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The influence of short-range correlations on the momentum and energy distribution of nucleons
in nuclei is evaluated assuming a realistic meson-exchange potential for the nucleon-nucleon inter-
action. Using the Green-function approach the calculations are performed directly for the finite
nucleus *®0 avoiding the local density approximation and its reference to studies of infinite nuclear
matter. The nucleon-nucleon correlations induced by the short-range and tensor components of the
interaction yield an enhancement of the momentum distribution at high momenta as compared to
the Hartree-Fock description. These high-momentum components should be observed mainly in
nucleon knockout reactions like (e, e'p) leaving the final nucleus in a state of high excitation energy.
Our analysis also demonstrates that non-negligible contributions to the momentum distribution
should be found in partial waves which are unoccupied in the simple shell model. The treatment of
correlations beyond the Brueckner-Hartree-Fock approximation also yields an improvement for the

calculated ground-state properties.

PACS number(s): 21.10.Jx, 21.30.+y, 24.10.Cn, 27.20.+n

I. INTRODUCTION

Many properties of nuclei can be understood within
the independent particle model (IPM). In the IPM the
nucleus is considered to be a system of nucleons moving
without residual interaction in a mean field or single-
particle potential. The single-particle potential is ei-
ther adjusted in a phenomenological way (assuming, e.g.,
a Woods-Saxon shape) or evaluated from empirical ef-
fective interactions like the Skyrme forces within the
Hartree-Fock approximation. Attempts to employ realis-
tic nucleon-nucleon (N N) interactions, which reproduce
the NN scattering data, directly in such a scheme fail
badly: Typically one does not even obtain any binding
energy in this approach. This result is due to the strong
short-range and tensor components, which are typical for
realistic interactions and induce corresponding NN cor-
relations in the nuclear wave function, which cannot be
described by the IPM or the Hartree-Fock approach.

Various tools have been developed to account for these
strong short-range correlations. These include varia-
tional calculations assuming Jastrow correlation func-
tions [1], the correlated basis function method (CBF) [2],
the “expomnential §” method [3], the Brueckner-Hartree-
Fock (BHF) approximation [4], and the self-consistent
Green-function approach [5].

Counsiderable effort has also been made to find a nu-
clear property which is experimentally accessible and re-
flects the effects of NN correlations in a clear manner. A
candidate for such an observable is the momentum distri-
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bution of nucleons in a nucleus. Of course the momentum
distribution is a single-particle observable and thus al-
lows only an indirect measurement of correlation effects.
In particular the uncertainties in the determination of an
optimal one-body Hamiltonian lead to uncertainties in
the analysis of the momentum distribution with respect
to correlation effects. Nevertheless, a careful analysis of
the momentum distribution may give some indications
of the importance of correlation effects. This momentum
distribution can be written as

n(k) = > (2] + 1) . (k)
3,7

=D (2 + 1) (¥ | afyj amsr [3) - (1)

Lj,T

Here |\1164> represents the ground state of the nucleus

under consideration (with A nucleons) and aLle (aktjr)
denotes the creation (annihilation) operator for a nucleon
with orbital angular momentum [, total angular momen-
tum 7, isospin 7, and momentum k. The momentum dis-
tributions for the partial waves, n;;,(k), in Eq. (1) can
be rewritten by inserting a complete set of eigenstates
|\Il;3_1> for the system with A — 1 nucleons,

nuir (k) = 3 [(TAY aryjr 28] (2)

In the IPM the sum in this equation is typically reduced
to one term, if (I, j, 7) refer to a single-particle orbit occu-
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pied in |\Il{)4>. Equation (2) then yields the square of the
momentum-space wave function for this single-particle
state. The contribution 7,;,(k) vanishes in the IPM if
no state with quantum numbers (I, 7, 7) is occupied. If
correlations are present beyond the IPM approach this
simple picture is no longer true and the determination of
the momentum distribution n(k) requires, both in experi-
mental as well as theoretical studies, complete knowledge
of the nucleon-hole spectral function

Sisr(k, B) = 3 [(Ta~ ansr |23

x§(E — (B3 — EZ7Y) (3)

for all energies E and all sets of discrete quantum num-
bers (I, 7,7). Note that the energy variable FE in this defi-
nition of the spectral function refers to the negative exci-
tation energy of state n in the A — 1 system with respect
to the ground-state energy of the nucleus with A nucleons
(E4). The spectral function is experimentally accessible
by analyzing nucleon knockout experiments like (e, e’p).
The momentum distribution ng;, (k) is obtained by inte-
grating the spectral function over energies FE from —oo to
the Fermi energy ep = E§ — E({‘“l, with Egl_l denoting
the energy of the ground state for A — 1 nucleons. One
important aim of our studies is to investigate how short-
range correlations modify the spectral function at various
energies as compared to the IPM. For example, can one
expect to observe effects of short-range correlations in
knockout experiments with small energy transfer?

Microscopic calculations of the spectral function and
the momentum distribution based on realistic nuclear
Hamiltonians have mainly been performed for very light
nuclei (A < 4) [6-9] or nuclear matter [10-17]. Results
for heavier nuclei are typically derived from investiga-
tions of nuclear matter assuming a local density approx-
imation [18-21]. Recent variational calculations for 10O
yield the momentum distribution [22] and the p-shell
quasihole wave functions [23] but not the complete en-
ergy dependence of the hole spectral functions.

