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Three-body halos. III. EB'ects of finite core spin
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We investigate eKects of finite core spin in two-neutron halos in the three-body model consisting
of tmo neutrons and a core. The states in the neutron-core subsystem can then have an additional
splitting due to the coupling of the neutron and core spins. The connection between the structure of
the total system and the states of the neutron-core subsystem depends strongly on this spin splitting.
However, the spatial structure is essentially unchanged. The neutron momentum distribution in a
nuclear dissociation reaction will consist of a broad and a narrow distribution arising from the two
spin split neutron-core virtual states. The large distance behavior is investigated and the conditions
for the E6mov e8'ect turn out to be more restrictive. The magnetic moment is equal to the core
value independent of spin splitting and energies of the neutron-core states. The excited states of
opposite parity depend strongly on the spin splitting. The parameters in our numerical examples
are chosen to be appropriate for Li and B.

PACS number(s): 21.45.+v, 21.60.Gx

I. INTRODUCTION

The existence of halo nuclei is by now established [1—3]
as weakly bound and spatially extended systems. A
rather accurate description is obtained by use of two- and
three-body models. Criteria for the occurrence of halos
and the related asymptotic large distance behavior were
recently discussed [4—7]. These investigations assumed
many simplifying approximations, which allowed extrac-
tion of general properties and therefore provided insight
into the general nature of such systems. Of particular in-
terest are bound three-body systems where furthermore
all two-particle subsystems are unbound. These so-called
Borromean systems [8] appear for a substantial range of
two-body potentials [9].

The nucleus Li has played an especially dominating
role in the developments. The approximate description
as a three-body system consisting of two neutrons outside
the 9Li-core was only recently suggested [10—12]. Since
then a series of improved calculations appeared, see for
example [8]. The most detailed and accurate of these
three-body computations are based on the Faddeev equa-
tions [13]. In spite of the large number of publications the
possibly significant consequences of the finite core-spin s,
has so far not been considered at all in three-body calcu-
lations. The neutron and the core spins can couple to a
total angular momentum of s + &, while the neutron-core
motion still remains in the same relative orbital state.

'On leave froxn the Kurchatov Institute, 123182 Moscow,
Russia.

If the interaction is independent of these couplings, the
structure corresponds to that of a spin-zero core. This is,
however, highly improbable considering the well-known
appreciable spin dependence both of the strong interac-
tion and of the observed bound states and resonances
throughout the periodic table. The states in neighbor-
ing nuclei like 8, N, and Li as well as computations
are in particular suggestive for a similar spin splitting in

Li, see [14,15].
The purpose of this paper is to investigate the conse-

quences of Gnite core spin for halo nuclei. The resulting
spin splitting is probably an important ingredient for un-
derstanding the relation between the ground-state struc-
tures of the neutron-core subsystem and the total three-
body system, e.g, Li and Li. Another efFect is that
the peculiar Efimov structure [16], which might show up
in halo nuclei, is hindered by the spin splitting of the
virtual s states. As in our earlier papers [4,6,7] we want
to establish the general features, qualitatively or quanti-
tatively as best we can, and apply the results on realistic
examples. We shall again for convenience assume that all
three particles are inert and all the core degrees of &ee-
dom are therefore frozen. We shall furthermore assume
throughout the paper that the total angular momentum
J for the ground state is equal to s and that the total
parity equals that of the core.

This paper is the third (after [6,7]) in a series of papers
discussing various aspects of three-body halos. After the
Introduction we sketch in Sec. II the general theoretical
method used to compute the properties of the three-body
system. The interactions between the difFerent two-body
subsystems are parametrized in Sec. III. In Sec. IV the
asymptotic form of the Faddeev equations is derived for
interactions causing the spin splitting and in Sec. V is
discussed the large distance behavior in connection with
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the Efimov effect. The resulting spatial structure and
the measured momentum distributions are discussed in
Sec. VI. Magnetic moment is investigated in Sec. VII and
excited states of 1 character on top of the ground state
in Sec. VIII. Finally we give a summary and the conclu-
sions in Sec IX.

II. METHOD

The Hamiltonian of the system, where the center-of-
mass kinetic energy is subtracted, is given by

tions must be chosen to describe correctly the asymp-
totic behavior of the wave function and in particular the
behavior corresponding to possible bound two-body sub-
channels. This is essential for low energies where the
correlations must be described very accurately. These
functions are now chosen for each p as the eigenfunctions
of the angular part of the Faddeev equations:

h2 1-A2@(') + ~.„(@(')+ C, (i) + C, (&)
)

3 2I=)
2m'i=i

P2

iII = ) @(*)(x,, y;). (2)

This three-component wave function is flexible and allows
a description of different three-body structures by means
of rather few angular momenta in each component. These
wave functions satisfy the three Faddeev equations [13]

(T E)@(') + ~.&g, (') + q(i) + y(A:)) —O (3)

where E is the total energy, T is the kinetic energy op-
erator, and (i, j, k) is a cyclic permutation of (1,2, 3).
Any solution to Eq. (3) is via Eq. (2) also a solution
to the Schrodinger equation, but the Faddeev equations,
which in practice almost inevitably appear as integro-
differential equations, are much better suited for descrip-
tions of delicate correlations.

Each component vP(') is now for each p expanded in a
complete set of generalized angular functions 4 '

(p, 0;).

where p ~ is the phase-space factor. The angular func-

where mi, ri, and p, are mass, coordinate, and momen-
tum of the ith particle, V;j are the two-body potentials,
P and M are, respectively, the total momentum and the
total mass of the system. We shall use the Jacobi coor-
dinates basically defined as the relative coordinates be-
tween two of the particles (x) and between their center of
mass and the third particle (y). The precise definitions
and the corresponding three sets of hyperspherical coor-
dinates (p, n, B,0„) are elsewhere defined, see e.g. [6—8].
Here p (= gxz + yz) is the generalized radial coordinate
and n, in the interval [O, vr/2], defines the relative size
of x and y, O~ and O„are the angles describing the di-
rections of x and y. One of these sets of hyperspherical
coordinates is in principle suKcient for a complete de-
scription. The volume element is given by p dO dp where
dO = sin icos o. do. dO~dO&.

