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Extended random-phase approximation in a boson formalism with Pauli principle
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The random-phase approximation (RPA) is examined in a boson formalism and special attertion
is focused on the problem of the violation of the Pauli principle a8'ecting this theory. A mapping
technique is discussed and the boson image of a two-body fermion Hamiltonian is constructed.
Within the boson space so defined, an extension of RPA is proposed where structure and energy
of the ground state, as well as those of the one-phonon states, are analyzed with regard to the
role of the spurious components associated with a violation of the Pauli principle. A multistep
minimization procedure for the determination of a better ground state is also examined. Numerical
tests are performed within the Lipkin-Meshkov-Glick model.

PACS number(s): 21.60.Jz

I. INTRODUCTION

The random-phase approximation (RPA) is the sim-
plest theory of excited states of the nucleus which admits
the possibility that the ground state is not of purely inde-
pendent character but may contain correlations [1]. The
starting point for this theory involves expressing excited
states in terms of an operator that acts on the ground
state. After the derivation of exact equations for this op-
erator, two basic approximations are introduced in the
RPA [2]: (i) The operator is taken as a linear superposi-
tion of creation and anruhilation particle-hole (ph) pair
operators [taking a Hartree-Fock (HF) basis as a refer-
ence] and (ii) the RPA ground state is approximated by
the HF state in order to evaluate the expectation val-
ues of given operators in this ground state. The latter
approximation is usually called the "quasiboson approx-
imation" since, in the case of expectation values of com-
mutators of ph creation and annihilation operators, it
is equivalent to neglecting terms in these commutators
such that they become the commutators of boson opera-
tors. The quasiboson approximation is the basis for the
violation of the Pauli principle that affects this theory.

This problem has been treated intensively both in the
past [3—9] and recently [10—14]. On the one hand, at-
tempts have been made to avoid it completely by remain-
ing within the fermion space [5—13]. On the other hand,
the same problem has also been examined by reformulat-
ing the whole theory in a boson formalism by means of
mapping techniques [3,4,14]. The latter approach is the
one which has been followed in this paper.

In a recent paper [13], a fermion-type approach in-
spired by the "renormalized RPA" [5,6] has been formu-
lated and applied to the Lipkin-Meshkov-Glick model [15]
as well as to realistic forces of the Skyrme type. This ap-
proach, sharing similarities also with the "self-consistent
RPA" of Ref. [9], was meant to overcome the inconsis-
tency of the RPA described in the above point (ii) by
replacing the uncorrelated HF state with the correlated

ground state obtained as solution of the equations. How-

ever, approximations still persisting in the evaluation of
expectation values of some operators in this state have
maintained violations of the Pauli principle in the proce-
dure. In this paper, special attention has been focused
just on the problem of the violation of this principle
within the RPA.

We will begin by examining the problem of transferring
the description of a fermion system from a space whose
states are built in terms of ph operators acting on the HF
state onto a boson space whose building blocks are corre-
sponding boson operators. This will be done by following
the general lines of a mapping procedure which has been
used in the recent past both in the case of the correspon-
dence between collective pairs of fermions and bosons [16]
and in the case of the correspondence between clusters of
quarks and elementary baryons [17]. Within the boson
space so constructed, we will erst reexamine the deriva-
tion of the RPA equations and, then, we will take into
account the elimination of spurious components associ-
ated with a violation of the Pauli principle, both from
the ground state and one-phonon states. This analysis
will be supported by numerical tests performed within
the Lipkin model. Finally, a multistep minimization pro-
cedure for the determination of a better ground state will
be formulated and tested.

The paper is organized as follows. In Sec. II, we will
describe the mapping technique and derive the general
expressions for the one-body and two-body parts of the
boson image of a fermion operator. In Sec. IIA, we will

apply these to the case of a two-body fermion Hamilto-
nian. In Sec. III, within the boson space so constructed,
we will discuss the derivation of the RPA equations and
illustrate our procedure to go beyond this approximation.
In Sec. IV, we will study applications of this procedure
to the Lipkin model and we will compare our results with
the exact and the RPA ones. In this section also the mul-
tistep minimization procedure will be examined. In Sec.
V, finally, we will summarize the results and draw some
conclusions.
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II. MAPPING TEClHNIQUE

The subject of boson mapping for the study of nuclear
collective motion is extensively discussed in the literature
and for a thorough account we refer to a recent review
[18]. In our work, we will follow the notation of Ref. [4],
where the problem of ph excitations in closed shell nu-
clei has been examined on the basis of Marumori's boson

expansion method.
We assume a HF-like decomposition of single-particle

states into an occupied set at, denoted by Greek sub-
scripts, and an unoccupied set a~ with Latin subscripts.
We define the fermion-pair operators

which satisfy the commutation relations

[at,.„at ...] = [B,.„a ...] =0, (2a)

t Q[B at ]
—$ $ $ a at —h, ,a, a (2b)

They are such that

B IHF) =0,
where IHF) represents the HF ground state.

