy among
others. The role of shape Huctuations is studied in the frame of classical statistics and we find
large efFects on several observables. A very rich structure is found in terms of excitation energy and
angular momentum.

PACS number(s): 21.10.Re, 21.10.Ky, 21.60.Jz, 27.70.+q

I. INTR.ODU CTION

The experimental analysis of discrete p rays has led
in the last years to a renaissance of nuclear structure
physics. Many new phenomena have been discovered,
challenging both experimental and theoretical physicists.
The next challenge, however, is to come in the near future
when the new crystal ball detectors are in full production.
This will be, probably, the era of the quasicontinuum, the
10 MeV broadband over the yrast line. We have obtained
an indication of the phenomena to be discovered there
with the example of the damping of rotational motion
[1,2]. But many others, such as shape changes and the
superfluid-normal fluid phase transition, are expected
the most interesting ones will be unexpected, though.

The study of the quasicontinuum is dificult from the
theoretical and from the experimental point of view. On
the theoretical side we do not know much about this
region (see [3,4] for recent reviews on hot nuclei). We
do not know, for example, the level densities, the or-
der of magnitude of the reduced matrix elements for
transition probabilities, the relevance of the residual in-
teraction beyond the mean field, etc. The high level
density, on the other hand, allows the introduction of
a temperature concept to perform calculations with the
grand canonical ensemble within the mean-field approx-
imation. So far, most of the temperature-dependent cal-
culations have been done within the Hartree-Fock (HF)
[5,6], Hartree-Fock-Bogoliubov (HFB) [7], and Woods-
Saxon plus Strutinsky methods (see [8] and references
therein). These approximations have been generalized
to high angular momentum for separable forces (pair-
ing plus quadrupole) type [9—ll] and the Woods-Saxon
potential. We lack, however, calculations with effective
forces (Skyrme-like) at high angular momentum. Re-
cently, the Landau theory of phase transitions [12,13] has
been also applied to the study of nuclear properties.

Finite-temperature (FT) mean-field calculations have
been done for several nuclei, and there one finds sharp

phase transitions in spite of the finite size of the atomic
nuclei. It was soon recognized [14], however, that the in-
clusion of fluctuations around the self-consistent mean-
field solution would wash out these phase transitions.
The fluctuations are included within the framework of
classical statistics; since they are very CPU-time con-
suming, there are few such calculations. There are some
calculations [15,16] but to date we do not have any sys-
tematic study. The interesting question remains whether
the experimentalists have found some hints about these
phase transitions or some remnants of it in cases where
they are smeared out. Recently, the collective E2
strength in the quasicontinuum has been measured in Ar-
gonne [17,18] for the nuclei Dy, s4Dy, and i Dy at
diferent energies. They found a distinctive spectrum in

Dy which they interpret as caused by the large Huctu-
ations expected in a smeared-out shape transition. The
purpose of this paper is to make a complete study of these
nuclei up to high excitation energy and large angular mo-
mentum using the FTHF and FTHFB approximations
and the Hamiltonian of pairing-plus-quadrupole model.
A first analysis of these nuclei has been performed within
the Landau theory by Alhassid [19]. These nuclei are
transitional and we expect, therefore, fluctuations around
the self-consistent minima to be important even at very
low temperatures. At zero temperature we have quantum
fluctuations; at nonzero temperature we have in addition
thermal fluctuations. To consider both of them in real-
istic calculations is for the moment nonfeasible besides
the fact that at moderately high temperatures we expect
thermal ones to play the fundamental role. Thermal fluc-
tuations in the collective parameters were first considered
by Moretto [14] (for the pairing gap parameter) and later
on for the shape parameters by several authors [20,21].
We shall include the last ones in our study.