The total wave function 4' of the three-body system is
written as a sum of three components each expressed in
terms of one of the three different sets of Jacobi coordi-
nates:

where (i, j, I(:) again is a cyclic permutation of (1,2, 3j
and A is the p-independent part of the kinetic energy
operator defined by

T =Tp+ —A,
h2 1 -2
2m p

h2 ( s(2 (9z 5(z 1 15)
2m ( (9p' p 4)p p

(6)

Explicitly the generalized angular momentum operator
A is given by

A
1 0 )2

sino! Coso! + 2 +
sin o. cos o. t9o. cos A

d

dp2

where the functions P and Q are the following angular
integrals:

p (p)—:) f dAo~'~'(p, ())—4~', ~(p, B),
i j=1

3 2

Q..(p) = ) .f ~&@."(p &) .c'.' (p ")
i,j=1 Op

in terms of the angular momentum operators l and L„re-
lated to the x and y degrees of &eedom. This procedure
is particularly convenient, since all angular variables are
confined to finite parameter intervals and therefore corre-
spond to discrete eigenvalue spectra. The idea, here ap-
plied to the Faddeev equations, was exploited previously
to solve the Schrodinger equation in atomic physics [17]
and recently also in studies of the triton [18].

The radial expansion coefficients f (p) are component
independent, since p is independent of which Jacobi co-
ordinates are used. Insertion of Eq. (4) into Eq. (3) and
use of Eqs. (5), (6), and (7) then lead to the following
coupled set of "radial" differential equations:
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Often very few terms of the expansion in Eq. (4) is needed
to get suFicient accuracy in calculations of the lowest-
lying states. On the other hand the method is not suited
for highly excited states where many high angular mo-
menta are needed in the expansion. Systems with many
crossings of the A values as function of p are also numer-
ically di%cult to solve accurately by this method.

III. TWO-BODY POTENTIALS

Loosely bound systems are mainly sensitive to the low-
energy properties of the potentials and we shall therefore
use relatively simple potentials reproducing the available
low-energy scattering data and still allowing extensive
three-body calculations. The neutron-neutron interac-
tion in the singlet s wave is assumed to be the same as
in Ref. [10], where the radial shape is a Gaussian. In the
extension to triplet p waves we include spin-spin, spin-
orbit, and tensor terms. The resulting potential is then

V„„= V + V„s„g.s„2+ VTSg2

+V, I„„.s„„ I exp[—(r/6„„)'],

where s ~ and s 2 are the spins of the neutrons, s
s ~+ s 2, and S~2 is the usual tensor operator. The four
strength parameters and the range of the Gaussian are
then adjusted to reproduce the following four scattering
lengths a and the s-wave effective range r, [19]:

a( So) = 18.8 fm, r, (iSo) = 2.76 fm,

a( Po) = 3.6 fm, a( Pi) = —2.0 fm, a( P2) = 0.30 fm.

(12)

s state, but could as well be important for the other par-
tial waves. Both the spin-orbit partners of higher orbital
angular momenta may be independently adjusted. These
effective potentials must take into account that the orbits
occupied by the neutrons in the core are excluded by the
Pauli principle. This is either done by choosing shallow
potentials unable to hold bound states or by considering
higher lying three-body states.

We first choose [10] V, = V„= —7.8 MeV, V, = 0,
and p, = 0, which results in a total binding energy of
0.3 MeV corresponding to Li. Maintaining this bind-
ing energy of the three-body system and varying V, and
V, , we obtain the curve in Fig. 1 relating the virtual s&y2
state and the p~g2 resonance in the neutron-core system.
When one of these states is very low the corresponding
component is dominating in the three-body wave func-
tion. The straight lines between the calculated points
are inserted to guide the eye.

The spin splitting is now investigated by varying p,
and V, while keeping the binding energy at 0.3 MeV and
V, at the values corresponding to the square and the
vertical line in Fig. 1. The resulting connection between
the virtual s states are shown in Fig. 2 for these two
cases. When the energy of one of the states increases the
other decreases due to the inherent coupling in the Fad-
deev equations. A finite p-state admixture (the squares)
increases the energies of the virtual s states to maintain
the total binding energy. In both cases the energy of
one of the spin-split virtual s states in the neutron-core
system may occur anywhere below 0.1 MeV.

The angular momentum dependence is now investi-
gated by using a d5/2 resonance instead of the pzy2 res-
onance in the neutron-core system. This might be the
relevant structure for B, where the B core probably
has an essentially fully occupied p shell. The total angu-
lar momentum of B is 3/2 which also is the expected

The resulting values are given by

V = 2.92 MeV, V„=45.22 MeV, VT ——26.85 MeV,
V, = —12.08 MeV, 6 = 1.8 fm, (13)

which by use in Eq. (12) leads to the proper low-energy
behavior both in the s wave and the three diferent p
waves.

The neutron-core potential, which also is assumed to
have a Gaussian radial shape, is directly related to the
resonances or virtual states in the subsystem. Their po-
sitions in energy are crucial in the computations and it
is necessary to be able to adjust s, p, and d waves inde-
pendently. We therefore use the parametrization

0)

Q)
V
K f
CO

0
(0
0)

CL

Q

Vi;i = V, (l + p, s, . s )exp[ —(r/6, ) ],
Vi,'i = (V) + V~'is„. 1„,)exp[—(r/6„) ], (14)

0
0

I

1 2
s„,virtuai level (MeV)

where l = 1, 2 corresponds to either p or d waves,
V„Vj,V, , p„and 6,(=2.55 fm) are constants and(~)

s, 8, and l~ are the spin of the core, spin of the neutron,
and the relative neutron-core orbital angular momentum.
The spin sphtting is for simplicity only introduced in the

FIG. 1. The relation between the virtual 8&/2 state and
the pz/z resonance for a total binding energy of 0.30 MeV.
The curve is obtained by varying V, and V,