We now consider the set of fermion states

(7b)

I0)—:IHF), (4-)
Imini, m2n2, ..., mivn~) — 6 I0) . (7c)

lm, n, ) =a& . I0), (4b)

lmlni m2n2" mNnN) = a' .Io), (4c)

which we arrange according to a given order, for instance,
mq &m2 . . « m~ andoq &o2 & -. . &o~. The
inequality between any two of the particle or hole indices
assures these states to be compatible with the Pauli prin-
ciple. Moreover, they are orthonormal. We call S~ ~ the
space spanned by these basis vectors and define li) the
state among these which carries i ph excitations.

As boson correspondent of the operator (1), we define
the operator b~ obeying the commutation relations

We call s~ l the space generated by these states and li)
the state corresponding to Ii). States (7) form an or-
thonormal set. We remark that, unlike Marumori's pre-
scription adopted in Ref. [4], no antisymmetrization is
introduced here in the definition of these boson states.
The states of the space 8~ ~ are simply de6ned in terms
of products of boson operators b~ whose indices are ar-
ranged as in the fermion space S~ ~. This guarantees
that 8~ ~ spans the whole physical subspace. Compared
with the antisymmetrized definition, this has the advan-
tage of making simpler the use of the boson states and,
therefore, as we will see later, the use of the operator
projecting onto this subspace. Such an operator plays an
important role in the procedure discussed in this paper.

The boson image Ob of a given fermion operator Of can
be constructed step by step by examining the correspon-
dence between the spaces S~ ~ and 8~ ~ for increasing
values of ¹ The fermion and boson spaces being such
that

(ili') = (ili') = ~" (8)
[t ',.„t ' ...] = [b,.„b ...] = 0,

[ 1111'121& @12Q21 11111212 121 t22 t

(5a)

(5b)

the boson image at each N, Ob, can be simply de6ned
by the equality

(halo,'"'li') = (ilo,

and we also introduce a vacuum state IO) such that

6 IO) =0,

in analogy with the fermion case [Eq. (3)].
Let us then de6ne a set of boson states in a one-to-one

correspondence with the fermion ones (4):

or 0 & ~, ~' & Ã.
We notice that the simplicity of this condition as com-

pared to analogous conditions of previous mappings [see,
for instance, Eq. (34) of Ref. [17]]is just a consequence of
the elementarity of the fermion-pair operators (1) which
are mapped.

The simplest correspondence to examine is that at N =
1. By assuming Of to be Hermitian, one Ands
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with

0~~~ =a+) c (bt +b )+ ) d bt b

mcxm'e'
(loa)

= (oIOf Io) (lob)

c = (010fImn), (loc)

d = (mnIOf Im'n') —(0IOf10)8 b

The next case, at K = 2, leads to (by denoting for simplicity i—:(mn))

0& ——0& + ) e;„,(b, b, + b;, b;, ) + ) g,„.„., (b,
"

b, b;, + b, b, , b, , ) + ) f;„„„,b,. .b,. b, ,.b...

(lod)

(1la)
21 22 212223 21 22 2324

with

1
(ol0, I', z.) (lib)

gi~i»~ ((zs IOf Izzz2) bi~i3 (010f Iz2) 8., . (010fIiz)) ~ (llc)

fi i i i (( lz2z1 Of lzsz4) —b,„,(z210f Izs) —h;„, (zz I Of Izs) —b;„,(z210f Iz4)21222324

—h';„, (i&10fIi4) + (010f10)(b,„.,b;„., + 8,„,8',„., )]. (11d)

The correspondence can be studied further for any increasing value of N, leading to more complicated expressions
of the boson image.

A. Hamiltonian

We consider now explicitly a fermion Hamiltonian of the general form

1
Hy —— baba ab+ — Vab~da abada~ )

ab abed

where V b,d stands for the antisymmetrized matrix element of the two-body interaction. Within the HF-like decom-
position of the single-particle states defined at the beginning of Sec. II, we rewrite this as 14]

Hf = EHF + Hl1 + H22 + (H40 + H.c.) + Hg2 + (Hsl + H.c.) (13a)

where

EHF = (HFIHfIHF) = ) 6 + —) V is p,
CX '-p

Hzz = —) e G G +) e G R (13c)

Vmpnn am ac ap an )

cxpmn

1 t tH40 ——— g Vm pa a a ap,
cxpmn

(13e)
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1 10 = — V n„a a„a ap+ — +~p~gaga~a a~4 m n
mnpg cxPpb

(13f)

and

1 t t+31 — g Vmnnpam a~ an p + g +m~p& m ~ p n
mnpa mcxPp

(13g)

In Eq. (13c), e and e are the single-particle energies of occupied and unoccupied states, respectively. By means of
the procedure discussed in the previous section, we find as boson image of Hf (up to terms of second order):

Hb=EHF+) (e —e )bt b + Atm1~2~1m2 m1n1 m2~2

1+—
2

m 1 CX 1m 2 C12

m1~1m2~2

V. . . , (bt, ,bt, , +H.c.) +0(3) . (14)

This Hamiltonian divers from that of Ref. [4] by a factor of —in the last term.