The magnitude of this project together with the suc-
cess of separable forces makes it necessary that we per-
form our study with the pairing-plus-quadrupole force.
This force has been widely used, especially within the
configuration space and parametrization of Baranger and
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Kumar [22]; it has been also used at high spin [23,24] and
finite temperature [9,11] with considerable success. Sep-
arable forces, however, have never been used to describe
superdeformation, a shape that has been measured in
the Dy region [25]. Although we are not primarily in-
terested in this work in the description of superdeformed
shapes, in order to be as realistic as possible, we tried
to generalize this model to include the superdeformed
minimum. We have tried straightforward changes: in-
cluded more shells, shifted single-particle levels, changed
the force constants, etc. We have not been able, however,
within the philosophy of the Baranger-Kumar model to
describe the shape coexistence that appears at Dy.
This is a nonexpected aspect of the separable forces and
we believe that more work in this direction should be
done. It does not appear so surprising, however, when
one thinks that in the Landau theory of Alhassid et al.
they do not obtain superdeformation, either, if they stop
the expansion in the shape parameters at the quartic or-
der.

The paper is organized as follows. In Sec. II the under-
lying theory is examined. In Sec. III the numerical results
are discussed, in Sec. IIIA the self-consistent solutions
and in Sec. IIIB with the inclusion of fluctuations. The
paper ends with the conclusions.

II. THROB.Y

as the thermal average

(ot, c )z (~,n )z
& (~' ~' )~ (~ ~' )~ ) ' (4)

where the index m labels the states of the conBguration
space; in the particle basis it has the form

—K 1 p ) (5)

The relation between both bases is given by the Bogoli-
ubov transformation

o. = ) Ul, cq+ VA,. cI, .t
k

(6)

The matrix elements of the matrix 'R are most easily
evaluated in a basis of operators o. , o.~ in which the
operator K of Eq. (3) is diagonal. In this basis the ma-
trix 'R is also diagonal, its matrix elements being the
quasiparticle occupation numbers; they are given by [4]

-)t
rn +1

In an arbitrary basis, we obtain for the quasiparticle den-
sity matrix

1
~~(v +1 ~

The mean-Beld approximation has been used in nearly
all microscopic investigations of states near the yrast
line [26,23,24], where it works very well. The extension
to Bnite temperatures likewise has been very successful
[27,9—11].

To derive these equations [4] one resorts to the varia-
tional principle of maximum entropy, which means that
we have to maximize the entropy S under the constraint
of constant average values of the energy E, particle num-
ber N, and angular momentum J. This is equivalent to
the minimization of the thermodynamical potential

O(A, (u, T) = E —A1V —(u J —TS, (1)

with the Lagrange multipliers A, u, and T determined
by the average particle number N, angular momentum
J = (J )z = QI(I + 1), and energy E. These quantities
are the ensemble average (thermal average) defined by

the supermatrix K being given by [4]

z(") z(-)
~(20)~ I( (11)e ) (9)

1 1E [74] = Tr(ep) + —Tr(l p) ——Tr(A~*),
2 2

with the average field

~kk' — +kl' k' l Pl l'

ll'

K~i ~ and K~ ~ are the matrices representing the ll and
20 parts of a one-body operator in the quasiparticle basis.

Now we are in position to calculate the expectation
values appearing in Eq. (1). They can be evaluated with
the Wick theorem; they turn out to be a functional of
the density

(&)~ = T(D&) (2) and the pairing Beld

with 0 an arbitrary operator and D the density oper-
ator. In the mean-field approximation this operator is
approximated by

kkI — Vkk' ll' l l'-
l&k'

(12)

Do =
Zo

Before we can apply the variational principle, we also
have to express the mean-Beld approximation for the en-
tropy S in terms of the density 7Z; it is given by [4]

where K is the most general Hermitian single-particle
operator, to be determined by the variational principle,
and Zo is the partition function.

In mean-field theories knowledge of the density matrix
allows the evaluation of expectation values. The single-
particle density matrix 'R in the HFB theory is defined

S['R] = —Tr(VZ ln 7Z) = —Tr [p ln p + (1 —p) ln(1 —p)] .