' while keeping
V„= —7.8 MeV and p, = 0. The square, the diamond, and
the dashed lines (corresponding to the asymptotic values) in-
dicate points of interest in the following 6gures.
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value for B. This is consistent with l, = l~~ = 8~~ = 0,
which normally would be the state of lowest energy in our
three-body calculation. The two-neutron separation en-
ergy of B is estimated to be 500+450 keV, see Ref. [20],
and could in fact be anything below 1 MeV. Therefore
we vary the energy along lines relating the neutron-core
resonance energies by E(ds~2) = xE(s~~2), where x then
is a number between 0 and oo. Varying V, and Vp we
obtain the total three-body energy shown in Fig. 3 as a
function of E(sqy2) for several values of z. The p waves
are not included in the allowed configuration space. This
is equivalent to a choice of p-strength V„, which places
the p states at high positive energies. The spin orbit
strength V, = —10 MeV and the spin splitting param-

0.8 o- —o—

0.6

0)
X

0.4
Kl

LLI

x = 0.10~~ x=0.25
x =0.50
x = 0.75
x=1

0——0 x=2

0.2
zs

FIG. 2. The relation between the two virtual s states (total
neutron-core spin S„, = 1, 2) for a total binding energy of
0.30 MeV for I i. The curves are obtained by varying V,
and p, while the other interaction parameters are defined by
the points indicated in Fig. 1 by the vertical line (circles) and
the square (squares).

FIG. 4. The same as Fig. 2 for B. The parameters cor-
respond to the black triangles in Fig. 3 with the total energy
equal to 0.45 MeV and 0.75 MeV. (The curves are obtained
by varying p, .)

eter p, = 0 are kept constant in the calculation. The
starting point is V, = —7.87 MeV or V, = —7.40 MeV
corresponding to a virtual 8 state at 50 keV or 100 keV,
respectively. The total three-body energy decreases al-
most linearly with increasing resonance energies for all x
values and remains in all the cases considered within the
limits of the estimate.

The total binding energies for the black triangles in
Fig. 3 are around 0.45 MeV and 0.75 MeV. The effect
of spin splitting in the 8 state is now investigated by in-
creasing p, from zero while keeping the other parameters
at values corresponding to these points. The strengths
of the two potentials for a total spin of s, + 1/2 are pro-
portional to the related expectation values (1+p, s, .s ),
which, respectively, is 1 + p, s, /2 or 1 —p, (s, + 1)/2,
see Eq. (14). The effective radial three-body potential is
for small p a linear combination of these two two-body
potentials with their respective statistical weights and it
converges for large p toward the hyperspherical spectrum,
i.e. , values independent of the potential. This radial po-
tential is consequently almost independent of p, and the
resulting three-body energy is then also almost indepen-
dent of p, . The connection between the energies of the
two virtual 8 states corresponding to the spins s = 1, 2
of the neutron-core system is shown in Fig. 4 as a func-
tion of p, for interaction parameters corresponding to
the black triangles in Fig. 3. The qualitative behavior is
similar to that of Fig. 2, since the total energy remains
approximately unchanged.

0.0
0.0

I I I

0.5 1.0 1.5
s,» virtual levei (MeV)

2.0 IV. ANGULAR EIGENVALUE EQUATIONS
FOR 9 STATES

FIG. 3. The total energy of B as function of the en-
ergy E(sqg2) of the second virtual s state. The energy of
the d5/2 resonance in the neutron-core system is given by
E(ds~2, ) = zE(sz~2) where 2: is constant along the curves.
The parameters in the calculations are V, = —10 MeV and(~)

p, = 0 while V, and Vg are varied.

As seen from Eq. (8) the angular eigenfunction A(p) is
essentially an effective potential determined by Eq. (5).
The generalized angular functions 4(') (p, 0;) is a sum of
components with different angular momenta of the sub-
systems coupled to the total angular momentum. The
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(2)4'..+,/2(P, ~2) (,)+" X.sin 20;2 s +1/2 (16)

radial equations at large p do not couple neither these
components nor those belonging to diferent Jacobi coor-
dinates with the important exception of the states with
zero two-body orbital angular momentum. These s states
are often essential components in low-lying states of in-
terest and we furthermore only introduced the spin split-
ting in s states. We shall therefore first concentrate on s
states where the angular dependence in Eq. (4) is reduced
to contain only o..

The spin dependence of the ith component of the total
wave function in Eq. (2) is denoted y,', where s is the
intermediate spin obtained by coupling of the spins (s~.
and sg) of particles j and k. The spin s is afterward
coupled to s, to give the spin of the core s which in our
case equals the total spin of the system. For each channel
the aIlgular part can then be written as

C, (1)
( )

4p (pi ~l) (1)
(&)

p, 0,'I Xosin 20,'I

(2)
(2) ~s —1/2 (p' 2) (2)

(P ~2) =
sin 20!2

@(3)i i ~s, —I/2(P& 3) (3)
sin 20.3

(3)
~s +I/2(py c13) (3)+ ' . x,sin 20.3 '-+'j'"

where the channel i=1 is defined by x. between the two
neutrons and where P,

' is the spatial part of the wave
function related to y('). Since the total wave function
must be antisymmetric under interchanging of the two
neutrons we have P, I/2 ——P, 1/2 and P +1/2C C C

(2)
( s, +1/2
Substituting Eqs. (15)—(17) into Eq. (5) with i = 1, 2

and subsequent multiplication &om the left by

ii2, and y +I 2 we obtain the following set of equa-(2) (2)

tions for the functions Pp (p, oI), P, I/2(p, o.2), and
(2)4. +,/, (P, ~2):

&
2s»2~1 —&(p) I . +p v..(p»n~I) '. ' +&I " .