The present investigation determines the spectral func-
tion and the corresponding momentum distribution di-
rectly for finite nuclei without employing the local den-
sity approximation. Calculations are performed for the
nucleus 60 assuming a realistic meson-exchange poten-
tial [24] for the NN interaction. The spectral function is
derived from the Lehmann representation of the single-
particle Green function. This Green function solves the
Dyson equation with a self-energy calculated by tech-
niques as described in Ref. [25]. In this approach the
self-energy is evaluated in terms of a nuclear matter G
matrix considering all terms up to second order in this G
matrix (see Fig. 1). The calculation of the self-energy it-
self is performed for the finite nucleus employing a mixed
basis of single-particle states with oscillator functions for
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FIG. 1. Graphical representation of the Hartree-Fock
(a), the two-particle-one-hole [2plh, (b)] and the two-hole-
one-particle contribution [2hlp, (c)] to the self-energy of
the nucleon.

the internal hole states and plane waves, properly orthog-
onalized to the hole states, for the intermediate particle
states occurring in the diagrams of Fig. 1. Using this
mixed representation one can obtain more reliable re-
sults for the momentum distribution at high momenta
than can be deduced from BHF of finite nuclei for which
typically all single-particle states are described by an ex-
pansion in an oscillator basis [26]. A few results concern-
ing the spectral function for the p;,, partial wave have
already been discussed [27].

Special attention is paid to the effect of correlations on
the spectral function at different energies. We find that
clear indications of the short-range NN correlations are
obtained by studying the spectral function at very neg-
ative energies, which in nucleon knockout experiments
correspond to excitation energies of around 100 MeV and
more in the remaining nucleus. The resulting Green func-
tion is also used to study the effects of correlations be-
yond the BHF approach on the binding energy and radius
of the nuclear ground state.

After this short Introduction we describe the tech-
niques used to evaluate the spectral functions and mo-
mentum distributions in Sec. II. The results of our nu-
merical studies are presented in Sec. III and Sec. IV
summarizes the main conclusions of this work.

II. EVALUATION OF THE SPECTRAL
FUNCTIONS

The spectral function for the various partial waves,
Sijr(k, E) [see Eq. (3)], can be obtained from the imagi-
nary part of the corresponding single-particle Green func-
tion or propagator gi;(k, k; E). Note that here and in the
following we have dropped the isospin quantum number
7. Ignoring the Coulomb interaction between the protons
the Green functions are identical for N = Z nuclei and
therefore independent of the quantum number 7. The
single-particle propagator can be obtained by solving the
Dyson equation

i (ky, k2; E) = g3 (ky, ka3 E) + / dks / dkagly) (k1, ks; B)ASy; (ks, ka; E)gij (ka, k2; E), (4)
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where ¢(®) refers to a Hartree-Fock propagator and AY;; represents contributions to the real and imaginary parts of
the irreducible self-energy, which go beyond the Hartree-Fock approximation of the nucleon self-energy used to derive
g(©. The definition and evaluation of the Hartree-Fock contribution as well as the calculation of AY are presented in
the next subsection. The methods used to solve the Dyson equation (4) and to extract spectral functions as well as
momentum distributions are described in Sec. IIB.

A. Nucleon self-energy X

The calculation of the self-energy is performed in terms of a G matrix which is obtained as a solution of the
Bethe-Goldstone equation for nuclear matter

(K'VSJsKLT|G |k"l"SIsKLT) = (k'l'SIsKLT|Vyn |k"1"SJsKLT)

+3° / k2dk (K'U'SJsKLT|Vyy |klSJsKLT)
l

Q(k, K)

x (KISJsKLT| G |k"l" STsKLT) — 220 . (5)
WNM ~ 4m T 2m
[
|k1lig1kalaj2 JT) , (6)

In this equation k, k', and k" denote the relative momen-
tum, I, I’, and " the orbital angular momentum for the
relative motion, K and L are the corresponding quantum
numbers for the center-of-mass motion, S and T denote
the total spin and isospin of the interacting pair of nu-
cleons, and by definition the angular momentum Jg is
obtained from coupling the orbital angular momentum of
relative motion and the spin S. For the bare NN interac-
tion Vyn we have chosen the one-boson-exchange (OBE)
potential B defined by Machleidt ([24], Table A.2), m rep-
resents the mass of the nucleon, and the Pauli operator
Q is approximated by the so-called angle-averaged ap-
proximation for nuclear matter with a Fermi momentum
kg = 1.4 fm™. This roughly corresponds to the satura-
tion density of nuclear matter. The starting energy wnm
has been chosen to be —10 MeV. The choices for the den-
sity of nuclear matter and the starting energy are rather
arbitrary. It turns out, however, that the calculation of
the Hartree-Fock term is not very sensitive to this choice
[28]. Furthermore, we will correct this nuclear matter
approximation by calculating the two-particle—one-hole
(2p1h) term displayed in Fig. 1(b) directly for the finite
system, correcting the double counting contained in the
Hartree-Fock term (see discussion below).