III. RPA AND PAULI PRINCIPLE: OUR
PROCEDURE

The derivation of the RPA equations within the boson
formalism just illustrated can be carried out through a
few steps. Let us first define

I

—) and Iv) as the exact
eigenstates of the Hamiltonian Hg corresponding to the
ground state and to an excited one, respectively, i.e. ,

qt = ) X .bt. +) V .b .. (20)

With reference to the derivation of this expression re-
lating the energy of the one-phonon state qt

I

—), E„,with
that of the ground state

I

—), Eo, the RPA equations can
be constructed on the basis of two approximations. The
erst consists in writing the qt operator as

Hsl —) = Eol —) (15) To this operator one then associates, as an approximate
ground state, the state IRPA) defined by

Ht, lv) = E lv) . (16)
q IRPA) = 0 (21)

Moreover, let qt be an operator such that
and, as an approximate one-phonon state Iv), the state

lv) = q.'I-) lv)RPA = q.'IRP") . (22)

and also that

q I

—)=0. The orthonormalization of these states requires

By means of the previous equations one easily deduces
that

[q, qt, ] = ) (X X" —&" & ) = b'av

E- = (vlH~lv) = (—lq-H~q."I—) = (—I[q- [H~ q.']]I—)
+Ep (19)

Making use of the conditions (21) and (23) one finds, in

analogy with Eq. (19), that

E = (RPAlq„Hgq„lRPA) = (RPAI[q, [Hi„q„]]IRPA) + Eo (24)

where

Eo = (RPAIHglRPA) . (25)

The second approximation consists in inserting in Eq. (24) the boson Hamiltonian truncated at terms of second
order only [see Eq. (14)]. In this case, the double commutator at the right-hand side (rhs) of Eq. (24) reduces simply
to a number and precisely
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[q. , [II„q„']]= ).(e —..)[(X".)'+ (Y".)']+ ) V, „(X".X„;+Y".y„',)
maps

—) V „~(X Y„+Y" X„"). (26)

By minimizing this expression with respect to X and Y, under the condition (23), and so by minimizing the
one-phonon energy (24), one obtains the conventional RPA equations

( — )X +) V „X„—) V „Y„"= (E„—E, ")X"
py py

(27a)

( )y +) V y ) V X (ERPA ERPA)Y

py py

(27b)

lRPA) = ~e'l0), (28)

where JV is a normalization constant, l0) is the state de-
fined by Eq. (6), and

Besides the two approximations discussed so far, how-
ever, there is a further approximation, hidden in the first
one, which aKects these equations: the neglect in the
state (22) [or, similarly, in the condition (21)] of those
components which are "spurious" in that they do not cor-
respond to any fermion state allowed by the Pauli princi-
ple, on the basis of the correspondence between fermion
and boson spaces established in Sec. II. Such compo-
nents are more directly visible in the state lRPA) when,
as result of the condition (21), this state is written as [2]

particle or hole indices are components with no fermion
counterpart.

In the following, we will take the state lRPA), Eq. (28),
as a starting point and we will examine its structure and
its energy, as well as those of the onephonon energy
qtlRPA), by focusing our attention on the problem of
the elimination of these spurious components.

As has been stressed in Sec. II, 8( "~, where X
is the maximum number of ph excitations allowed by the
Pauli principle, is a boson space that spans the whole
physical subspace. This is the space within which the
mapped boson operators are de6ned. Therefore, in or-
der to project out the above spurious components from
ground and excited states, we act on these states with
the identity operator I of 8( "), giving rise to

S = —) ) Z .„,bt .bt~,
ma ~P

with, in terms of matrices,

(29)
and

lRPA) = IlRPA)

lv) = IqtlRPA) .

(31)

(32)

Z= —(YX ')'. (30)

Already in the S operator (29), in fact, terms with equal

In order to see in detail the results of these operations,
let us notice that the most general expression for the
operator I is

i = lO) (Ol + ) lmn) (mnl +
ml(m2 a1(a2

lmgng, m2n2)(mgng, m2nzl +

and, &om its action on the state (28), we obtain

ilRPA) =ill 1+~+ —~'+ . llo) =~(lo)+ I2)+l4)+ "+IN .„)) (34a)

(assuming that N „ is even, for simplicity), where

I2) =
m1 (m2, a1 (a2

G . . .(Z) lm, n„m~n, ), (34b)

l4) =
m1 (m2 (m3 (m4, a1 (a2 (a3 (a4

G. . . , . . . , (z)lm~n„m2n2, msns, m4n4)(4) (34c)
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with

] ]g{') &z& = ——
m1a1m2CX2 X t yt 2] i1~i1 i2 '2

(Z1,a2)

