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Propagation of a A-body force into A-body space
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The calculation of the spreading width of a compound nuclear reaction caused by a symmetry
breaking K-body force acting in an A-body system (K (( A, usually K = 2) involves the deter-
mination of the local average square matrix element in A-body space. This problem is reduced
to finding the global mean square matrix element v in K-body space. The result is a compact
formula for the spreading width which contains v as an input. Our method is based on the dilute
gas approximation for excitons close to the Fermi edge. The relative strength of the contributions
of operators with di8'erent exciton rank as well as the connection between the energy dependence of
the spreading width and the body rank of the underlying interaction are established.

PACS number(s): 24.60.Dr, 24.80.Dc, 25.70.Gh

I. INTRODUCTION

The compound nucleus (CN) has received consider-
able attention —both theoretical and experimental-
in recent years because of its seeming ability to enhance
the effects of the weak interaction to a few percent (see,
for example, [1], and references therein). In the present
study we consider the breaking of symmetries caused by
K-body forces in the compound process in general. The
adequate quantity to characterize symmetry nonconser-
vation in many-body systems is the spreading width due
to the underlying interaction [2]. Although in most ap-
plications a two-body force is used, we treat the case of
arbitrary K since it will allow for some insight into the
energy dependence of the spreading width. This pro-
vides a generalization of the results presented in [3] and
the communication of some details omitted therein.

In the statistical theory of CN reactions the matrix el-
ements of the interaction are assumed to show the char-
acteristics of the Gaussian orthogonal ensemble (GOE).
The crucial point is that statistical assumptions of this
kind can only be made about the defining matrix ele-
ments, i.e. , the matrix elements in K-body space. How-

ever, the quantity of physical interest is the matrix el-
ement in A-body space. The connection between the
properties of the K-body matrix elements and. those in
A-body space is called the propagation of the defining
matrix elements [4]. In the present article a solution for
this problem is overed which consists of the transition to
the exciton picture (with the accompanying simplifica-
tion of the basis states and complication in the descrip-
tion of the interaction), the propagation into the sub-
space of fixed exciton number, and the averaging over
subspaces, which implies the return to the body picture.

This proced. ure is necessary because our formalism makes
use of the dilute gas approximation (DGA) which —in
contrast to the body picture —is very good in the ex-
citon representation of the system. In the final sections
then, the general expression, which involves a convolu-
tion of partial and total densities of states, is evaluated
by inserting well-known analytical formulas for the level
densities, the results are discussed, and limitations of our
approach are indicated.

II. CONCEPTS

A. Spaces and bases

The physical quantity we are interested in is the
spreading width

(2.1)

Here, ((V )) is the mean square matrix element of the
K-body interaction V, and p is the level density of the
system. The matrix elements are calculated in a basis of
eigenstates to those parts of the Hamiltonian that dom-
inate the behavior of the system. The spreading width
due to additional, symmetry breaking interactions then
measures the extent of symmetry breaking in the system.
This may includ. e the breaking of the independent parti-
cle structure, isospin symmetry or parity by the residual
strong, the electromagnetic or weak interaction, respec-
tively. In order to treat properly the variation of I'~ with
energy, the average ((V )) is limited to states in the neigh-
borhood of some given excitation energy E. In fact, part
of the present work will consist of the calculation of the
strength function

(2.2)
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which implies the average over squared matrix elements
between configurations close to E and configurations
close to E'. Once the basis has been specified in detail,
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this local average will be defined in Sec. III. The basis
we work with is built up &om the single particle states
IA) that satisfy the canonical Hartree-Fock equations

(u+ uHF)IA)
—= hoIA) = spIA), A = 1.. . D. (2.3)

(2.4)

Here, D is the dimension of the one-body space spanned
by the discrete set of bound states, u is the one-body
kinetic energy operator, and uHF is the Hartree-Fock
mean field operator constructed from the strong nucleon-
nucleon interaction, which does not include the symme-
try breaking interaction V for which the spreading width
shall be calculated. Let us introduce the creation opera-
tors bt& and the physical vacuum

I ) so that

(2.11)

The energy of the vacuum is called

C

~c =—).s), .
A=1

(2.12)