Using vector bracket transformation coefficients [29],
the G-matrix elements obtained from (5) can be trans-
formed from the representation in coordinates of relative
and center-of-mass momenta to the coordinates of single-
particle momenta in the laboratory frame in which the
two-particle state would be described by quantum num-
bers such as
|

1

HF _
i, (k1 ky) = D)

nal2j2JT

where k;, [;, and j; refer to momentum and angular mo-
menta of particle 7 whereas J and T define the total an-
gular momentum and isospin of the two-particle state.
It should be noted that Eq. (6) represents an antisym-
metrized two-particle state. Performing an integration
over one of the k;, one obtains a two-particle state in a
mixed representation of one particle in a bound harmonic
oscillator while the other is in a plane wave state,

|n1lij1kalaj2 JT)

- / dky K2 R 1, (tkr) |Krlajikalagad T) . (7)
0

Here R, stands for the radial oscillator function and
the oscillator length o = 1.72 fm~! has been selected.
This choice for the oscillator length corresponds to an
oscillator energy of Aw,se = 14 MeV. Therefore the os-
cillator functions are quite appropriate to describe the
wave functions of the bound single-particle states in 1¢0.
Indeed, it turns out that the single-particle wave func-
tions determined in self-consistent BHF calculations for
180 have a large overlap with these oscillator functions
[26]. Using the nomenclature defined in Egs. (5)—(7) our
Hartree-Fock approximation for the self-energy is easily
obtained in the momentum representation,

The summation over the oscillator quantum numbers is restricted to the states occupied in the IPM of 60. This
Hartree-Fock part of the self-energy is real and does not depend on the energy.

The terms of lowest order in G which give rise to an imaginary part in the self-energy are represented by the
diagrams displayed in Figs. 1(b) and 1(c), referring to intermediate 2plh and two-hole—one-particle (2hlp) states,
respectively. The 2plh contribution to the imaginary part is given by
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-1
WP = gty X 8 S [k [ warer s ner v

(271 +1) nalzjz IL JJsST
x (kylyjinalsjadT| G |kISJsKLT) (kISJsK LT| G [kl jinalyja JT)

2 2
xmd (E + €nylzjy — —K— - k_> ’ (9)

where the “experimental” single-particle energies €,,1,;,
are used for the hole states (—47 MeV, —21.8 MeV, and
—15.7 MeV for sy,3, p3/2, and p;,, states, respectively),
while the energies of the particle states are given in terms
of the kinetic energy only. The expression in Eq. (9) still
ignores the requirement that the intermediate particle
states must be orthogonal to the hole states, which are
occupied for the nucleus under consideration. The tech-
niques to incorporate the orthogonalization of the inter-
mediate plane wave states to the occupied hole states as
discussed in detail by Borromeo et al. [25] have also been
used here. The 2hlp contribution to the imaginary part
Wl?;:p(kl, 1; E) can be calculated in a similar way (see
also [25]).

Our choice to assume pure kinetic energies for the par-
ticle states in calculating the imaginary parts of W?2plh
[Eq. (9)] and WZh!P may not be very realistic for the ex-
citation modes at low energy. Indeed a sizable imaginary
part in W2PP is obtained only for energies E below —40
MeV. As we are mainly interested, however, in the effects
of short-range correlations, which lead to excitations of
particle states with high momentum, the choice seems to
be appropriate. A different approach would be required
to treat the coupling to the very low-lying two-particle—
one-hole and two-hole—one-particle states in an adequate
way. Attempts at such a treatment can be found in Refs.
[30-33].

The 2plh contribution to the real part of the self-
J

energy can be calculated from the imaginary part W2rth
using a dispersion relation [34]

P [ WM (ky, ki E')
‘/lf;lh(kl’kll;E) = ;[ 1:llE/ ——’E dE', (10)

where P means a principal value integral. From the §
function in Eq. (9) one can see that W?2Ph is different
from zero only for positive values of E’. Since the diago-
nal matrix elements are negative, the dispersion relation
(10) implies that the diagonal elements of V22 will be
attractive for negative energies E. They will decrease
and change sign only for large positive values for the en-
ergy of the interacting nucleon (typically around a few
hundred MeV, depending on the interaction used).

Since the Hartree-Fock contribution ZHF has been cal-
culated in terms of a nuclear matter G matrix, it al-
ready contains 2plh terms of the kind displayed in Fig.
1(b). Therefore one would run into problems of double
counting if one simply adds the real part V2Plh t4 the
Hartree-Fock self-energy. Notice that HF does not con-
tain any imaginary part because it is calculated with a
nuclear matter G matrix at a starting energy for which
G is real. In order to avoid such an overcounting of the
particle-particle ladder terms, we subtract from the real
part of the self-energy a correction term, which just con-
tains this contribution calculated in nuclear matter. This
correction V is given by

Vi(ki, k) = Z;T23'11+_1) DI /kzdk/szK(2J+ 1)(2T + 1)

nalzjz IL JJsST

x (k1lyjinalaj2JT| G |kISTKLT) (kISTKLT| G |k\lyj1n2laj2 JT)

with the same starting energy wny and the Pauli opera-
tor @ as used in the Bethe-Goldstone equation (5).