(13)

Once we have expressed all quantities entering into (1) in
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terms of the matrix density we can apply the variational
principle to determine the density 'R. The result is

Using classical statistics, therefore, the ensemble aver-
age of an observable 0 is given by

1'R
ex/T + 1

(14) f O(n;I, T) e & ' i~ D[n]

f D [~] e F(n—;I,T) /T

where

with

e —A+ I' —~j, BE'
(16)

in order to calculate the HFB wave functions

is a generalized single-particle operator depending on the
density: 'R = 'R(7Z) and E' = E —AK —w J. That means
that in the stationary system the operator K characteriz-
ing the statistical operator in the mean field is just given
by the Hartree-Fock-Bogoliubov (HFB) approximation to
the many-body Hamiltonian. We, therefore, have to solve
the temperature-dependent HFB equations

with O(o. ; I, T) the thermal expectation value of the op-
erator 0 calculated for the system with the deformation
n [see Eq. (2)] and D[a.] is the volume element in defor-
mation space.

Two volume elements have been used in the past in
the numerical applications. The first one takes into ac-
count all five quadrupole degrees of freedom n2~ [12,13];
the volume element is given in this case by D[n]
Q„da2~ ——P l

sin 3pldPdpdA. If the fiuctuations in the
orientation of the nucleus are not considered, dO must
be omitted. The second approach [20,21] starts from the
intrinsic system point of view, taking into account only
the fluctuations associated with the (P, p) degrees of free-
dom; the volume element is given by PdPdp. Goodman
[29] has performed model calculations with both metrics.
Theoretically, the phase space associated with the five de-
grees of freedom is more appropriate. In the calculations
of this paper we use D[n] = P4l sin 3pldPdp.

The standard deviation of 0 is given by

— 2
o (0) = (AO)' = O2 O (22)

and the densities

p = UfU" + V*(1 —f)V
K = UfVt + V*(1 —f)U

The reduced transition probability Q(E2) along a, ro
tational band from initial state I to final state I —1 is
given by [30]

B(E2,I -+ I —2) = ) p, l(ilQ, 2li)l'

p(n I T) oc e (2o)

with I (n;I, T) = E(o.;I,T) —T S.

where f and 1 —f, as mentioned, are the eigenvalues
of 'R. Equation (17) is usually solved by an iterative pro-
cedure which provides us with the self-consistent solution
characterized by p and K. In the mean-Geld approxima-
tion the single-particle degrees of freedom are fully taken
into account by their own ansatz and the collective ones
by the breakdown of the rotational invariance in the space
associated with the corresponding symmetry, i.e. , defor-
mation with coordinate space and the particle number
with the associated gauge space. If we denote our collec-
tive parameters by o., we can conclude that the solution
of the HFB equations is given by p(o.o) and r(no)

To go beyond mean-field theory we have to take
into account, at zero temperature, quantum fluctuations
around the mean-Geld values. At finite temperatures we
have, in addition, statistical (or thermal) fiuctuations,
i.e. , the incoherent averaging over many single-particle
densities based on mean Gelds with diferent deformation
parameters o.. According to Landau [28] the probability
for a certain value o, of the deformation is characterized
by the free energy E(n; I, T) of the system with this av-
erage deformation o. ,

(23)

p; is the thermal occupation probability of configuration
i and Q2 2 is the ll part of the quadrupole operator
Q2 2 in the quasiparticle representation.

For a realistic evaluation of the diferent observables
entering into the electromagnetic decay of a hot nucleus
we use the configuration space and the effective interac-
tion of Kumar and Baranger [22]. The basic ingredient
of the Hamiltonian is the pairing-plus-quadrupole force

H = e ——y) Q2„Q2„—GpPI Pp —G~P~P~, (24)

where e are the spherical single-particle energies, Q2~ are
the quadrupole operators symmetrized with respect to
the Goodman symmetry [31],and the operators P~ (P~)
create proton (neutron) Cooper pairs. The configura-
tion space contains the spherical oscillator shells with
the principal quantum numbers N = 4 and 5 for pro-
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tons and N = 5 and 6 for neutrons. The force con-
stants y, G~, and G~ and further details can be found
in Ref. [22]. The single-particle energies, with the excep-
tion of the mhq~y2 level which was shifted in 0.1 MeV—
as recommended in Refs. [32,33] —were also taken from
Ref. [22]. Concerning the adequateness of the Baranger-
Kumar configuration space at large angular momentum
and high excitation energy, it has been shown by Good-
man [34] that for temperatures below 1.0 MeV and small
spins the space is big enough. Above 1.5 MeV one should
add the vriiay2 and vji5y2 levels of the upper shells. At
large angular momentum and high temperature there is
not a systematic study; however, since we are mainly
interested in the quasicontinuum region (which usually
corresponds to temperatures below 0.8 MeV), we do not
expect that the inclusion of these levels would afFect our
main conclusions.