Every configuration IA) can then be characterized by a
vector

excitons are fermions. The single body space is split into
two subspaces, the single particle space with dimension
dz = D —C and the single hole space with dimension
dq = C. The exciton vacuum IO), the core, need not be
identical to the ground state of the A-body system under
consideration, i.e., at present we do not fix

These operators fulfill the fundamental anticommutation
relation P —= (rg, . . . , rp), r;&C (2.i3)

(4, bg)=4) ~ (2.5) of its particle configurations and by a vector

IA) = IAg. . . A~)—:bt . . . btq
I ), (2 6)

A basis of A-body states is then given by all possible
A-fold applications of creation operators:

H —= (ng, . . . , nh, ), ni&C (2.i4)

of its hole configurations. Every independent particle
configuration IA) can be expressed in the form

with the condition IH) =a.' ".a.', a.', " a'..Io) . (2.15)

A1 & A2 & . . . & A&.

The energy F~ of this many-body state is

(2.7)

(2.s)

The combination of operators appearing in this equation
will also be written as

(2.i6)

As usual we introduce the energies

aq =6~
a~ ——bp

for A) C,
for A&C, (2.9)

acting on the exciton vacuum

The energy of the ground state Il. . . A) is P, ~s, and
will be denoted Z~. The states (2.6) span the whole A-

body space of dimension (&), but for low energy consider-
ations it is convenient to split the A-body space into sub-
spaces of increasing complexity and energy and to restrict
the description of the system to the subspaces in the en-
ergy range of interest. Technically this idea is realized by
the transition to the exciton picture. For moderate exci-
tation energies the state of the system does not strongly
difI'er &om the ground state, and there will be only a few
states occupied above and unoccupied below the Fermi
energy e~. This will make it possible —in Sec. IIIA

to introduce the so-called dilute gas approximation
and treat the present problem in closed form. Let us
therefore introduce the exciton creation operators [5—7]
at& according to [S]

(2.i7)

of the particle configurations relative to the core level as
well as the energies of the hole configurations

&a, =—&C &cx, (2.is)

The energy of the state (2.15) then is

h p

FH = ) t~, + ) 6~,. + tc + EcA = Eg + Zc + sc4

(2.19)

The symbol e~ has been introduced to simplify the nota-
tion. In the present paper the letters r, s, t, u, or v will be
used for particle states and n, P, p, b, or e for hole states;
configurations of the physical constituents of the system—called bodies —are labeled A, p, v, p, or a. If one
chooses C & A, the ground state of the system has L
particles and no holes, otherwise it has no particles and
—L holes. Generally one has

o) —= Ii. . .&) (2.io) (2.20)

One then has ap Io) = 0 for all A and the anticommutation
relation (2.5) holds for the operators a, too. Briefly: the p & p;„=max(b, , o), h & max( —b„o) . (2.21)
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The maximum number of particles is A and that of holes
C = A —A. Hence, the exciton picture provides a de-
composition of the A-body space into mutually orthogo-
nal subspaces Mz, p = p;„,. . . , A. The dimension of the
subspace Ltz is d(U&) = (&") ("~). We use the following

notation for many-exciton states: A state +, ) contains
the same numbers of particles and holes as H) on possi-
bly different single exciton states. A ket

I
+I) on the other

hand differs &om
I ~) with respect to exciton number as

well as single exciton states.

B. Conventions of summation

(2.24)

which means that the ordering has to be observed only
within each group of indices separated by semicolons. In
the following use will be made of the identity

(2.25)

which holds because the squared matrix element is com-
pletely symmetric with respect to the 6 indices in H, but
vanishes if any two of them coincide.

The spectral average over the squared matrix elements
of V implies sums over the basis states (2.15). To avoid
double counting of the basis states a definite order of
the indices r and n in Eq. (2.15) must be observed. We
therefore introduce the notation

(2.22)

Here, the n; with i = 1, . . . , 6 run over the configurations
1 & a; & C. The sum is called restricted because of
the restriction n~ & . . . ( o.I, imposed on the permitted
terms. Hence, the sum has ("&") terms. In contrast the
suxIl

C. Interactions for bodies and excitons

i1(...(i~=1
(2.26)

Now that the basis we are going to work with is spec-
ified, we turn to those parts of the interaction that
have not been considered in its determination and con-
sequently cause transitions between basis states. Apart
&om the residual strong interaction this includes the elec-
tromagnetic, weak, and other possible forces. In occupa-
tion number formalism, a K-body operator

(2.23) has the form

is called unrestricted and has (dq)" terms. Correspond-
ing conventions are used for the set P of particle config-
urations. For later purposes we compress the notation
of (2.22) further:

P1~-"~Pa ~ Vi ~-"~V@}
X6V ~ ~ e 6V (2.27)

with the totally antisymmetric matrix element

-2

FIG. 1. Two-body interaction in the exciton representation: Diagrams with A; = 1, 2.
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TABLE I. Thoro-body interaction in the exciton picture.