( 1 0 . - ) p,'(pnI) 2 . p,'(pnI) 4',. I/2(p 2)
SlI1 2CXI c)o!I slI1 2CXI SlIl 20!I sin 20,2

(&) (2)4'..+I/2(P ~2) 4., ,/, (P, ~3) 4. +,/, (P, ~3)
+C2 +( I

'
. —+C2 ' . =0, (18)sin 20.2 Sill 20!3 sin 20.3

(2)

2 sIn 2a2 A(p) I
. + p (X,. I/2lv„, (p sInn2) IX, I/2)

~s, —1/2(p' 2) 2 (2) . (2)
sin 2n2 Bnz j sin 2n2 C C

4'p (pi OI) ~s~ —1/2(p' 2) ~s —1/2(p& 3) ~s +I/2(p& 3)(I) ( ) (2) (2)

+ ' . +(-.3 '
. —C, . =0, (19)---2-, SlIl 20!2 SlIl 2Q!3 SIIl 20!3

(
(2)

~ ~"+I/2(P' ') 2 (2) (2)sin2o. 2 —A(p)
~

+ p' (x, +,/2lv-(p»n~2)lx. +,/, )sin 20!2 Bo!p j sin 2o.2 C C

Pp (P, nI) 4'..+I/2(P ~2) 4. ,/2(P, ~3) 4' + / (P ~3)(I) (2) (2)
X C2 +

sin 20!I sin 20.2 sin 20.3 Sin 2CI3
= 0, (20)
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where v;, (z) = V,, (x/a;, )2m/h2, a, g = [m, mg/
(m(m~ + mI, ))]i~2, A(p) = A(p) + 4, and where we used
that the neutron-neutron interaction (v = v2s) is spin
independent for 8 waves and that the neutron-core inter-
action (v, = vi2 ——vis) is diagonal in spin space. The
coeKcients C, , i=1,2,3,4 depend on the spin of the core,
and take the values

where we used the spin independence of the neutron-
neutron interaction. Equation (25) reduces for vanishing
core-spin 8 = 0 and spin independent interactions to
the usual small p expression, where only the sum of the
interactions enters, see Ref. [7].

(~) (2) (~) (~)i = (xo Ix.. ,g, ) = (xo Ix.. g2)

= —Qs, /(2s, + 1),

(xo IX,.+i)2) = (xo IX,.+i)2)
(~) (2) (~) (3)

= I("+1)/(2" + 1),
(2) (3) (2) (3)= (x.. ,g, lx. ,(,) = (x. ,],lx,

= —1/(2s, + 1),
(2) (3) (2) (3)= (x.. i(2lx..+i), ) = —(x..+,(.Ix.'. ,g, )

= V'4s-("+1)/(2s. + 1). (21)

Equations (19) and (20) are identical to the ones obtained
by substituting Eqs. (15)—(17) into Eq. (5) with i = 3 and

the subsequent multiplication from the left by Z
(3)and y +&~2.

The three spatial wave functions Po and P +i&2 are(~) (2)

now for each p determined by Eqs. (18)—(20) and the
following boundary conditions:

Po~ l(p, n = 0) = Po~ l(p, n = vr/2) = P +i&2(p, o. = 0)

= PI i+i&2(p, n = 7r/2) = 0. (22)

P, ~~,]2 (p = 0, n) = P~~'l (p = 0, c ) oc sin (2nn),

For p = 0 Eqs. (18)—(20) clearly decouple and the solu-
tions are

V. THE EFIMOV EFFECT

1 1
R;I,@ =

sin(2(p;I, ) sin(2n;)

X
/V, I. —~'/

sin(2nl, )vP (p, nl, )dnl, , (26)

where the transformation angle p,.p is given by the masses
as

( m, (mi + m2 + ms)
mjmJg

The large distance behavior of the A values reHect char-
acteristic properties of the three-body system and its sub-
systems. In particular the necessary and sufBcient con-
dition for the occurrence of the Efimov states is simply
that A [—:A(p -+ oo)] is smaller than —4 or equivalently
A & 0. Therefore eigenvalues and eigenfunctions for large
p must be obtained from Eqs. (18)—(20) and we shall fol-
low the procedure in Ref. [16].

The wave functions depending on o.A, are Grst expressed
in terms of the ith set of hyperspherical coordinates and
the equations are subsequently integrated over the four
angular variables A~, and 0». This amounts for 8 waves
to the substitution formally expressed by the operator
B;I, defined by

n = 1,2, 3, . . . (23)

and the eigenvalues are given by

Ao =—A(p = 0) = A(p = 0) —4 = K(K+ 4),
K = 2n —2, (24)

which is the well-known hyperspherical spectrum.
The behavior of A for small p values can now be ob-

tained in first-order perturbation theory. The easiest is
to add the three equations in Eqs. (18)—(20) and thereby
obtain the equivalent Schrodinger equation, which in turn
then gives the following first-order correction to Ao.

20!
, 4'(p p'I) ~

Slil 2lp~A, .)
(28)

where (—1)" is the parity of the permutation (i, k, j).
The short ranges of the potentials confine o, A, to be
smaller than the range ro of the potential divided by@.
[The precise definition of ro is given by p v, (ro) = A.]
The eKect of the B operator is then for large p approxi-
mately given as

A(p) = Ao+ p v„„(p= 0)

c (2) 0 (2)+2, (x.' ',g, lv-(p = o)lx.'.',g.)
c

8c + 2 (2) (2)
+2 + 1 (x"+ ~ I " (p = 0)lx -+ (25)

The wave function Po vanishes faster than P(1} (2)

provided the scattering lengths a~ related to the two
relative spin states of the neutron-core system both are
larger than that of the neutron-neutron system. We can
therefore omit Eq. (18) and neglect Po in Eqs. (19) and
(20) and thereby for p » ro to first order in o.o = ro/p
obtain the simplified eigenvalue equations
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, —&(p)
I &., iq2(p n2) + p h.. ,q, lv-(p»nn2) l~.,—1/2)

( 8' — l (2) (2) ~ (2)
Bcl'2

&,'.'
q (p )+ „.„2 (& &'.,',q, (p V) —& &.'.',&, (p V)) =o (29)

.—&(p) I &..+,g. (p n2) + p h..+,g, lv-(p»nn2)l~. ,+,g, )
( 0' — l (2) 2 (2) ~ (2)

)

&..+1~2(p n2)+ „.„2 ( —«&.. 1~2(p V) —(-"s4..+,&, (p, V)) =O, (3o)
(2) 2 (2) (2)

where y = arctangA, (A, + 2) is given in terms of the
nucleon number A, of the core.