In the actual calculations we proceed as follows. First
the cranked finite-temperature Hartree-Fock equations
are solved for fixed temperature and angular momentum
by minimizing the grand potential

A(I, T) =E —AK —ur J —TS, (25)

with the parameters A and ~ determined by the con-
straints

(%)T = No, J = (J )z = QI(I+ 1), (26)

with No the proton (neutron) number.
To take into account the fluctuations around the values

(Po, po) of the self-consistent solution we now minimize
the O(I, T) for constant values of (P, p). We have used a
grid of P values ranging from 0.05 up to 0.6, with a step
size of 0.05 and p values ranging from —60 up to 120'
with a step size of 10 . This provided us with surfaces
F(P, p; I, T) = E(P, p; I, T) —T S for fixed values of
(I, T) to evaluate the average values and the standard
deviation of any operator as given by Eqs. (21) and (22),
respectively.

III. B.ESULTS

In this section we present the results of two types of
calculations. The first one is based on the self-consistent
FTHFB approximation; i.e. , we take into account the
pairing correlations but we do not consider any type of
thermal fluctuations around the self-consistent minima.
In the second one we neglect the pairing correlations (i.e. ,
we solve the FTHF equations) but we consider shape
fluctuations in the way mentioned at the end of the last
section. We do not consider pairing correlations in the
calculation with shape fluctuations because in a study
over such a extended region in the E-I plane the CPU
time will increase beyond reasonable limits.

A. Self-consistent solution of the FTHFB equations

In Fig. 1 we show the internal energy as a function of
the temperature for constant I values; in this figure the
energy origin has been arbitrarily set for I = 2A, , T = 0
MeV. At low spins (I ( 205) we observe a rather sudden
increase of the energy, especially for Dy, for T ) 0.5
MeV. It has its origin in a combined effect of the pairing
collapse and temperature-induced shape changes, which
we will discuss in the following. At higher angular mo-
menta (I & 40h), the pairing energy is either zero or
very small and the centrifugal forces make it harder for
the temperature to change nuclear shape. As a conse-
quence, the curves in Fig. 1 for (I & 40h) are nearly par-
allel. From this figure one can find out, approximately,
the equivalence between energy and temperature.

In Fig. 2 we present contour plots of the self-consistent
gap parameter for constant temperatures as a function of
the angular momentum for the nuclei Dy, Dy, and

Dy. We observe a pairing collapse as a function of
the angular momentum (I = 18', 145, and 165 for neu-
trons, and 40h, 46h, and 426 for protons for the three
nuclei in the mentioned order) as well as a pairing col-
lapse as a function of the temperature (at T = 0.7, 0.6,
and 0.6 MeV for the neutron system and 0.9, 0.8, and
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0.7 MeV for the proton system in the same order as be-
fore). This twofold transition with growing temperature
and increasing angular momentum is in complete anal-
ogy to the transition &om the superconducting phase to
the normal conducting phase in a solid with increasing
temperature and with increasing external magnetic field.
These two phase transitions have been observed in ear-
lier calculations with similar results to ours [7,9,35,11]. In
mean-field calculations these phase transitions are very
sharp as in an infinite system. For a finite system, how-
ever, one does not expect such types of transitions and,
indeed, if one consider further correlations Rom a quan-
tum origin at zero temperature [36] and from thermal
types at finite temperatures [14,37,38] these transitions
are washed out.