Classification Operator Diagram

oV(o,o) + Z&p, y(P~IvIP&)

«V( —«,«) + Pp, (PplvlPa)a a,

«V(o, o) —Ept-, (P&lvl&') a,'at

«V(o, 2) + Ept. (PalvlP~)a.'at

«V(«, «) + Zp, .(PalvIP~)a'. a,'

2V( —2,2) + Z(p~Htt)(Pplvla&)a~apatat

2V(-«, «) + P(ph), (Pblvl7a)atat;apa,

2V( —«,3) + Pp(, „)t(Ptlvlau)attapa, a„

2V(o, o) + E&„Hpgy(7~Iv IP&) aptata. a,

2V(o,2) —Z, tp. (7alvIP&)a! ap",at
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TABLE I (Continued).

Classification Operator Diagram

+ P(,„1(g„l(su~ v~tu) at a tasse

V(i i) + ps(p 1,(bs~v~pp)ataptatas

+ g„pi„l(st~v~pu)a~tatapta„

2V(2, 2) + E(p,H.~1(stlvlW )ai".'a pa,'

V=)
k=0 a= —k

ch, q=2

(2.28)

(pq. . .pit. ~v~vq. . . va). How is this representation af-
fected by the transition to the exciton picture? The range
of summation of every index is split into two parts, body
operators are replaced by exciton operators according to
Eq. (2.9), and the resulting terms are brought into normal
order and grouped according to particle-hole structure.
For K = 2, the result is given in Refs. [5,7,9] and is re-
produced in Table I. The interaction is the sum of the 14
terms kV( q) listed there together with their Feynman
diagrams [9]. The diagrams facilitate the visualization
of the systematics in and the generalization of the con-
tents of Table I, see Fig. 1. The exciton operators can
be classified by the three numbers k, a, and q. The rank
k of kV(& q) is half the number of external lines in the
corresponding diagram. One Ands 0 & k & K. The
parameter a is the number of particle-hole pairs created
by kV(~ q) the interaction does not conserve the num-
ber of excitons; the conservation of the number of phys-
ical bodies, however, requires that the exciton number
changes by particle-hole pairs. The range of a obviously
is —k & a & k. Finally, q is the number of upward arrows
in the diagram. One recognizes that q changes in steps of
two, since for fixed a every additional particle before the
interaction leads to an additional particle after the inter-
action. The range of q is found to be [a~ & q ( 2k —~a~.
Hence,

N++ N =2k,

1
p+ —p =h+ —h = —(N+ —N ) =a,

2
(2.29)

p+ —&+ =p- —h- =v —k,

p + h+ —p+ + h = k .

Furthermore, we introduce h~ = K—k, which is the num-
ber of contracted hole indices of kV( q). The contracted
indices never appear with exciton operators. Since as a
consequence of (2.9) hole indices associated with creators
(annihilators) appear in the bra (ket) of the matrix ele-
ment, the general structure of I,V( ~) is [10]

In the table, the operators with k ( 2 have contracted
hole lines that represent the interaction of the excitons
with the nuclear core. lt is easily seen (and holds for
arbitrary K as well) that the number of particle and hole
lines before and after the interaction is given by N
k —a and N+ = k+a, respectively. Out of these there are
p~ = 2 particles and h~ = N~ —p~ ——k —p+ holes.
We give a few identities that clarify the significance of
these quantities:
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Ie+(o e) ) ) ) ) ) (o~ . "~~~&~". t3h t~ " t&+

IVIES~

o"'hc Yl Yh+ sl . sp )
(~i-"~~c) (P1-"p~ ) (» "-8P ) (».- »+ ) (~1" ~P+ )

xa~ . . . a~ a~ . . .a~ ap], . . . apnea„. . .a,
P+ 1» fh.+ P—

(Hc., H P;H+P+)
(H»H P~~U~H»H~P ) (A»+) (A» ) (2.ao)