We now proceed by dividing the a2 space into two
regions I and II. In region I (n2 & no ——re/p), where the
potential is negligibly small, the solutions to the previous
equations are

(2,II)4..'+,&, (p, n2)

= u+(pn2) — . [ «4..',—&, (p, V)
2(x2

sin 2p
(2,I)&s0. '+»—,(p, V )], (33)

+i&2(p, n2) oc sin n2 ——(2,I)

(2,II)4. ',&, (p, n2)

=u (pn2) — . [&s4.' '',
&, (p, V)

(2,&I)—«4..'+,~, (p v)j (32)

where we have imposed that the solution has to vanish
at the boundary n2 ——7r/2.

In region II (n2 ( no), where A/p is negligibly small,
we have two inhomogeneous differential equations with
the solutions:

where the inhomogeneous solutions, proportional to o,2,
easily are found due to the linear dependence of n2. The
homogeneous solutions u~(pn2) are the wave functions
describing the state of zero energy in their respective po-
tentials (y +i&2~v, (pn2) ~y +1&2). Outside the range of
the potential (pn2 ) ro) these wave functions take the
form u~(pn2) oc pn2 + a~, where a~ are the scattering
lengths of the two neutron-core potentials corresponding
to the two diferent spin couplings.

The eigenvalue equation for A now arises by matching
of the derivative of the logarithm of the solutions at the
division point n2 ——no ——ro/p. Keeping only the lowest
order in re/p, and assuming that both scattering lengths
are much larger than ro (a~ )) ro), we finally obtain

2
Acns' —VA) + sin* (

—v &) + —
l

+
l
ii»in(n~&)

2 a a+ 2 2 (a a+)

1 ( p+
28~+ 1 li0

sin (
—KA) sin (is ——

)
V~A —

s sin (is ——
) Wj = 0 . (34)

G+ j slil 2p 2 2 - sin 2(p

The dependence on the core-spin 8 appears only
through the scattering lengths a~ and the parameter
Cs = —1/(2s, + 1).

When one or both of the scattering lengths are finite
and negative, which means that at least one bound state
exists in the neutron-core subsystem, the lowest A eigen-
value diverges as —p2/o, 2, where a is the scattering length
for the channel of strongest binding. When both a~ are
positive or infinitely large, we can distinguish between

three diferent cases. In the first case both a+ and a
are infinitely large. Then by keeping only the leading
order, Eq. (34) reduces to

Acos — A —
2 sin p —— A = 0, 35

which for Li, where &p = arctan 1/ll x 9, has the lowest
solution at A = —0.00545. This value gives rise to an ef-
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fective attractive potential in the radial equation, Eq. (8),
given by —0.25545/p, which results in an infinite num-
ber of bound states. This number is independent of the
core-spin s, and the only dependence on the nucleus is
contained in the angle y, see Eq. (27).

In the opposite limit, where p is large compared to
both scattering lengths, i.e., a~ (( p, the leading order
approximation of Eq. (34) is simply

4.0

1.0

sin — A = 0 (36)
0.0

and the hyperspherical spectrum is recovered, i.e., A —4 =
K(K+ 4), K = 0, 2, 4, . . . .

The last case is characterized by one small and one
large scattering length compared to p, i.e., 0 ( a
p « a+, or 0 & a+ « p « a . Now Eq. (34) reduces to
leading order to the form

sin — A A cos

-1.0
10

I

10 10
. . . , „I

10

p (fm)
10 10

FIG. 5. Large distance behavior of the angular eigenvalue
A as function of p for Li. The scattering lengths (marked by
the vertical arrows) are a = 10 fm and a+ ——10" fm for the
dashed line and a+ ——10 fm and a = 10 fm for the solid
line. The horizontal dashed lines correspond to the various
limiting values described in the text.

sin p —— A = 0, 37

where the + signs appear for a+ (( p (( a~. This
equation is independent of a~ and it has never any neg-
ative solutions. The lowest positive solutions for Li
are A = 0.702627 and A = 1.34930, respectively, when
a (( p (( a+ and a+ (( p (( a . Since A always is pos-
itive this means that the barrier in the radial equation
[(A —1/4)/p ] never can give rise to the Efimov effect.
This reflects the fact that infinitely many bound states
only occur when at least two of the subsystems have in-
finitely large scattering lengths. If this extreme effect
should be present both a~ must be infinitely large.

The behavior of the A function is summarized in Fig. 5,
where the lowest A for Li is shown. The scattering
lengths have been chosen to be 10 fm and 10 fm,
and the dashed (solid) line corresponds to a & a+
(a+ & a ). When both a and a~ are much larger
than p, both curves converge to the same value of A =
—0.00545. In the opposite limit where p is larger than
both scattering lengths, the curves both approach the
value 4 corresponding to the lowest level of the hyper-
spherical spectrum. In the intermediate region, where

p is much larger than one of the scattering lengths and
much smaller than the other, A has a flat region. The
constant value depends in this case only on which of the
scattering lengths is larger than the other, but not on the
specific values of a and a+. These A values are shown
as dashed lines in the figure.

It is important to emphasize that the conditions for the
appearance of the Efimov states become more restrictive
for a finite spin of the core. In principle, the effect ap-
pears when at least two of the binary subsystems have
extremely large scattering lengths. We have seen above
that both the possible couplings of the neutron-core spin
states for halo nuclei must correspond to extremely large
scattering lengths. If only one of the scattering lengths

is very large the A function is not low enough to permit
many bound states, i.e. , occurrence of the Efimov effect.
However, these conclusions do not afFect halo nuclei with
zero core spin. It should still be remembered that the
most promising place in nuclei to look for the Efimov ef-
fect would be in a system, where one neutron is added
to a pronounced one-neutron halo nucleus with zero core
spin [7].

VI. SPATIAL STRUCTURE

The angular eigenvalues A are the effective radial po-
tentials. The spectrum is therefore decisive for the spatial
structure of the system. In Fig. 6 is shown an example
for interaction parameters corresponding to the square
in Fig. 1, i.e., realistic values for Li. The beginning of
the hyperspherical spectrum [K(K + 4), K = 0, 2, 4. . .]
is seen at both p = 0 and at p = oo. The lowest level
decreases from zero at p = 0, goes through a minimum
and returns back to zero at infinity. The return to zero at
large distances means that none of the two-body interac-
tions is able to hold bound states. The negative pocket
at smaller distances signifies an attraction in the total
three-body system. The attraction is in this case able
to hold the system in a bound state although no binary
subsystem is bound.