(34d)

(&,2,3,4)
G(4)

m1n1m2 n2 m3 CX37A4 CX4
M»

(&1 )&2 )&3 )&4 )

z. . . . zmi1 CX, 1 m;2 CX;2 mi3 Ck, 3 m;4 A;4 ) (34e)

and, in general,

(i,2, ...,2R)
(2R)
m, a, m, a, m, Ra, ~( ) =

(~1)&2) ~ ~ )~2R)

z» ~ » z i2R 1 i2R 1 ~2R a2R (34f)

In the last expression, the symbol P~. ' .'"'
. indicates the summation over the (2B)!terms obtained with the sets

(Z1)X2)-")X2R)

(ii, i 2, . . . , i2R) running through all possible permutations of (1,2, . . . , 2B). Moreover, we notice that the definition of
these coefficients G. . . , ... ,„,„(Z) only refer to indices mi ( m2 ( . ( m2g and ni ( nz ( . . ( n2R while,
for any other choice of these indices, their value is meant to be zero.

Similarly, for the state (32), we obtain

Iqt l»~) = ~l~t (Io) + 12) + 14) + "+ l~- )) = ~(~I) + ~3) + ".+ ~~-..—1)), (35a)

where

~1) = ) F ', , (X, Y;Z)~mi i),
m1) CX1

(35b)

13) =
m1 (m2 (m3, a1 (a2 (a3

(X, Y; Z) ~mini, m2(12 m3Ck3) (35c)

with

(o,x)

F", , (X, Y, Z)=X, , y ) Y", . ) G" (Z),
mp ) Ckp (i1,i2)

(35d)

{&,2,3)

F~,l, , (X,Y, Z) = ) X" G~
I (Z)

(~1)~2)~3)

mp)Ap

(O, X,2,3)

(X1,t2, 43,44 )

~(4) (z)
1] +i1 mi2 2 ~ 3 ~j3 j4 i4 (35e)

and, in general,

(R)Fm, a, m, a, ."m~a„(X~ Y) Z) =
(&,2, ...,R)

(4 4" &R)

X" . G~",—.'I . .. . (Z)

+) Y", ,
mp )Qp

(O, Z, ...,R)

(4] )42 ) ~ ~ ~ )'LR+] )

GI(R+1) (z )
] 2+ 2J~™R+] (35f)
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with the definition G~ l(Z) = 1.
Expressions (34) and (35) allow one to express the

states lRPA) and lv) as combinations of the basis states
(7) of s~~-"l. The knowledge of these combinations as
well as that of the matrix elements of H~ between these
states, as defined in the mapping procedure, makes pos-
sible the evaluation of the quantities

A

Kp ———) (a~ a —at a ),2 m=1

0
K+=) ata

m=1
(39c)

and

(~IHbl~)
(~l~)

(36) 0
K =(K+)t= ) at a (39d)

(RPAlHblRPA)
p

(RPA[RPA)
(37)

As results of the operations just illustrated, then, E and

Ep replace the quantities Z„, (24), and Ep, Eq.(RPA) (RPA)

(25), which have been introduced before in the deriva-
tion of the RPA equations. Differently from that case,
however, no special relation of the type (30) exists now
among the X, Y, and Z variables, the condition

Iq„lRPA) = 0 (38)

being not satisfied, in general. It is worth noticing that,

independently of this condition, states lRPA) and lv)
are always orthogonal due to their particular structures
shown in Eqs. (34a) and (35a).

The calculations which will be performed in the fol-

lowing will consist, first, in the minimization of Eo with
respect to the Z variables and, second, in the minimiza-
tion of E„with respect to the A and Y variables (the Z
variables needed in this case being those derived in the
first minimization). These calculations will refer to the
Lipkin model. Comparisons will also be shown with the
standard RPA and the exact results. Extensions of simi-
lar calculations to realistic cases will be discussed, then,
in Sec. V.

Of course, the energies Eo and E calculated above
closely depend on the form of the state (28) and this
state has a very restrictive ph dependence. In general,
this form (28) cannot be guaranteed as the most appro-
priate for the description of the ground state of the sys-
tem. Therefore, in the second part of this paper, we will
examine a procedure aiming at providing a more general
parametrization of the ground state.