D. Partial and total level densities of holes and particles that occur:

In the statistical model of CN processes, reaction rates
are dominated by the available phase space. This calls
for a detailed knowledge of the densities of states, which
have been the subject of intensive studies, see, for exam-
ple, [11—14]. In the present section, we quote the results
relevant for the sequel. The density of states for the A-
body system,

) ~(E-Ea) —= pg, „(E)= p„r, ,„(E) .
(HP)

(2.36)

IIere, EH = ~H —~A = ~H + ~C + ~e& —~A =—~H + .
The shift 8 is nonzero only if ( g A. Summation over
the subspaces yields the total density of states:

p(F) = ) b(t —E'g), (2.31) p=max(6, 0)
p„~,„(E)= p(E) . (2.37)

is approximated by continuous expressions derived with
methods of statistical mechanics. The famous Bethe for-
mula is

The identity (2.37) is of course independent of A. A
different 4 merely implies a different description, but
does not alter the physics of the level density of the A-
body system:

(~) exp[2(m'gE/6) '~2]

~48E
(2.32) ). ): ~(E —EI a)-

Here, E is the excitation energy of the system, E
8 —E'~ (with the ground state energy fA), and g is the
single body density at the Fermi edge. Blatt and Weis-
skopf [15] give the expression

p( (E) = Cexp[2(uE) ~ ], (2.33)

p(cT&) (y) p(y )e(w wo)/T' (2.34)

Here we have called the excitation energy y, because we
will need the total level density in this form in Sec. IV B.
The nuclear temperature is defined as

6yo
7l g

(2.35)

Gilbert and Cameron [12] and Egidy and collabora-
tors [16] have compared these expressions with experi-
mental data on nuclear level densities and found that the
CTA gives a good fit up to excitation energies of approx-
imately 10 MeV, whereas above this value the Bethe or
Blatt and Weisskopf expressions must be used.

Since we are going to work with the exciton picture, we
need expressions for the densities of states with fixed ex-
citon number. They will be characterized by the number

which may be understood as an approximation to
Eq. (2.32) in so far as it contains only the term varying
most rapidly with energy. Finally the approximation of
constant temperature (CTA) yields a purely exponential
increase for the nuclear level density, i.e.,

p=max(A, O) (P—A,P)

p=max(~~, 0)

= p(E) .

). ~(E —Ef-~ )
(P—6',P)

(2.38)

A

) ) S(E —.~ ~ —S)
p=max(6, 0) (P—A,P)

A

) ) b(E —e~ ~, —8'), (2.39)
p=max(6', 0) (P—b ',P)

Since we are going to make use of this invariance property
of p in Sec. IIIB, it is necessary to explain in detail how
it is to be understood. The sum over p on the right-hand
side (rhs) of Eq. (2.38) may contain subspaces (e.g. , 1p
ah configurations) that do not appear at all on the left-
hand side (which could start with the subspace of 2p Oh

configurations). And also the single exciton spaces are
different: an increase of 4 decreases the dimension of
the single hole space and enlarges that of the single par-
ticle space. If we assume a constant spacing of the single
body levels, however, the single exciton energies e„, and

, in Eqs. (2.17) and (2.18) that occur in the summa-
tions over the subspace configurations are not affected
by the transformation (2.38) —except for the highest
excited states. We can safely ignore this difference in the
energy range of interest. Explicitly, the identity (2.38)
then reads
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where 8' = fc + sc 6' —Zg, see below Eq. (2.36). Er-
icson [ll] gave the well-known approximate expression

S(,„)(E', E) = ) ( IVI ) h(E' —E )b(E —E )
ALT; HP}

(E ) g[g(E —8)] +~

u Iilpt(h + p 1)!
(2.40)

(3.1)

The local average (V ) over the squared matrix elements
between states with E, N and E', %' then is

for the partial density of states (2.36). It is valid if
the Pauli principle for excitons is ignored. This corre-
sponds to the "dilute gas approximation" discussed be-
low. Equation (2.40) was later on improved in many
respects (e.g. , [17,18]), but is widely used because of its
simplicity.