The angular structure corresponding to the eigenvalue
spectrum is conveniently discussed in the Jacobi coor-
dinate set where x is the vector between the two neu-
trons. The components of the wave function for p =
0 and p = oo corresponds to (l„,L„L,s„,s„S)
(0, 0, 0, 0, 3/2, 3/2) for the lowest level. The fivefold de-
generacy of the K = 2 levels corresponds to the angular
components (l, l„L,s, s„S) = (0, 0, 0, 0, 3/2, 3/2)
with one node, (1, 1, 0, 1, 3/2, 3/2) and the three levels

(1, 1, 1, 1,3/2, S) with S = 1/2, 3/2, 5/2.
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depending solely on the spatial structure is therefore un-
able to determine the spin splitting of the subsystem.
Direct measurements of the neutron-core virtual states
would of course in principle be able to give the infor-
mation. However, angular momentum determination of
these unstable nuclear states are needed.

A recent suggestion to determine the s-state admixture
in the three-body ground state of Li is highly relevant
in this connection [22]. The idea is that in a nuclear
break-up reaction the final-state interaction between the
core and the neutron is decisive for the observed. neutron
momentum distribution. Low-lying virtual 8 states or
equivalently strongly attractive 8-state potentials will via
the final-state interaction lead to a narrow momentum
distribution [23]. A higher-lying s state or a p state with
repulsive centrifugal barrier can only weakly influence the
outgoing neutron. The necessary analyses require first of

all the probability of finding the remaining neutron-core
system in the low lying s state. For a non-negligible spin
splitting this probability equals the probability of find-
ing two occupied s states multiplied by the probability
of survival (roughly the statistical weights independent
of the spin splitting) of the low-lying state. Therefore in-
formation about the spin splitting may be obtained &om
these reactions.

VII. MAGNETIC DIPOLE MOMENT

Structural changes due to the spin splitting are most
likely to show up in spin dependent observables. The nat-
ural first choice to study is the magnetic dipole moment,
which in our three-body model is given by

p ( 2=(JM= J~
~

g„s„„+g,s, +Z, 1,
~

~JM= J),p~(A~+2 (39)

where p~ is the nuclear magneton, Z is the charge of the core, 1 is the orbital angular momentum of the core relative
to the center of mass of the neutrons, J and M are the total angular momentum and its projection. The gyromagnetic
factors are taken as g = —3.8263 for the neutron, g, = 3.4391/s, for Li, and the Schmidt value g, = 3.7928/s, for

B. The nonvanishing matrix elements of the operator in Eq. (39) are then

((l„„l,)I (s„„s,)S;JJi (s„„), i(l„„l,)I (s„„s,)S'; JJ)

= (—1) + + + +'""+"QJ(2J+ 1)(28+ 1)(2S'+ 1)s„(s „+1)(2s„„+1)/(J+ 1)
s i s'

(4O)

where I is the total orbital angular momentum, l „is the
orbital angular momentum of the two neutrons, S (S') is
the total spin. The expression for the other two terms of
the operator in Eq. (39) can be obtained, respectively, by
exchange of s and s, and by additional exchanges of
all spins and. orbital angular momenta on the right-hand
side of the equation.

The results of these formulas are given in Table I for
both our examples of Li and B. The major contri-
butions consistent with parity and angular momentum
coupling rules are listed in the neutron-neutron Jacobi
set of coordinates. All diagonal p-wave matrix elements
except one are smaller than the s-wave matrix element.
Since all these components are coupled in the three-body
system one could expect that p-wave admixture will re-
duce the magnetic moment compared to the core value
in contradiction with measurements for Li [24]. How-
ever, the diagonal elements alone are very misleading due
to the strong oK-diagonal matrix elements given at the
bottom of the table.

The result of direct numerical calculations for both
Li and B show that the core value of the magnetic

moment always is recovered and it is therefore insensi-
tive both to the spin splitting and to the amount of p- or
d-wave admixture. The reason is that the basic neutron-
core components in the present three-body model for Li
are the (sqy2) and (pqy2) two-particle states. Both are
fully occupied j shells of total angular momentum zero.
Their contributions to the magnetic moment therefore
must vanish and the ofI'-diagonal elements are essential
in this connection. We are therefore left with the core
value. Our model also allows other con6gurations, , which
however turn out to be essentially unoccupied in the fi-
nal wave function. For B, where the p states are sub-
stituted by d states, we also recover the core value for
the magnetic moment. The reason is that the new con-
figuration (dsy2) almost exclusively couples to the total
spin zero and therefore also in this case only contributes
insignificantly. Other components are apparently ener-
getically too expensive.

The accuracy of the strict three-body model is relying
on the assumption of an inert core. Thus core degrees
of freedom must be included when improvements beyond
the three-body model are requested. The most obvious
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TABLE I. Diagonal contributions to the magnetic moment from two-body 8 and p states in the
neutron-neutron Jacobi coordinate system. The total and core angular momenta and parities are
given by J = 3/2 and s, = 3/2 . The nonvanishing off-diagonal matrix elements are shown
at the bottom of the table.

No.
1 0
2 1
3 1
4 1
5 1
6 1
7 1
8 1

&c L ~n~
0 0 0
1 0 1
1 1 1
1 1 1
1 1 1
1 2 1
1 2 1
1 2 1

3/2
3/2
1/2
3/2
5/2
1/2
3/2
5/2

snn z

0
2/5

—1/3
22/75
21/25

1/5
2/25
iS/25

((s,) )
3/2

11/iO
5/6

121/150
63/50
—1/2
ll/50
39/5O

((1 )-)
0
0

1/2
1/5

—3/io
9/10
3/5
1/10

v("Li)
3.4391=@,

0.99
3.46
0.84

—0.49
—1.42
0.53

—0.15

~("Ii)
3.7928=p,

1.25
3.65
1.02

—0.19
—1.56
0.57
0.04

(21

v
(sl
&41

(41 V

v
(61

s

14)

15)

18)

17)

0
—/2/3

—~54/25
0
0

—g2/5
—3~14/25

0
—/2/3

0
—v 54/25

0
0

—g2/5
—3~14/25

g2/5
0

—Ql/20
0

2/5
v 21/10

0
0

0.34
0.72

—0.12
0.45

12/55
0.25
0.97
0.69

0.33
0.61

—0.12
0.38
4/19
0.24
0.82
0.58

modification for Li is to allow an admixture of the only
particle stable excited state, an angular momentum 1/2
state [14], into the 3/2 ground state of Li. .Since all ma-
trix elements of the magnetic dipole operator in Eq. (39)
vanish between states of different core spin, only the con-
tributions in Table II are able to modify our previous re-
sults. Although we assumed an unchanged gyromagnetic
factor for the core, it is rather obvious that any s, = 1/2
admixture would further reduce the magnetic moment.
A value of s, larger than 3/2 is needed, but not available
in the discrete spectrum of Li. The effect of higher an-
gular momentum neutron-core states and a j shell only
partially occupied by the halo neutrons does not alter the
conclusions above as seen from our example of B.