A dispersion relation similar to Eq. (10) holds for
V2h1p and thlp,

P [ W2h_1p(k1’ k\; B
VIR (kg kS E) = ——/ iy U dE. (12
L ( 1, Ry ) 7)o E — E ( )
Since W2hIP is positive (at least its diagonal matrix el-
ements) and different from zero for negative energies E’
only, it is evident from Eq. (12) that V2prlh 5 repul-
sive for positive energies and decreases with increasing
energy. Only for large negative energies does it becomes
attractive.

Summing up the various contributions we obtain for
the self-energy the expressions

k,K
—-’QL—?{?)__E{’ (11)
NM ™ 24m ~ m

[
¥ =3HF L AS
— EHF + (V2p1h _ ch 4 VZhlp) +i (W2p1h + W2h1p) .
(13)

B. Solution of the Dyson equation

After we have determined the various contributions to
the nucleon self-energy, we now want to solve the Dyson
equation (4) for the single-particle propagator. In order
to discretize the integrals in this equation we consider a
complete basis within a spherical box of a radius Rpox-
This box radius should be larger than the radius of the
nucleus considered. The calculated observables are inde-
pendent of the choice of Rpoy, if it is chosen to be around
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15 fm or larger. A complete and orthonormal set of reg-
ular basis functions within this box is given by

Biim(r) = Niuji(kir)Vijm(09) . (14)

In this equation Yj;j., represent the spherical harmonics
including the spin degrees of freedom and j; denote the
spherical Bessel functions for the discrete momenta k;

which fulfill

(r|kiljm) =

jl(kinox) =0. (15)
Using the normalization constants
V2 $r1>0
Nil = \/?ole«ﬂk,-Rbcx) . ’ (16)
N for I =0,

VR o

the basis functions defined in Eq. (14) are orthogonal
and normalized within the box,

Rpox
/ Br (kol'§'m|1) (elklim) = Sisr8uu 835 Smmsr- (17)
1]

Note that the basis functions defined for discrete val-
ues of the momentum k; within the box differ from the
plane wave states defined in the continuum with the cor-
responding momentum just by the normalization con-
stant, which is 4/2/7 for the latter. This enables us to
determine the matrix elements of the nucleon self-energy
in the basis of Eq. (14) from the results presented in the
preceding section.

As a first step we determine the Hartree-Fock approxi-
mation for the single-particle Green function in the “box
basis.” For that purpose the Hartree-Fock Hamiltonian
is diagonalized,

Nmax

k3
Z (ki %éin + EEF |kn) (anO‘)zj = falg (K |a>11 (18)

n=1

Here and in the following the set of basis states in the box
has been truncated by assuming an appropriate Npax.-
In the basis of Hartree-Fock states |a), the Hartree-Fock
propagator is diagonal and given by

1

(0)
gl] (a E) E— l] :t'”"
a

(19)
where the sign in front of the inﬁnitesimal imaginary
quantity in is positive (negative) if e&f, ; is above (below)
the Fermi energy. With these ingredients one can solve
the Dyson equation (4). One possibility is to determine
first the so-called reducible self-energy, originating from
an iteration of AY, by solving

(| TiA(E) 16)

= (a| A%y (E) |8) + Z (ol Ay (E) |7)

xgt5 (% E) (] E"’d(E) 18) (20)
and obtain the propagator from

915(0, B E) = g1 (o E) (o] Ti54(E) |6) 93 (B, E). (21)

Using this representation of the Green function one can

calculate the spectral function in the “box basis” from

S5y (ki B) = T | 3 (kilay a1 (@, 53 B) (Bl

B
(22)

For energies E below the lowest single-particle energy of
a given Hartree-Fock state (with /5) this spectral function
is different from zero only due to the imaginary part in
¥red This contribution involves the coupling to the con-
tinuum of 2hlp states and is therefore nonvanishing only
for energies at which the corresponding irreducible self-
energy AY has a nonzero imaginary part. Besides this
continuum contribution, the hole spectral function also
receives contributions from the quasihole states [5]. The
energies and wave functions of these quasihole states can
be determined by diagonalizing the Hartree-Fock Hamil-
tonian plus AY in the “box basis,”

Nmax
Z (kil 5~ K gbin + Tpf + ATy (E = €f1;) kn) (kn| X)y;

= erzg (ki |T>l] (23)

Since in the present work AXY only contains a sizable
imaginary part for energies F below e?rh, the energies of
the quasihole states come out real and the continuum
contribution to the spectral function is separated in en-
ergy from the quasihole contribution. The quasihole con-
tribution to the hole spectral function is given by

~ 2
S%; (ks B) = Zxi; l(kirr)lj

(E — eﬂj), (24)

with the spectroscopic factor for the quasihole state given

by [5]
7 e

Yij

O (T|A%y;(E) |T)
OF

Zle = (1 —

Finally, the continuum contibution of Eq. (22) and the
quasihole parts of Eq. (24), which are obtained in the
basis of box states, can be added and renormalized to
obtain the spectral function in the continuum represen-
tation at the momenta defined by Eq. (15),

2 1
81 (ki E) = = N2 (S,J(k,,E +ng‘;3 kE)) (26)

C. Ground-state properties

The single-particle propagator calculated by the tech-
niques described above may also be used to evaluate
expectation values of single-particle operators, like the
mean square radius and the energy of the ground state.
For that purpose one also needs the nondiagonal part of
the density matrix, which is given in the “box basis,”
defined in the preceding subsection, by
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dE lIm
T