III. PROCEDURE

A. Propagation into the subspace

The strength function for transitions between states of
energy E and exciton number N = p + h, and states of
energy E' and exciton number N' = t +l is defined as

(V') p&, ~(E')ps,„(E)= ~(~,p)(E' E) (3.2)

where the partial densities of states are defined in
Eq. (2.36). Hence, the average is defined with the delta
functions of the energies as weighting factors. However,
in the present context h(E —EH) is to be understood not
as the Dirac distribution, but rather as a peaked function
of suitable width. The "suitable width" is large com-
pared to the average level spacing and small compared
to intervals over which secular variations of the level den-
sities occur. This guarantees that densities of states and
strength functions are smooth and can be reasonably ap-
proximated by the expressions of Sec. IID. The strength
produced by the interaction operator I,V( q) is by spe-
cialization of Eq. (3.1) and use of Eq. (2.30):

"~(g,„')'(E' E) —= ). (LI ~V(-,q) I
H)'h(E' —EI.)h(E —EH)

(LT; HP)

).(il
(LT; HP} (H~, H+P+ ,

.H P }
) (H~& +l"l&~~~ )-(4H;) ( H -) Ig)'~(&' —ET)&g—&g) (»' )

(KilvlK2)(KilvlKz) = v'[4;hjc; + hler;hler;] (3.4)

Note that of the seven quantities that specify the
strength, only six are independent since t = p+ a. Fur-
thermore we observe that a nonzero contribution comes
only from the subspaces with p & p and 6 & h, be-
cause otherwise the matrix element vanishes. We proceed
to estimate this expression in three steps.

(i) In the first step the K-body matrix elements of V
are considered to be entries of a random matrix. In-
voking time reversal invariance we postulate that V (in
K-body space) belongs to the Gaussian orthogonal en-
semble (GOE). This means that the second moments of
the matrix elements in Eq. (2.27) can be expressed by a
single parameter v, nainely (a bar over a symbol denotes
the ensemble average)

for K-body configurations Ki, K2, Ki, K2. Here, b~~, is
a generalized Kronecker symbol [19] with the properties

1: if K' is an even permutation of K
—1: if K' is an odd permutation of K

b~, ——] 0: if two indices out of K or out of K'
coincide0: if K' is not a permutation of K .

(3.5)

This allows us to estimate the strength function (3.3) by
its ensemble average, or, by the same token, the spectral
average (V ) is identified with the ensemble average.

(ii) How does the correlation rule (3.4) translate into
the exciton picture? We And the following relation:

(HcH P+IvIH~H+P )(L~L T+IvILcL+T ) = v [b~ ~ ~ b~ H+ ~ + b~ ~+ ~ h~ ~ ~ ]. (3.6)

In principle, Eq. (3.6) allows the simplification of the various terms in the strength function (3.1). The evaluation of
the sum over the hole indices (Hc, H+, H ) in Eq. (3.3), however, is complicated by the fact that it is not completely
restricted in the sense of Eq. (2.22). We therefore use an approximation to Eq. (3.6):

(H~H P+IvIH~H+P )(L~L T+IvILcL+T ) = v b~ [hH ~+ h~+p + h~+~ h~ ~ ]. (3.7)
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The quality of this approximation is discussed in Appendix A, where the additional correlations resulting from Eq. (3.6)
are found to be negligible. Note that rule (3.7) implies that different exciton operators are uncorrelated. Therefore
the cross terms appearing in (3.1) do not contribute to the strength function, which may consequently be obtained
by summing Eq. (3.3) over A, , a, and q. With the approximate correlation rule one easily arrives at:

~('~",)'(F' F~ ="' ~. ). (l»("»",} (+» }») ~(~' —~»)~(~ —&»)
H~,. H+P+, H P ) (LT; HP

(3.8)

The contribution of the second term on the rhs of
Eq. (3.7) is restricted to the diagonal elements of the ma-
trix and is therefore neglected relative to the first one. By
Eq. (3.8) the problem factors into two aspects: All infor-
mation that is specific for the interaction is contained in
v . In the present paper this factor is taken for granted.
The remaining sum is common to all interactions of body
rank K. It represents the phase space aspect of the prob-
lem, the propagation of the K-body force into the A-body
space. The summation over IIc, which appears for all op-
erators with k ( K is now trivial and yields the factor