A. Boson transformation

Because of the peculiarities of the Hamiltonian (39a),
it turns out to be appropriate to introduce the fermion-
pair operators

(4o)

in correspondence of which we define the boson creation
operator b~ . By following the procedure discussed in
Sec. II, we obtain, in correspondence to Hf,

Hb = ——0+~) b~ b (41)

and

Hb"l = 'n+.-)-bt b

--V ) (bt, b', +b, b, ) .
m1 fA2

(42)

and a (a ) are creation (annihilation) fermion opera-
tors. This Hamiltonian is associated with a system of
two 0-fold degenerate levels filled by 0 fermions. e can
therefore be seen as the difference between the Hartree-
Fock energies of these two levels and at (1 ( m ( 0)
creates a particle in the upper level while a creates
in the lower one. The interaction in Hy scatters pairs
of particles between the two levels without changing the
value of m which specifies the particular degenerate state
within the shell. For the Hamiltonian (39a), the static
Schrodinger problem can be solved exactly by using the
standard group technique associated with the SU(2) Lie
algebra of the operators Ko, K+, K

IV. APPLICATION TO THE LIPKIN MODEL

The model to which we will refer in this section, the
Lipkin model [15], serves as a standard test for many-

body approximations because of its simplicity and eKec-
tiveness. The Harniltonian of the model is

[Hf &']lo) = &' lo) (43)

In principle, in order to define the exact boson image
of Hf in the full space 8& ), one should construct up to

Hb . However, it is enough to observe that (if mi
m2 /ms)

where

Hy = ~up ——V(K+2+ K'),
2

[[Hf,B,],Bt,]lo) = —vlo),

[[IHx &-', ] &'.I &'.] = 0

(44)

(45)
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as well as

[H b' ]Io) = b' Io)

[[H&, b' ], b~ ] = —V,

[[[Hg„bt,],bt, ], b~ ] = 0,

(46)

(47)

(48)

H~ ——H~ = Hg.(&) (2)

Indeed, this boson Hamiltonian diagonalized in the basis

and that corresponding states have equal overlap [Eq.
(8)], to conclude that

the S( ) and 8( ) spaces. Terms up to Nthorder are now

necessary in the boson Hamiltonian in order to guaran-
tee the equality between the corresponding fermion and
boson matrix elements of these spaces. This is not the
case for the Hamiltonian (42) due to the special choice of
the basis (4) and (7) which allows an easier elimination
of spurious components associated with a violation of the
Pauli principle in the boson space. In the following, we

will also refer to some RPA calculations based on these
boson Hamiltonians of the literature.

B. Calculations with our procedure

In substitution of the operator (20), we simply intro-
duce here

(5Oa) qt =X) bt+I ) b;, (51)

in) = Af„
&1 &&2 &"' &&n

bt bt, bt i0),

I1) =w, ) b,'io),

(5Oc)

with X and Y real and where the index v has been sup-
pressed since we refer exclusively to the first excited state.
Similarly, we rewrite the operator (29) as

S=-Z) btbt. (52)

up to n = 0 and where Af = !
&,

l' ', gives rise to a
spectrum coinciding with that of the Lipkin Hamiltonian
(39a) in its largest multiplet [15].

The Lipkin model has been adopted, in the past,
as an ideal laboratory for boson mapping theories, be-
cause of its simplicity. Two examples of these map-
pings often quoted in the literature are those discussed in
Refs. [9,14,19] and are based on the Marumori [20] and
Belyaev-Zelevinskii [21] techniques. The boson Hamilto-
nians derived in these cases differ from (42) for two basic
differences: First, they are written in terms of a "col-
lective" boson bt and, second, they contain higher-order
operators. Concerning the first point, the difference be-
tween the bt operators defined in Sec. II and this bt

arises from the latter being associated with the fermion
Bt = g ~

Bt rather than with the single Bt . Higher-
order terms in these Hamiltonians correct, instead, for
the Pauli principle. In the Marumori case, for instance,
the origin of these terms can be easily observed by re-

peating the procedure of Sec. II with the only difference
consisting in the use of the Bt and bt in the definition of

By means of the unity operator [special case of (33)]

i = ) In)(ni, (53)

0/2

IRPA) = INe IO) = ) Z"G(n, Z)I2n), (54a)

where

G(n, Z) = F(n)
P"~' Z -F(n)

(54b)

and

(2n)! (54c)

Similarly, the excited state is

where In) is the state (50c), we construct the ground
state

where

0/2

l~) = &~'IRPA) = ) Z"G(n, Z) [I u(2n) I2n 1) + 2Cb(2n) I2n+ 1)]

By noticing that

o,(2n) = (0 —2n+ l)A,„',A',„,
b(2n): (2n + 1)JV2 +]JV2

(55b)

(55c)

(n~~H2~~n') = 6„„(——B+ n2) +8„„+2 —VW„N +~ 2~ „(2
+ 6, +2 N '+2(g

I '

(56)
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the energies Eo [Eq. (37)] and E [Eq. 36)] are now
ready to be evaluated.