7 (kis kn) = /

— o0

< | S (kile),; g1j(e, B E) (Blkn)y; |
a,B
(27)

and contains, as before in the case of the spectral func-
tion, a continuous contribution and a part originating
from the quasihole states,

AP (kiykn) = 3 Zrt (ka| )5 (Tlkn)y, - (28)
T

The sum in this equation is restricted to quasihole states
with energies below the Fermi energy ¢r. With this den-
sity matrix the expectation value for the square of the
radius can be calculated according to

Nmax
(U2 |8y =225 +1) D (kal 72 [kn)y maj (ki en),
i,j t,n=1

(29)

with a factor of 2 accounting for isospin degeneracy. The
matrix elements for 72 are given by

Rypox
(ki| 7% |kn), = NNy / dr v 51(kir)ji(knr) . (30)
0

In the same way one can also calculate the expectation
value for the particle number. The total energy of the
ground state is obtained from the “Koltun sum rule”

Nesx per 1 / j2
E§=22(2j+1)2/ dE5(2:n+E)
Lj i=1 Y~

X (S'fj(ki,E) + ZS‘;‘;j(ki,E)> . (31)
T

As in Eq. (26), the sum over quasihole states T is re-
stricted to those below ep.

ITI. RESULTS AND DISCUSSION

In our discussion of the hole spectral function in the
preceding section we have distinguished the contributions
originating from the quasihole states and the continuum
of 2h1p configurations [see Eq. (26)]. This separation can
also be made when we discuss the momentum distribu-
tions for the various partial waves [see Eq. (2)], which are
given as the energy-integrated spectral function (includ-
ing all energies below the Fermi energy ep)

(k) = /_ ZdE (55, B) + 52k, B)] . (32)

This separation into the two parts is displayed in Fig.
2 for various partial waves. This figure displays quite

T T T T
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FIG. 2. Momentum distribution for different partial waves
in '°0 [see Eq. (32)]. The momentum distribution is the sum
of the quasihole contribution (dashed curve) and the contin-
uum contribution (dotted curve). All functions are normal-
ized such that f dk n(k) = 1 if S(k) refers to an orbit which
is mostly occupied.

clearly that the momentum distribution at small mo-
menta is dominated by the quasihole contribution (for
those partial waves for which it exists) whereas the high-
momentum components are given by the continuum part
(see also Ref. [27]).

This implies that a nucleon knockout reaction with
small energy transfer, leaving the remaining nucleus (e.g.,
15N in the present case as all results presented here refer
to 1®0) in its ground state or in the lowest state with an-
gular momentum and parity defined by the partial wave
quantum numbers 7 and [, should display a spectral dis-
tribution as presented by the quasihole part. The high-
momentum components of the spectral function (or mo-
mentum distribution) should only be observed in exper-
iments which also include knockout processes into states
represented by the 2hlp continuum. We recall that the
present approach has been designed to account for the
effects of short-range correlations. Effects due to config-
uration mixing of the hole state with the 2hlp configu-
ration at low energies must be treated in terms of shell-
model configuration mixing or by techniques as discussed
in Refs. [30-33].

In order to characterize the energy dependence of the
spectral functions one may define a mean value for the
energy of the 2hlp continuum for each momentum and
each partial wave by

[ dE E S;(k, E)

&(k) = JdE S5, (k, E)

(33)
Typical values for this mean value range from —80 to

—150 MeV for the momenta k considered in this analysis
(k < 3.3 fm™!). One also finds that this mean value is
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FIG. 3. Mean value for the energy of the 2hlp continuum
as a function of the momentum k. The left part of this figure
shows results for £ [see Eq. (33)] in various partial waves.
In the right part of the figure the mean value averaged for the
various ! and j [see Eq. (34)] is displayed. For comparison
this part also includes a simple parametrization in terms of
—k?/(2m*) — C with m* = 2400 MeV and C = 80 MeV.

quite independent of the partial wave considered (see left
part of Fig. 3). Therefore it is useful to define a mean
value of the energy by averaging over all partial waves,

_ 20.,;(2 +1) [dE E S;(k, E)
Y2+ ) JdE S§;(k,E)

The resulting energy spectrum £(k) is shown in the left
part of Fig. 3 and compared to a simple parametrization
of this curve in terms of —k?/(2m*) — C with m* = 2400
MeV and C = 80 MeV. This parametrization demon-
strates that the momentum dependence of this mean
value is weak as compared, e.g., to the kinetic energy.
One may also compare the mean value £(k) determined
by Eq. (34) in %0 with the corresponding quantity ob-
tained for nuclear matter using the Reid potential [14,35].
The mean value calculated for nuclear matter shows a
stronger momentum dependence and therefore, at high

(k)

(34)
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momenta, yields energies considerably below those dis-
played in Fig. 3. This implies that the nuclear matter cal-
culation exhibits a larger probability to excite 2plh con-
figurations at higher energies as compared to the present
approach. We will come back to a discussion of possible
differences between the present calculation and studies
in nuclear matter when we analyze the results for the
momentum distribution below.

In order to show the importance of the continuum part
of the spectral functions as compared to the quasihole
contribution and to visualize the effects of correlations,
we have included in Table I the particle numbers for each
partial wave including the degeneracy of the states,

€F o0
ﬁ,j=2(2j+1)/ dE/ dk k*Si;(k,E),  (35)
—oo 0

also separating the contributions originating from the
quasihole states and those due to the continuum.