In Fig. 3 we present the values of the p deformation
(lower panels) and P deformation (upper panels), in the
excitation energy (U in MeV) versus angular momentum
plane, found in the self-consistent FTHFB theory. In this
plot and in the following similar to this one, U denotes
the excitation energy above the yrast line. The gray scale
in each panel corresponds to values on the scale on the
right of the panel; thus, in the case of p it goes from
oblate shape, —60' in our convention (white in the gray
scale), to prolate shape, 0 (black in the gray scale).
Concerning the P scale, the white color is assigned to the
smallest and the black one to the largest value that ap-
pears in each panel and they may change from nucleus
to nucleus. This assignment is done in order to optimize
the gray scale for each case. The white lines indicate the
separation between each tone of the gray scale. These nu-
clei are in a transitional region, and the dramatic efI'ect of
the Coriolis force and temperature on the shape is clearly
displayed in this figure: The nucleus By is spherical in
the ground state (I = 0, T = 0); by slightly increasing the
excitation energy and the angular momentum it becomes
prolate and triaxial but for angular momentum around
14h it turns oblate while the deformation parameter P

Since in the PTHFB approximation we do not consider
shape Quctuations, we do not have p values extending to 120';
see below.

increases. The subtle interplay between pairing correla-
tions, deformation, and temperature can be observed at
spin around 8h. There, with growing temperature the
deformation parameter P increases instead of decreasing;
this is due to the pairing collapse that is taking place in
this temperature range.

The nuclei By are prolate deformed in the
ground state; here a transition to an oblate weak de-
formed state takes place at spin around 406 for By
and at spin around 60h for By. As mentioned in the
Introduction, with this Hamiltonian we are not able to
describe superdeformed shapes, in particular those exper-
imentally observed in is2Dy [25]. Since we do not look
at excitation energies higher than about 18 MeV, we do
not observe in any of the three nuclei the transition to
oblate noncollective rotation found by Goodman [15,16]
in the transitional nucleus Yb at energies above 25
1VjeV. Close to the yrast line we find in is2Dy and is2Dy
small triaxialities.

In Fig. 4 we show the self-consistent moment of inertia
defined by

as a function of the angular momentum for constant tem-
peratures; w is the angular frequency of Eq. (1). In tran-
sitional nuclei, like these under study, the moment of iner-
tia shows large variations which can be caused by shape
change, collapse of pairing correlation, or alignment of
particles. For smaH values of temperature and spin we
have pairing correlations, which produce the well-known
reduction of g in this region. For small temperatures we
find a steep increase in the moment of inertia between 10k
and 206,, which is known to be connected with the sud-
den alignment of a ii3y2 neutron pair. In the same way
the increase between 20k and 406 observed in Dy
is related to the alignment of a h&iy2 pair of protons.
For temperatures higher than 0.5 MeV and small spins
the pairing correlations are either collapsed or strongly
weakened and we observe an increase in g. At higher
temperatures and high spins we find values close to the
rigid moment of inertia which keep changing in corre-
spondence to the changing shape of the nuclei.

In Fig. 5 we show the entropy versus the temperature
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FIG. 3. Self-consistent P-p values for the nuclei Dy, Dy, and Dy as a function of the excitation energy and the
angular momentum.

for constant values of the angular momentum I for the
three isotopes. The dependence of the three nuclei is
rather similar; they clearly show two distinctive regions,
below and above about T = 0.7 MeV. Below this temper-
ature we observe, for constant temperature and decreas-
ing angular momentum, a decrease in the entropy. This
decline in the entropy is related to the pairing proper-
ties discussed in Fig. 2: Higher pairing means increased
order and smaller entropy. Above, let us say, T = 0.7
MeV, when the pairing correlations have vanished we
observe, again for a fixed temperature, the opposite be-
havior: For increasing angular momentum the entropy
decreases. This feature can be understood looking at
Fig. 3; if we concentrate, for example, on Dy, we see
that for fixed excitation energy and increasing angular

momentum the nucleus changes &om prolate deformed to
oblate less deformed, that is, an increase in the symme-
try (order) as we increase the angular momentum. This
increase in the symmetry again causes a decline in the
entropy.

B. Statistical Quctuations

As mentioned in the Introduction, at Gnite tempera-
ture the nucleus performs fluctuations around the most
probable configuration. The most relevant fluctuations
are those related to the collective degrees of freedom, i.e. ,
the shape parameters (P, p) —eventually the Euler an-
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gles and the pairing gap L. A microscopic calculation
taking into account all these degrees of freedom is not
within our capability, and so in this paper we shall con-
centrate in the role played by the shape fluctuations for
the three isotopes ' ' Dy. In the calculations that
follow we have neglected the pairing correlation, which
means that our results are based on the FTHF approx-

imation. If the nucleus performs fluctuations, we have
also to consider rotations around different axes. In a
calculation with fluctuations the key magnitude is the
free energy I'(P, p) because its exponential provides the
weight of each point (P, p) in the evaluation of expecta-
tion values.