VIII. EXCITED STATES OF ELECTRIC
DIPOLE CHARACTER

The spectrum of excited states in halo nuclei is almost
by definition limited to at most a few discrete states,
but the continuum structure including resonances might
also be interesting. The 1 type of excitations, contin-
uous or discrete, are for such nuclei expected to differ
significantly from corresponding states in normal nuclei.
The only excited state in Be has the largest measured
B(El) value to the ground state [25]. In general the
dipole strength function is peaked at low excitation en-
ergies and it plays a dominant role in the analysis of
Coulomb dissociation cross sections [1,26,27]. The peak

TABLE II. Diagonal contributions to the magnetic moment from two-body 8 and p states in the
neutron-neutron Jacobi coordinate system. The total and core angular momenta and parities are
given by J = 3/2 and s, = 1/2 . The nonvanishing off diagonal matrix elements are shown
at the bottom of the table. The gyromagnetic factors of the core are, respectively, g, = 3.4391/1.5
and g, = 3.7928/1. 5.

No.
1
2
3
4
5
6
7

l„„
0
2
1
1
1
1
1

l

2
0
1
1
1
1
1

&31

&31

&41

L
2
2
1
2
0
1
2

i6)

S
i/2
1/2
1/2
1/2
3/2
3/2
3/2

s~~
0
0

2/3
—2/5

1
11/15

1/5

0
—2/v 45

—2/5
0
0

((s.)-)
—3/1O
—3/1O
—1/6
1/10
1/2

ii/so
1/10

0
—2/~45

—2/5
0
0

((1.)*)
9/5

0
1/2

9/10
0

1/5
3/5

1/v 20
0
0

g2/5
2/5

p("Li)
0.29

—0.69
—2.66
2.25

—2.68
—1.86
—0.21

0.12
0.46
0.61
0.34

12/55

~("B)
0.19

—0.76
—2.71
2.26

—2.56
—1.77
—0.20

0.12
0.39
0.52
0.33
4/19
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FIG. 9. The ground state and the excited 1 levels as func-
tions of the spin splitting parameter p, . The interaction pa-
rameters are V, = —8.5, V„= —7.8, and V, " = 34.3 MeV.

has even been suggested to be a new type of low-lying ex-
citation mode for halo nuclei [28,29]. In any case it can
be expected that these 1 excitations are the lowest-lying
excitations in halo nuclei.

When the total angular momentum as well as the spin
of the core both are zero the major components in the
wave function of the excited 1 —state are most conve-
niently described in the neutron-neutron coordinate sys-
tem. The angular momentum 1 and the negative parity
can be made by (I „,l, l, s„,s, ) = (0, 1, 1, 0, 0) and
(1,0, 1, 1, 0) if we for simplicity exclude d and higher par-
tial waves. The finite core spin now dictates the addi-
tional coupling of 8 to a total angular momentum ofJ = s, s, 6 1. The parity is still the opposite of the
ground state.

For a core spin of 3/2 corresponding to ~~Li the total
angular momenta are J = 1/2, 3/2, and 5/2. They are
shown in Fig. 9 as functions of the spin splitting param-
eter p, . The ground-state energy is also shown for com-
parison and as expected seen to be almost independent of
the spin splitting. In contrast the energies of the excited
states vary with p, . An increase is seen for J = 1/2, 3/2
and a decrease for J = 5/2. Crudely speaking the 1
state consists of one neutron in an 8 state and. the other
neutron in a p state relative to the core. By selecting the
lowest lying of the (spin split) s states the energy of the
three-body state could therefore be expected to decrease
with the energy of one of the 8 states in the neutron-core
subsystem, i.e. , as soon as p, g 0. However, the 1 states
have admixtures, determined by a complex interplay of
several factors, of spin-split s waves different &om the
ground state. Due to the antisymmetry requirement it is
impossible to construct a wave function with given total
J and one neutron in the lowest neutron-core spin split
8 state and the other neutron in a p state. Both virtual
s states are necessarily present. The J = 5/2 state has
an excess of neutron-core states with angular momentums„=s, + 1/2 = 2, the J = 1/2 has analogously an ex-

cess of s„, = s, —1/2 = 1 and the J = 3/2 state is
somewhere in between.

From the interaction in Eq. (14) we see that a negative
value of V,p, implies that the energy of the neutron-core
state with angular momentum s, + 1/2 is lower than that
of s, —1/2. In our specific case of s, = 3/2 this corre-
sponds for positive p, (V, ( 0) to a lower energy for
the state of 2 than for that of 1. Thus the energy of
the state with the largest content of 2 must exhibit the
fastest decrease with p, . Therefore with increasing p,
the J = 5/2 state necessarily becomes lowest in energy
followed by the J = 3/2 state and with J = 1/2 as the
highest. The details of the resulting energies are seen
in Fig. 9. An increase of the ground-state energy would
bring the excited spectrum into the continuum, but a
similar structure would remain.