In the present approach the quasihole states, which in
a Hartree-Fock approximation would be occupied with
a probability of 1.0, are occupied with a probability of
0.78, 0.91, and 0.90 in the case of s1/3, ps/2, and py/2,
respectively. This means that only 14.025 out of the 16
nucleons of 0O occupy the quasihole states. Another
1.13 “nucleons” are found in the 2hlp continuum with
partial wave quantum numbers of the s and p shells,
while an additional 0.687 “nucleons” are obtained from
the continuum with orbital quantum numbers of the d
and f shells. The distinction between quasihole and con-
tinuum contributions is somewhat artificial for the sy,
orbital since the coupling to low-lying 2hlp states leads
to a strong fragmentation of the strength [36], which is
also observed experimentally [37]. A recent (e,e'p) ex-
periment on 60 [38] has provided detailed information
on the spectroscopic factors at low-energy transfer. The
analysis of the experiment indicates that, e.g., the p,/,
quasihole state carries only 63% of the strength. This re-
sult should be compared to the 90% obtained here. This

TABLE 1. Distribution of nucleons in 6. Listed are the total occupation number 7 for various
partial waves [see Eq. (35)] but also the contributions from the quasihole (49") and the continuum
part (7€) of the spectral function, separately. The continuum part is split further into contributions
originating from energies E below —150 MeV [n°(E < —150)] and from energies below —100 MeV.
The last line shows the sum of particle numbers for all partial waves listed.

lj s 7°(E < —150) 7A°(E < —100) Ac 7 7/[2(25 + 1))
51/2 3.120 0.033 0.244 0.624 3.744 0.936
P32 7.314 0.032 0.133 0.332 7.646 0.956
P1/2 3.592 0.026 0.086 0.173 3.764 0.941
ds /2 0.0 0.033 0.106 0.234 0.234 0.020
dz/2 0.0 0.036 0.108 0.196 0.196 0.025
fr/2 0.0 0.025 0.063 0.117 0.117 0.007
fs/2 0.0 0.032 0.084 0.140 0.140 0.012

b 14.025 0.217 0.824 1.816 15.841
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discrepancy is partly due to the emphasis in the present
work on the accurate treatment of short-range correla-
tions. Long-range (low-energy) correlations, not consid-
ered in this work, typically yield another 10% reduction
of the quasihole strength [30-33,36]. It has also been
observed that a correct treatment of the center-of-mass
motion may be responsible for another 10% reduction in
the quasihole strength [23].

The sum of the particle numbers listed in Table I is
slightly smaller (15.841) than the particle number corre-
sponding to '®0. There are several possible sources for
this discrepancy: First of all our analysis only accounts
for momenta k below 3.3 fm~! and we did not consider
partial waves with ! > 3. The restriction in k is de-
termined by the choice of Ny in truncating the “box
basis” [see, e.g., Eq. (18)]. Inspecting the decrease of
the occupation numbers listed in Table I with increas-
ing ! one can expect that the “missing” nucleons may be
found in partial waves with [ > 3. Furthermore, how-
ever, one must keep in mind that the present approach
to the single-particle Green function is not number con-
serving, as the Green functions used to evaluate the self-
energy are not determined in a self-consistent way [5]. It
should be pointed out that the depletion of the occupa-
tion probabilities of the hole states, indicated in Table I,
is particularly large for the s,,, orbit. This feature can
be ascribed to the closeness of the s;,, Hartree-Fock en-
ergy to the 2hlp continuum which yields more leakage
of strength to the continuum than for the p; /2 and ps/2
quasihole states.

Inspecting the contributions to #j; originating from the
various energy regions in Table I, one can see that the
major contributions are obtained from energies around
—100 MeV. Only small contributions come from energies
below —150 MeV. The same feature is also obtained if
one analyzes the momentum-integrated spectral function
of the continuum,

Ne(B) = S 2(2j + 1)/oo dkk? S5k, E),  (36)
1,j 0

shown in Fig. 4. As a function of the energy of the 2hlp
states, this density of states rises very rapidly just below
our threshold for 2hlp configurations at ~ —40 MeV,
shows a maximum at —60 MeV and a second local max-
imum around —85 MeV, reflecting possibly some shell
structure, and smoothly vanishes at lower energies. This
density of states corresponds to a prediction of the total
spectral strength to be observed in knockout reactions as
a function of the energy transfer.

The contribution of the 2hlp continuum to the mo-
mentum distribution is presented in Fig. 5, exhibiting
the contributions from partial waves with various I. The
momentum distributions displayed in this figure contain
the degeneracy factors 2(2j + 1) and are normalized in
such a way that [ dkni(k) yields the total number of
particles with orbital angular momentum !/ in the 2plh
continuum. This figure also shows that the largest con-
tributions are obtained for ! = 0, although the degener-
acy factor is small in this case. One can see, however,
that the decrease of the contributions with increasing !
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FIG. 4. Density of states or total occupation probability of
the 2hlp continuum as a function of the energy E [see Eq.
(36)]. The normalization of this distribution is such that the
integration over the energy yields the total particle number
of 1.816 (see Table I) in the continuum.
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FIG. 5. The momentum distribution for various orbital an-
gular momenta. These distribution account for the different
7, include the degeneracy factors 2(2j + 1), and are normal-
ized in such a way that fdkn,(k) yields the total number of
particles with orbital angular momentum ! in the 2plh con-
tinuum.
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is slow, supporting the above argument that the missing
particle number exhibited in Table I should be obtained
from partial waves with [ > 3. In addition, the centroid
of the momentum distribution is shifted to higher mo-
menta with increasing I. At momenta k£ ~ 3 fm™! the
largest contribution is obtained from ! = 3.