To illustrate the situation we display in Fig. 6, as an

154

T=0.850 0

T=0.550
7
o Io

FIG. 6. Free energy for the nucleus Dy
at selected values of I (5) and T (MeV ) in
the P-p plane. The contour values are given
in MeV, the minimum corresponding to zero.
The step size is 1 MeV.

T=0.350 0
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example, contour plots of the free energy I" (P, p) for the
nucleus Dy in the (P, p) plane. We use the Hill-
Wheeler convention; p = —60 to an oblate shape that
rotates around the symmetry axis, p = 0 to a prolate
shape that rotates around an axis perpendicular to the
symmetry axis, p = 60 to an oblate shape that rotates
around an axis perpendicular to the symmetry axis, and

120 to a prolate shape that rotates around the
symmetry axis. The plots correspond to the following
(I, T) values: In the lower rom for constant temperature
T = 0.35 MeV and for values of the angular momentum,
from left to right, of I = 10h, 40k, and 60', in the middle
row for the same values of the angular momentum but
for T = 0.55 MeV, and in the upper row for T = 0.85
MeV. These spin values correspond, respectively, to val-
ues before, at, and after the phase transition has taken
place.

At T = 0.35 MeV and I = 10k, the absolute minimum
corresponds to a prolate shape (P = 0.3); we also find a
maximum close to the spherical shape and a local min-
imum at P = 0.3, p = 120 . If we concentrate on
the first column, we can observe the effect of tempera-
ture for I = 10h; by increasing temperature we find a
twofold effect, the softening of the surface in the p di-

rection (the local minima have been washed out) and
the shifting of the absolute minimum towards spherical
shapes. The effect of increasing the angular momentum
(we now concentrate on a row) is to inhibit rotations
around p = 120' (at this p value the rotational energy
calculated with the rigid moment of inertia is a maxi-
mum for constant P), the rotational energy driving the
system to slightly oblate-prolate shapes at low temper-
atures and to slightly oblate-spherical shapes at higher
temperatures as we would expect for a classical system.

In the first column of Fig. 7 we show the most proba-
ble deformation parameters P, upper part, and p, lower
part, in the plane excitation energy, and angular mo-
mentum for the nucleus Dy, calculated in the FTHF
approximation. These results are the equivalent of the
first column of Fig. 3; the only difference is that in this
figure, as mentioned, we have neglected the pairing cor-
relations. The main difference appears at low spin and
low excitation energies; here we find the nucleus to be
prolate deformed at variance with Fig. 3 where we find
it to be spherical. In transitional nuclei, obviously, the
effect of the pairing correlation may be very important.
At moderate excitation energies and high angular mo-
mentum we expect, however, the same results in both
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The free energy surfaces of Dy, Dy, and Dy, though quantitatively different, display in a unique way the important
physics at large spins and high excitation energies. For this reason, and in order to save space, we shall only display the one
for Dy. We will refer, therefore, to this figure to discuss global qualitative properties of all three dysprosium isotopes.



3092 V. MARTIN AND J. L. EGIDO

calculations. This is found to be the case, as can be seen
in the contour lines for P and p. The white band in the
p plot at I —26h is caused by an accumulation of white
lines, indicating a very sharp change in p. In the middle
column we show, for the same nucleus, the average values

P, upper part, and p, lower part, as defined in Eq. (21).
For small excitation energies, i.e. , in the vicinity of the
yrast line, we find, as expected, values of P and p very
similar to the self-consistent values P and p. At higher ex-
citation energies we find strong discrepancies, especially
in p; only close to the yrast line do we find values of p
near —60'. In general, we find extended regions of large
triaxialities especially at not very high angular momen-
tum; oblate or nearly oblate shapes are only found close
to the yrast line at high angular momentum.