IX. SUMMARY AND CONCLUSION

We discuss in this paper the effects of a finite core
spin on the structure of two-neutron halo nuclei. In
the previous two papers in this series we established the
general connections between size and binding energy for
loosely bound three-body systems. The possible asymp-
totic (spatially extended and small energy) structures
were characterized by the interactions between the con-
stituent binary subsystems. The largest of the "particles"
called the core is assumed to be inert and spinless and
the corresponding degrees of freedom are frozen. When
the core has a finite spin the two-body interaction be-
tween the core and another particle (typically a neutron)
depends on the total spin of the two-body system. More
complicated spin structures therefore seems to be possi-
ble even when the core still remains inert. This paper,
number III in the series, is devoted to study effects of
such spin couplings on the three-body system.

The recently developed method to solve the Faddeev
equations is well suited for our purpose. We therefore
first described the necessary ingredience of our proce-
dure. The definitions and notation are then established in
general and we proceed to consider the crucial two-body
interactions. The neutron-neutron potential is needed
in both relative 8 and p waves and since the spin struc-
ture is under investigation we also have to distinguish
between the singlet and triplet states with the different
total angular momenta. Low energy properties are still
expected to be decisive and we construct therefore an in-
teraction which reproduces the four phenomenologically
extracted s- and p-wave scattering lengths and in addi-
tion the 8-wave effective range. This is achieved by use
of spin-spin, spin-orbit, and. tensor terms with a common
Gaussian radial dependence. The resulting effective low
energy neutron-neutron interaction might also be useful
in other connections.

The unknown neutron-core effective potential is also
parametrized with a Gaussian radial shape. The mini-
mum spin dependence includes a spin-orbit interaction
and also the central interaction is allowed to be different
in each of the relative orbital angular momentum chan-
nels. We furthermore for 8 waves include a term to dis-
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tinguish between the possible couplings of the core and
neutron spins and we choose the scalar product of these
spins. The resulting interaction is now Hexible enough to
study the inBuence on the three-body system of the spin
splitting and energy dependence of the resonances in the
binary subsystems.

Equipped with an eKcient method. and the input prop-
erly parametrized we then explicitly write down the angu-
lar eigenvalue equations when only 8 waves are included.
These states are often the most essential components in
the solutions. We find analytically both small and large
distance behavior of the angular eigenvalues. The con-
ditions for the Efimov e8'ect are simultaneously obtained
and investigated in terms of scattering lengths for the two
difFerent spin couplings of the neutron-core subsystem.
The extreme Efimov efFect, where infinitely many bound
states are present in the three-body system only occurs
when both scattering lengths are infinitely large. Already
the first of these excited states is very extended in space
compared to the ranges of the potentials and the condi-
tions for its presence is therefore interesting even when no
other excited state exists. These conditions may conve-
niently be formulated in terms of bound state and virtual
8-state energies of the neutron-core subsystem. Both the
two spin couplings of s, 6 1/2 must correspond to ener-
gies between about —2 keV and 5 meV. Since the typical
spin splitting of such 8 states is fractions of an MeV, the
occurrence of the first Efimov state is extremely unlikely
for a halo nucleus with a finite core spin.

The spatial structure of the three-body ground state
turns out to be essentially independent of the spin split-
ting of the virtual s state. The reason is that either none
or both 8 states are needed in one specific combination, if
a total spin zero state has to be formed from the spins of
the two neutrons. Any other combination has the wrong
parity. On the other hand the spatial extension depends
on the amount of s-state admixture as noted in previous
publications and easily understood from the general be-
havior of states with higher angular momenta or higher
hyperspherical quantum numbers.

The energy of the three-body ground state depends
sensitively on the energies of the (spin split) virtual
neutron-core 8 states, which constitute the components
of the total system. The connection between the proper-
ties of the neutron-core system and the total three-body
system depends strongly on the spin splitting. This may
be exemplified by Li and Li, where a given 8-state
content in the Li wave function requires a specific com-
bination of the two virtual 8 states in Li. If one is low
lying the other energy must be high in order to com-
pensate and lead to the observed total three-body bind-
ing energy. Thus, both virtual 8 states in Li must be
known, if the Li-binding energy should be accounted
for unambiguously.

The neutron-core 8-state admixture in Li is, as re-
cently suggested, possible to extract Rom the measured
momentum distributions in nuclear break-up reactions.
In the sudden approximation, where one of the neutrons

is removed instantaneously, there is a finite probability
of finding the other neutron in the lowest-lying virtual
s state. Due to the strong attraction this part of the
wave function leads to a narrow observable momentum
distribution.

The most obvious spin dependent observable is the
magnetic dipole moment, which for Li is found to be
fairly close to the core value measured for Li. The re-
sults of our strict three-body calculations are that the
core value is reproduced independent of spin splitting
and s-state admixture. The reason is that the spins of
the two neutrons always couple to zero even when other
possibilities are allowed.

The discrete or continuous spectrum of excited states
of 1 character on top of the ground state is of special
interest for halo nuclei. One of the main components in
the three-body wave function consists of one neutron in
an 8 state and the other neutron in a p state relative to
the core. Coupling of these angular momenta to 1 unit of
h corresponds to an electric dipole excitation. More than
one electric dipole excitation corresponding to different
angular momenta is possible for finite core spin. The
related hyperfine splitting of the El excitation leads to
predictable structure in the continuum. Analyses of, for
example, Coulomb dissociation cross sections may eluci-
date the structure of this 1 excitation spectrum.

The excitation energy of such states may for a given
total energy depend strongly on the spin splitting of the
virtual 8 states. The reason is that the excited states
are composed of mixtures of spin split 8 states diferent
from that of the ground state. On average the lowest s
state is preferred and the statistically weighted excitation
energies therefore decrease when the energy of the lowest
virtual s state approaches zero. The absolute value of this
average depends on the energy of the p-state resonance.

In conclusion, we have investigated eKects of finite core
spin in halo nuclei. We found essentially unchanged spa-
tial structure and magnetic dipole moments. Efimov
states seem to be extremely unlikely in halo nuclei with
finite core spin. The electric dipole excitations may de-
pend rather strongly on the relative positions of the reso-
nances and virtual states in the neutron-core subsystem.
The spin splitting of the 8 states in the neutron-core sys-
tem is decisive to understand the proper relation between
the total three-body system and its subsystems. Our nu-
merical examples concentrated on Li (neutron-neutron-
Li) and B (neutron-neutron- B).These examples are

used for general illustration, but they are useful in their
own right as model computations for these nuclei.
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