The total momentum distribution, including the con-
tribution from the quasihole states, is shown in Fig. 6.
This distribution is presented for various energy cutoffs.
The quasihole part reflects the cross section for knockout
reactions with small energy transfer, i.e., leading to the
ground state of the final nucleus and excited states up to
=~ 20 MeV. The curve denoted by E > —100 MeV should
reflect the momentum distribution including all states of
the final nucleus up to around 80 MeV, etc. As has been
discussed already in connection with the spectral func-
tions of Fig. 2 (see also Ref. [27]), the high-momentum
components of the momentum distribution due to short-
range correlations are expected to be observable mainly
in knockout experiments with an energy transfer of the
order of 100 MeV.

The total momentum distributions resulting from the
quasihole states and the 2hlp continuum are displayed
again in Fig. 7 and compared to predictions from studies
in nuclear matter [14,39]. In order to enable the com-
parison with the nuclear matter results, the momentum
distributions resulting from the present studies have been
divided by the particle number and are normalized in this
figure such that [ d®kn(k) yields 1. In order to demon-
strate the sensitivity of the calculated momentum dis-
tribution we show in this figure results obtained for the
Reid soft-core potential as well as those evaluated from
the OBE potential B, which is also used in our study of
160. The modern OBE potentials are considered to be

D
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FIG. 6. The total momentum distribution of **0O. Shown
are also the quasihole contribution and the results obtained
with various energy cutoffs in the integration of the spectral
functions.
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FIG. 7. The total momentum distribution obtained in the
present investigation for '®*O employing the OBE potential
B of Ref. [24] is compared to the momentum distribution
obtained in nuclear matter. Also given are results for the
Reid soft-core potential in nuclear matter [14]. In this figure
the momentum distributions are normalized in such a way

that fd3k n(k) yields 1.

“softer” than the older Reid potential. This is reflected
by the fact that the momentum distribution obtained
for the Reid potential yields larger values than those ob-
tained for the OBE potential. The comparison between
nuclear matter and finite nuclei demonstrates that the
enhancement of the momentum distribution predicted by
the present study for high momenta is well below the cor-
responding prediction derived from nuclear matter.

At first sight this discrepancy seems to be in contra-
diction to the success of the local density approxima-
tion found in Ref. [20]. Before we reach this conclu-
sion, however, one must consider the following points:
(i) The momentum distributions of nuclear matter have
been evaluated for the empirical saturation density. In
order to compare with a momentum distribution of a
light nucleus, like 160, the momentum distribution of nu-
clear matter at around half the saturation density would
be more appropriate. The momentum distribution of
nuclear matter tends to be smaller at high-momentum
transfers for smaller densities [40]. (ii) In our present
study of finite nuclei we only consider contributions to
the self-energy of the nucleons up to second order in the
G matrix (see Fig. 1), whereas the study in nuclear mat-
ter accounts for a self-consistent treatment of all ladder
diagrams. It is possible that a perturbative approach
underestimates the high-momentum components in the
distribution, since the G matrix is soft as compared to
the bare potential. (iii) Our present approach underes-
timates the effect of low-energy excitations [see discus-
sion of the single-particle spectrum in calculating the
self-energy following Eq. (9)]. For a finite nucleus it is
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quite possible that an enhancement of these correlations
due to low-energy excitations will provide an enhance-
ment of the momentum distribution around k¥ = 3 fm~—1.
(iv) Finally, we would like to recall that partial waves
with [ > 3, which were ignored in the present study may
provide a non-negligible contribution to the momentum
distribution at high momenta (see also Fig. 5).

Finally, we would like to discuss the effects of correla-
tions which are taken into account in the present inves-
tigation beyond the BHF approximation, on the ground-
state properties of 10. For that purpose Table II lists the
ingredients for calculating the total energy of the ground
state according to Eq. (31). Furthermore, we present re-
sults obtained for the radius of the nucleon distribution
[see Eq. (29)].

As a first approximation we consider the Hartree-Fock
(HF) approximation, which means that the self-energy
of the nucleons is approximated by Eq. (8). This im-
plies that the occupation probabilities are equal to 1 for
the three hole states si/3, ps/2, P1/2, and 0 otherwise.
The resulting binding energy per nucleon (—1.93 MeV)
is quite small. We believe that this small binding energy
is due to the use of the nuclear matter G matrix calcu-
lated at the saturation density, which overestimates the
Pauli effects as compared to a BHF calculation directly
for 160.