Concerning the P values we find the effect of thermal
averaging smaller as compared with p; this can be eas-
ily understood from Fig. 6, where we see that the energy
surface is much softer in the p direction than in the radial
(P) direction. Another reason why the thermal averaging
on P is not as spectacular as with p is due to the fact that
in the range of temperatures in which we are interested
in the present paper, we have not reached yet the tran-
sition to P = 0. We also find that the average deforma-
tion, in general, diminishes when we increase the angular
momentum and/or the excitation energy. Last, in the
third column of Fig. 7, the standard deviation ir(P), up-
per part, and cr(p), lower part, as defined in Eq. (22), are
represented. We find large values of a (P), these values in-
creasing, obviously, with the temperature. For relatively
high constant values of the excitation energy and grow-
ing values of the angular momentum we find a decrease
of 0(P) due to the above-mentioned fact of the inhibi-
tion of rotation with large P values for p = 120 at large
angular momentum. As expected, at very low excitation
energies the standard deviation goes to zero. We also find
large values of o'(p), ranging from 0' to 60 . Similar re-
sults have been found by Goodman (see [3] and references
therein) for specific values of the angular momentum and
temperature. The standard deviation cr(p) grows with
temperature and diminishes with increasing angular mo-
mentum. This pattern can be understood by looking
again at Fig. 6, for example, at T = 0.550, for the three
values of the angular momentum. For I = 106 we find
contours between 1 and 2 MeV for p values ranging from
—60 to +120, for I = 40' the same contour goes from
—60 up to approximately 10', and for I = 606, however,
the same contour covers again the whole p range.

The calculations for the nucleus Dy show that, as
with the nucleus Dy, the self-consistent p degree of
freedom is much softer concerning the angular momen-
tum than the excitation energy. The mean-field predic-
tion for the transition to oblate shapes takes place in this
isotope at I —405, though some triaxialities remain at

In order to compare diferent plots of this kind one should
keep in mind that the gray tonalities are not absolute but
they are referred to the bar at the right of each figure.

higher angular momentum and low excitation energies.
The self-consistent P values in this nucleus are larger than
in Dy; the softness of the P degree of freedom with re-
spect to the spin and excitation energy dependence is, to
some extent, similar. The average p values, p, present
very extended regions of triaxial shapes; we find some
close to oblate shapes at low energies and around spin
values 50h, and 705. The average P values, P, are larger
and the surface stiffer against temperature changes than
in the i5~Dy nucleus. The standard deviations 0(p) and

a(P) display similar characteristics to the previous nu-
cleus.

Concerning Dy, we observe a consolidation of the
tendency found in the nucleus Dy; i.e. , the nucleus
behaves as a good rotor rather stiA against excitation
energy and angular momentum. We find p values close
to —60' only at the very high spins (I = 60h) and the
overall deformation is larger than in the previous nuclei.

In Fig. 8 we show, in the first column, the reduced
transition probability in the mean-field approximation
[B(E2)] [see Eq. (23)] for the nuclei is~Dy, i54Dy, and

Dy from top to bottom, respectively. In the ordinate
axis of each box we plot again the excitation energy and
in the abscissas the angular momentum. In Ref. [39] it
has been shown that at finite temperature the transition
probabilities behave like P cos (30' —p), which means
that the lines of equal transition probability are, in the
(P, p) plane, parallel to the diameter determined by the
p = —60 radius and the p = 120 one. The contour lines
are, therefore, straight lines parallel to this diameter; on
the diameter they are zero, taking growing values as they
move away from it. In Fig. 8 we clearly see how the col-
lectivity develops from Dy to Dy, both in intensity
and in extension in the (U, I) plane; the regions with
B(E2) —0 correspond to the ones with p —60 as can
be seen in Fig. 7 for the Dy case. In the second col-
umn the average reduced transition probability B(E2),
as defined in Eq. (21), is presented for the same nuclei
and in the same order as before. The effect of the ther-
mal fluctuations is an increase of the overall collectivity;
in particular for the regions of the (U, I) plane where we

get zero in the mean-Beld approximation we now obtain
about 110 W.u. for Dy, 140 W.u for i54Dy and 170
W.u. for ~56Dy.