The calculations which we are going to discuss consist
of, Erst, the minimization of Eo with respect to Z and,
then, by making use of the values of this variable so de-
rived, the minimization of E„with respect to X and Y.
These energies (in units of e) are shown in Figs. 1, 2,
and 3 for the cases 0 = 8, 14, and 30, respectively, as
a function of the interaction parameter I' = OV/e. In
each figure, the solid lines are the exact results while the
dashed ones refer to our procedure. In all three cases,
the Eo energy reproduces rather well the exact values,
some small differences appearing only with the increas-
ing of the interaction parameter F. A better agreement
is found for the E„energy, such that solid and dashed
lines are essentially overlapping in all three cases and for
the range of F shown. However, because of the behav-
ior of the exact energies of the ground and excited states
which tend to coincide as soon as F increases, Eo crosses
E at a critical F. The difference E —Eo is shown, with
a dashed line labeled 1 in Figs. 4, 5, and 6 for the cases
0 = 8, 14, and 30, respectively. In the same figures, the
solid line refers to the exact result and the long-dashed
one to the RPA result. The meaning of the other lines
labeled 2 and 3 will be discussed in the next subsection.

With reference to the RPA-like calculations [9,14,19]
based on the boson Hamiltonians discussed in the Gnal
part of Sec. IVA, we notice that no such crossing oc-
curs in these cases. For increasing 0, the above energy
difference tends torward a rather constant value which,
in the case 0 = 30, is around 0.3 in the range F = 1.6—
4.0. This refers both to the Marumori- and the Belyaev-
Zelevinskii-type Hamiltonians truncated at fourth order.
However, the absolute values of the energies of ground
and first excited states tend to diverge considerably from
the exact ones as soon as I' grows (still in the 0 = 30
case, for instance, it is Es, /e = —16.8 at E=2.0).

In Ref. [19], a ground state of the form (28) with an

7

o

—10
0.0 0.5 1,0 1.5 P, .O 2.5 3.0

FIG. 2. Same as in Fig. 1 for 0 = 14.

C. Searching for a better ground state

exponent S containing an additional term linear in the
boson bt besides the quadratic one has been examined.
However, a state of this type will not be considered here
due to its clear incompatibility with the Hamiltonian (42)
whose exact ground state carries only even powers of b~

operators.
With reference to the procedure of Ref. . [13], finally,

we notice that its results observed in the case of the Lip-
kin model exhibit a clear difference from those examined
so far in this paper. The energy difference relative to
first excited and ground states in the case of Ref. [13],
in fact, only deviates from the RPA one in the proximity
of the critical point F = 1 and, then, approaches zero
smoothly. In Figs. 4—6, instead, we have already seen
that the approximate energy difference is quite close to
the exact one up to values of F larger than 1 and, then,
approaches a point at which it becomes negative.

The results discussed so far depend, of course, on the
wave function adopted for the ground state. Our choice
(28), guided by the condition (21), was shown to be a

—4

o

—14—

—16—

—7
0

FIG. l. Energy (in units of e) of ground and first excited
states of the I ipkin model, as a function of the interaction pa-
rameter F = BV/e. The calculations refer to the case 0 = 8.
The solid lines are the exact results and the dashed lines are
the results obtained with the procedure illustrated in the text.

—20
0.0 0.5 1.0 1.5 2.0

FIG. 3. Same as in Fig. 1 for 0 = 30.

2.5
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0.2 0.2

0.0 '

0
0.0

0.0 0.5 1.0 1.5 2.0 2.5

FIG. 4. Energy (in units of e) of the first excited state of
the Lipkin model, relative to the ground state, as function of
the interaction parameter E = OV/e. The calculations refer
to the case 0 = 8. The solid line is the exact result, the
long-dashed line is the RPA result, and the dashed lines are
the results obtained with our procedure. For the meaning of
the symbols 1, 2, and 3, see the text.

~g.s.), = IN e '~*' * '~g. s.)i, (57)

1.2

1.0

rather good one in the cases just treated. However, this
form was not always found to be satisfactory. We will
investigate now how to search for a better form of this
wave function.

In the case of the Lipkin model, the exact ground state
of the Hamiltonian (42) is a superposition of 2 + 1 com-
ponents carrying &om 0 up to 0 particle-hole excitations.
The coefBcients attached to these components can be
determined by minimizing the expectation value of the
Hamiltonian in this state by considering the coefBcients
as independent variational parameters. The decomposi-
tion (54a) shows a dependence on only one parameter, Z,
of the above 2 + 1 coefBcients in the trial wave function
(31) we have used so far. In order to search for a better
parametrization of the ground state wave function, let us
introduce for it the more general expression

FIG. 6. Same as in Fig. 4 for 0 = 30.

where we have redefined, for convenience,

~RPA) = ~g.s.)i ——INie' ' ~'~ *' ~ ~0) . (58)

In these expressions, I is the operator (53) and Ni, N2
are normalization constants. The state ~g.s.)2 can be
decomposed as

with

A2„2 (2n)!
H(A) m) = Aq„2 m! (2n —2m)!