The treatment of the Pauli operator is improved by
adding the 2p1h part [Eq. (10)] minus the correction term
of Eq. (11) to the self-energy, an approximation which we
will call Brueckner-Hartree-Fock (BHF) in the following.
Note that the occupation probabilities of the BHF ap-
proach are identical to those of the HF approach. Indeed,
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this correction increases the calculated binding energy
to —4.01 MeV. This number is in reasonable agreement
with self-consistent BHF calculations performed for 10
using the same interaction [26]. However, as the single-
particle states of BHF calculations are more bound than
the single-particle states obtained in HF calculations, the
gain in the binding energy from HF to BHF calculations
is accompanied by a reduction of the calculated radius
of the nucleon distribution. This is the well-known phe-
nomenon of the so-called “Coester band” in finite nu-
clei [26], which plagues microscopic attempts to calculate
ground-state properties of nuclear systems already for a
very long time [41].

The inclusion of the 2hlp contributions to the self-
energy in the complete calculation reduces the absolute
values of the quasihole energies (compare BHF and “To-
tal” in Table II). This is to be expected from our dis-
cussion following Eq. (12). Despite this reduction of the
quasihole energies, however, the total binding energy is
increased as compared to BHF calculations. This in-
crease of the binding energy is mainly due to the contin-
uum part of the spectral function. Comparing the various
parts of the “Koltun sum rule” of Eq. (31) one finds that
only 37% of the total energy is due to the quasihole part
of Eq. (31). The dominating part (63%) results from the
continuum part of the spectral functions although this
continuum part only “represents 11% of the nucleons”
(see Table I).

The calculation of the radius, however, is dominated by
the quasihole contribution to the density. As the quasi-
hole terms have reduced energies as compared to BHF
calculations, it is plausible that the calculated radius in-

TABLE II. Ground-state properties of °0. Listed are the energies ¢ and kinetic energies t of
the quasihole states (qgh) and the corresponding mean values for the continuum contribution (c),
normalized to 1, for the various partial waves. Multiplying the sum 1/2(¢ + €) of these mean values
with the corresponding particle numbers of Table I, one obtains the contribution AFE to the energy
of the ground state [see the Koltun sum rule Eq. (31)]. Summing up all these contributions and
dividing by the nucleon number yields the energy per nucleon E/A. Furthermore, we give the radius
for nucleon distribution (r), calculated from the square root of Eq. (29). Results are presented for
the Hartree-Fock (HF), Brueckner-Hartree-Fock (BHF), and the complete calculation (Total). The
particle numbers for the gh states in HF and BHF are equal to the degeneracy of the states; all
other occupation numbers are zero. The results for the radii are given in fm, all other entries in

MeV.
HF BHF Total
lj € t AE € t AE € t AE
s1/2 qh -36.91 11.77 -50.28 -42.56 11.91 -61.30 -34.30 11.23 -35.98
8172 € -90.36 17.09 -22.89
p3/2 gh -15.35 17.62 9.08 -20.34 18.95 -5.59 -17.90 18.06 0.37
P3/2 € -95.19 35.19 -9.96
p1/2 gh -11.46 16.63 10.34 -17.07 18.46 2.76 -14.14 17.19 5.47
P1j2 C -103.62 35.94 -5.84
I>1c¢ -98.87 63.17 -12.27
E/A -1.93 -4.01 -5.12
(r) 2.59 2.49 2.55
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creases in the total calculation as compared to BHF cal-
culations. Therefore the inclusion of 2h1lp terms increases
the calculated binding energy and radius, moving the re-
sults for the ground state off the Coester band into the
direction of the experimental data. This effect is large
enough to explain the discrepancy obtained between the
experimental data and the results of microscopic Dirac-
Brueckner-Hartree-Fock calculations for finite nuclei in-
cluding relativistic effects [42-45]. We note that inclu-
sion of three-body forces in variational calculations for
160 also yields very good results for the binding energy
[22].

IV. CONCLUSIONS

An attempt has been made to derive the spectral func-
tion and the momentum distribution from a realistic
OBE interaction directly for a finite nucleus without the
assumption of a local density approximation. The corre-
lations taken into account beyond the Hartree-Fock ap-
proximation yield a strong enhancement of the momen-
tum distribution at high momenta. It is demonstrated
that this enhancement originates from the spectral func-
tion at large negative energies and therefore should be
. observed in nucleon knockout reactions with large energy
transfer leaving the final nucleus at an excitation energy
of about 100 MeV.

The enhancement of the high-momentum components
is weaker as obtained in studies of nuclear matter. This
difference may be due to approximations used in the cal-

culation for the finite system. Therefore further studies
of these approximations (poor treatment of low-energy
excitations, the self-energy of the nucleons is calculated
in a perturbative way including terms up to second order
in G) is required before conclusions about the validity
of the local density approximation relating the results of
nuclear matter to those of finite nuclei can be drawn.
Investigations along these lines are in progress.

The resulting Green function is also used to determine
the total energy and the radius of the nucleon distribu-
tion. It is demonstrated that the inclusion of two-hole—
one-particle contributions to the self-energy of the nu-
cleon yields an enhancement of the calculated binding
energy per nucleon (= 1 MeV) and an increase of the ra-
dius (= 0.05 fm) for %0 as compared to the Brueckner-
Hartree-Fock approach. This could be sufficient to ex-
plain the discrepancy remaining between experimental
data and microscopic Dirac-BHF calculations for finite
nuclei [42-45].
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