In the third column of the same figure the standard de-
viations of the average reduced transition probabilities,
0 (B(E2)), as defined in Eq. (22), are depicted. Here
again large deviations, increasing from Dy to Dy,
are found. The pattern in all three nuclei is qualita-
tively similar; first, the horizontal contour lines at the
bottom, second, the perpendicular contour lines at mod-
erate and high spin, and third the maximum value of the
standard fluctuations are located at very small angular
momentum and moderate excitation energy. The hori-
zontal lines at the bottom represent the usual increase
in the fluctuations accompanying the increase of temper-
ature. The other two effects can be easily understood
considering the lines of equal transition probability as
described above and the free energy surfaces (Fig. 6). At
high spin (see the third column of Fig. 6) we have ex-
tended minima close to the oblate axis with small or no
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contribution to the B(E2); the lines with the largest con-
tribution are those far away &om the above-mentioned
diameter, but these lines look very similar for fixed an-
gular momentum and growing temperature. That means
that we expect the same values for o(B(E2)) for con-
stant angular momentum; i.e. , the contour lines will be
perpendicular to the spin axis. The behavior at small an-
gular momentum with growing temperature divers from
the high-spin one by the fact that temperature efkcts
are dominant. It is also easy to pin down: The increase
at small excitation energies we have already discussed;
the maximum in the standard deviation is reached by
temperatures high enough to make the Quctuations im-
portant but low enough that the shell structure is not
washed out. At higher temperatures the nucleus will be
driven to less deformed shapes (see the first column of
Fig. 6) with the corresponding decrease in the B(E2)
values.

In Fig. 9, last, we show in a similar display as in Fig. 8,
in the first column the self-consistent moment of inertia,
J', as defined in Eq. (27). In the three cases we observe

an accumulation of lines at low excitation energies due
to the alignment of particles in the vi13y2 and vrh11y2
orbitals. The self-consistent moments of inertia, again
in all three nuclei, are large for those parts of the (U; I)
plane where the shell effects are important (see Fig. 7); at
very high angular momentum and/or high excitation en-
ergies we get values close to the rigid moment of inertia.
In the middle column, the thermal-averaged moments of
inertia are displayed. The trend, as shown by the con-
tour lines, is also similar in all three nuclei: The largest
values are for small temperatures and medium angular
momenta; by increasing the excitation energy and in-
creasing or decreasing spins, g diminishes. That means
that, for constant energy (at not too high values) and
growing angular momentum, we expect g first to grow
and later on, for large enough spins, to decrease. This
behavior can be understood by looking at the free energy
of Fig. 6. I et us concentrate on the middle row of this
figure. Here we find, for I = 10h, , contour lines, with the
value 1, for example, populating the p = 120 axis. In
our convention the moment of inertia takes its smallest
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value at this axis. For I = 40h we populate mainly triax-
ial shapes; we expect, therefore, large moments of inertia.
For I = 60k we see the probability distribution centered
at p = —60', and somewhat smaller P deformation as
before; i.e. , we expect a decrease in the average moment
of inertia as compared with the previous case. In the
third column we present the standard deviations of the
moments of inertia. They are large and their behavior
can be understood by using similar arguments as those
used in the discussion of the two previous columns.

IV. CONCLUSIONS

values of I = 70h.
These nuclei are in a transitional region and one ex-

pects shape fiuctuations, both quantum and thermal, to
be important. At high excitation energies one expects
the thermal fiuctuations to be dominant. We have taken
them into account in the frame of classical statistics. We
have found a very rich structure in all observables as a
function of the angular momentum and the temperature.
In the mean-field approximation a sharp phase transi-
tion from prolate to oblate nuclei is found. The inclusion
of thermal fluctuations washes out the phase transition
already at a relatively low temperature.

We have performed a systematic study of the dyspro-
sium isotopes within the framework of the cranked Bnite-
temperature Hartree-Pock-Bogoliubov theory. We have
used the pairing-plus-quadrupole Hamiltonian and the
configuration space of Baranger and Kumar as well as
their force strengths. We have studied the quasicontin-
uum up to 16 MeV excitation energy and up to spin
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