(59b)

and G(n, Z) given by (54b). This decomposition recalls
the previous (54a) with an important di8'erence being
that the 2 + 1 coeKcients depend now on two parameters
Zq, Z2 rather than Zq alone. If Zq is fixed by the mini-

mization of Eo(= Eo ) discussed in the previous subsec-

tion, minimizing Eo = 2(g.s.~Hs~g. s.)2 with respect to
Z2 can only gzve rase to an energy less or equal to Eo

~ ~ (~)

(corresponding to Zq g 0 or Z2 ——0, respectively). Since
the evaluation of Eo ) essentially requires knowledge of
the matrix elements

0/2

~g.s.)2 ——N2 ) ) Zi Z2 G(n, Zi)H(n, m) ~2n —2m),
n=o m=o

(59a)

(mme ~" * ' fm'), (60)
0.8

CO

p6
I

0.4

as well as of the matrix elements (56) of the boson Hamil-
tonian, it involves a numerical effort of the same level as
the evaluation of Eo(~)

Similarly, the state

0.2 -'z stt t
~g.s.)s ——INse ' ~*' ~ ~g.s.)2 (61)

0.0
0.0 0.5 1.0 1.5 2.0 2.5

FIG. 5. Same as in Fig. 4 for 0 = 14.

3.0
depends on the three parameters Zq, Z2, Z3. If Z~ and
Z2 are taken as those fixed through the minimizations
of Eo and Eo, respectively, also minimizing Eo
3 (g.s.~Hs ~g.s.)s is as diKcult as the previous ones. It only
requires complex conjugates of the matrix elements (60)
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TABLE I. Ground state energies of the Lipkin model (0 = 30) for difFerent values of the inter-
action parameter I" and at diferent levels n of approximation. Also shown are the corresponding
exact values. See Sec. IVC for details.

I' =1.4 I' = 4.2

1
2
3
4
5
6
7
8
9
10

~(exact)
0

@(~)
0

-15.90561
-15.92705
-15.94548
-15.95648
-15.96254
-15.96493
-15.96577
-15.96601
-15.96608
-15.96610
-15.96636

Z
0.337 x 10
0.762 x 10

—0.238 x 10
0.609 x 10

—0.145 x 10
0.310 x 10

—0.561 x 10
0.104 x 10

—0.161 x 10
0.280 x 10

@(~)
0

-22.64610
-23.22068
-23.22879
-23 ~ 23309
-23.23566
-23.23738
-23.23858
-23.23946
-23.24012
-23.24064
-23.24366

+n
0.519 x 10
0.203 x 10
0.985 x 10
0.234 x 10
0.559 x 10
0.150 x 10
0.382 x 10
0.108 x 10
0.285 x 10
0.832 x 10

~(n)
0

-31.80271
-32.38418
-32.43203
-32.45374
-32.46634
-32.47466
-32.48054
-32.48496
-32.48836
-32.49111
-32.51377

z
0.575 x 10
0.130 x 10
0.201 x 10
0.299 x 10
0.105 x 10
0.188 x 10
0.725 x 10
0.138 x 10
0.555 x 10
0.109 x 10

in addition to (56). Moreover, it is also in this case Eo
Eo . The procedure can go on similarly for ~g.s.) with(2)

n = 4, 5, ..., being, in general, true that

ig.s.)„=IN„e ~ "~*' "* '
i
g.s.)„

if n is odd [and ~g.s.)o = ~0)j, wh»e

n increases. As a numerical example, at 0 = 30, it isF„2.4 for n = 3 while F„1.4 for n = 1. Still at
0=30, n= 10, andF =40, itis ' ' = —056x10
that is, '& ' ——0.18 x 10, while the same quantities
for n = 1 are about 10 times larger.

~g.s.) = IN e' "~* * ' ~g.s.) (63) V. SUMMARY AND CONCLUSIONS

if n is even (n & 2). By minimizing Eo" with re-
spect to Z alone and taking the remaining parameters
Zi, Z2, ..., Z i as those which result from the previous
minimizations, one repeates an operation, as n grows,
always at the same level of difFiculty of the initial one
(n = 1), improving at each step the degree of approxi-
mation of the ground state.

We have performed some applications of the procedure
just described. In Table I, we show the ground state
energies Eo, with n ranging from 1 up to 10, which are
calculated in the case 0 = 30 and for F=1.4, 2.8, and
4.2. In correspondence to each n value, we also show the
values of the Z parameters calculated for each F. The
values Eo" exhibit, as n increases, a clear convergence
torward the exact value accompanied by a progressive
reduction of the parameter Z (to be read for n even and
odd. , separately). This is more evident as the interaction
parameter F gets smaller.

With reference to Figs. 1—3, it is clear from Ta-
ble I that, after a few iterations, exact and approx-
imate ground state energies become indistinguishable.
This was already the case for the energies of the first
excited state evaluated in the previous subsection and
the small improvement found by minimizing Ei oc

(g.s.~qIHqIqt~g. s.) with respect to X and Y, for n & 1,
cannot be appreciated in these figures. In Figs. 4—6, we

show the di6'erence E~ —Eo for n = 2 and 3. The
improvement is visible in these cases. Values of E, F„
still occur at which this difference becomes negative but
they are now larger as compared to those found at n = 1
and, moreover, this negative difFerence gets smaller as

In this paper we have examined the derivation of the
RPA equations in a boson formalism and addressed spe-
cial attention to the problem of the violation of the Pauli
principle which is inherent in this theory.

We have started by establishing a correspondence be-
tween a fermion space built in terms of ph operators Bt
acting on the HF state and a boson space built in terms
of b~ operators acting on their vacuum. This corre-
spondence has been conceived to guarantee each boson
state as a correspondent of a fermion state allowed by
the Pauli principle. We have then constructed the bo-
son image of a general fermion operator and focused, in
particular, on a two-body Hamiltonian.

The derivation of the RPA equations within this for-
malism has required, erst, constructing an expression for
the energy of the one-phonon state qt

~

—) and, second, in-
troducing two approximations: (a) a special form for the
qt operator as a linear combination of bt, b and (b)
a truncation of the boson Hamiltonian at terms of second
order. Besides these approximations, however, the pres-
ence of a further approximation has been pointed out,
consisting in the neglect, in the boson states involved,
of components not corresponding to any fermion state
allowed by the Pauli principle on the basis of the corre-
spondence between fermion and boson spaces discussed
above.

The erst problem which has been faced in this paper
has been that of the elimination of these components
from both the RPA ground state and the associated one-
phonon states. A projection operator has been intro-
duced with this aim and its action on the above states
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has been studied. New expressions for the ground state
and one-phonon energies have been, then, obtained.

In order to test our procedure we have applied it to the
Lipkin model. These quantities have been calculated and
compared with exact and RPA results. With respect to
the last ones, a clear improvement of the quality of the
results has been observed. Comparisons with previous
approaches have also been examined.

As a second problem, we have faced the search of a
better ground state. Having the vacuum of the q oper-
ator as a starting point, we have shown the possibility of
constructing new forms of the ground state characterized
by a wider parametrization. These forms have been ob-
tained via a multistep minimization procedure and their
energies tested at difFerent stages. A rapid convergence
toward the exact ground state energy has been observed.

Besides the spuriosity discussed in this paper and asso-
ciated with a violation of the Pauli principle, other spu-
riosities can occur which are associated with the breaking
of continuous symmetries of the Hamiltonian. An inter-
esting feature of RPA is that such spuriosities separate
out exactly and emerge as solutions of the equations of
motion with zero energy [1,2]. In the approach followed
in this paper, instead, this property does not appear to
hold. This problem is common also to other extensions
of the RPA such as a second RPA [1] or a generalized
RPA [22] and for a wide discussion of this point we refer
to Ref. [23].

The quality of the numerical tests carried out within
the Lipkin model encourages the extension of similar cal-
culations to more realistic cases. Compared with the cal-
culations performed in this paper, however, some modifi-
cations appear necessary in such situations. In the Lipkin
model, for instance, it has been possible to express the
exponential of the ground state (28) by its full power se-

ries expansion projected ontc the physical subspace 8~+~

[Eq. (46)], even for large values of 0 (0 = 30). In a
realistic case, instead, the complexity of all expressions
involved makes it unavoidable to introduce a truncation
in such an expansion at a value N of particle-hole excita-
tions smaller than the maximum allowed. This is meant
to make simpler both the application of the operator pro-
jecting onto 8( ) and the evaluation of matrix elements
of the boson Hamiltonian.

Also the boson Hamiltonian constructed as an image of
a general fermion Hamiltonian is not expected to trun-
cate exactly at second order as in the Lipkin case. As
a result of the above approximate form of the ground
state, terms up to N body are now expected to play a
role when evaluating the expectation value of the bo-
son Hamiltonian in this state. Therefore, being able to
take into account such terms, no further approximation
is introduced. However, a truncation of this operator at
some lower order could be required for values of N not
adequate.

Calculations similar to the previous ones, but work-
ing entirely in the fermion space, could also be at-
tempted. The problems connected with the truncation
of the Hamiltonian would not be present in this case.
On the other hand, the difBculty inherent in the use of
fermion operators B+ in place of b+ would imply a
truncation in the exponential of the ground state de6ni-
tively more severe than in the boson case. This appears
as a drawback especially in relation with the multistep
minimization procedure discussed in Sec. IV C. In fact,
this procedure gives a better description of the ground
state wave function when a larger number of particle-
hole components is involved. Work is in progress within
some simple realistic cases in order to perform a detailed
comparison between fermionic and bosonic approaches.
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