(:.")
(iii) The sum over (LT; PH) is rewritten in a form

which one can call the separation of actors and spec-
tators. The configurations (H+P+) and (H P ) that
appear in the operators A are called actors. They must
appear in (I I

and
I g), respectively, if the matrix element

in Eq. (3.8) is to be diferent &om zero. The remaining
configurations that are possibly present in (L I

and
I g)

are called spectators. As proven in Appendix B one finds

(P (~„}(~„-}~»)' fjI„T,~, J)
(LT; HP)

(H —h, P —p )
gH P H+P+

f[(H —h, H+), (P —p, P+),

x(H —h, H ), (P —p, P )], (3.9)

where f is any function that is completely symmetric in
the indices contained in I,T, H, and P (for each group
separately). The sum on the rhs of Eq. (3.9) runs over
the spectators. The notation fH —h, P —p ) means
a string of 6 —6 indices of holes and a string of p-
p indices of particles that observe the restrictions of
Eq. (2.22). In Eq. (3.9), there is the additional restriction
g H P H+P+ which means that none of the indices in
(H —h, P —p }is allowed to coincide with any one of
the indices in H P H+P+. With the help of Eq. (3.9)
one can simplify Eq. (3.8) as follows:

G"
(H+P+., H P )4H —"—P —p —)

gH+P+H P

= v'
l

"
~ ) ) f d» b(E' —y —c»' )$(F —» —E)b(»e» »~~- —S), (3 yn)

+P+ ~ a P ~ (H —h P —p
~)

g H+ P+ H P

where we have used EH h
—p~ h

—8. As already mentioned, the sum over the spectators is not independent of
the sum over the actors: The spectators are not allowed to occupy the exciton states of the actors. This is on]y a wea
condition if the dimensions of the single particle and single hole spaces are much larger than the number of excitons
tha«ccur. If the energies E and E are not too high, this will be true and one can treat the sums in Eq. (3.] p) as
independent. This is called the dilute gas approximation (DGA). It allows us to express the strength function by the
convolution of partial densities of states

~~, '~'(E' E) = 'I
I de~, ,„,(E' —~+~)~,„(E—~+~)~,„„(v).

C
(3.11)

As discussed in detail in Appendix. A, the conditions
for the validity of the DGA and for the applicability of
the approximate correlation rule (3.7) are essentially the
same.

B. Propagation into the A-body space

In Sec. IIIA, the matrix element was averaged over
configurations with given exciton numbers. This result

~(E' E) —= ((V'))» (E')~ (E)

). ). ( Iv
t,p=m x(A, O) (LT; HP)
»(E' —Ei )~(E —Ess) (3.12)

is useful if preequilibrium reactions are studied. In equi-
librium CN reactions one asks for the average ((V2)) over
the full A-body space which is defined as
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in close analogy with Eqs. (3.1) and (3.2). The summa-
tion of the partial strengths up to p, t = A is formally
correct although in the energy range we are interested in
(and committed to because of the DGA) by far not all
subspaces come into play. The high energy subspaces are
excluded by the multiplication with b functions. As dis-
cussed in the last section and in Appendix A, difFerent
exciton operators are uncorrelated in the framework of
the DGA. We therefore obtain the strength S(E', E) as
a sum of the contributions by the operators A. V(

&s(~.q) (@' @)—
min(A, A —a}

p=max(A+% —~+&, ~
2 )

ks(a, q) (@i @)p ip

(3.14)
where the condition t = p+ a has been used to evaluate
one of the sums over the subspaces. The lower limit of
the remaining sum guarantees that p )p, 6 ) h [see
below Eq. (3.3)] and p & b, [see Eq. (2.20)]. The upper
limit ensures that p, t & A. We introduce the index of
summation i = p —q

2 and the strength becomes

s(E', E) = ) "s( ')(E', z), (3.13)
ks(a, q) (Ei @)

e+ I~ I

i=max(b +k —q, o}
S((,. 'q),.

)
(E', E) .

in obvious notation. These contributions, in turn, are
easily expressed by the strength functions (3.3): The second form of Eq. (3.10) then yields

(3.15)

A——e+ I~ I

2

"+"'(@',&)i=~'I "I ). ). Jdvi„, „(E —
.
u+&')p, ,, (& —u+&)

i rnex =jl(a+a —q, o)

xh(y ~I r I+q —S)—. (3.16)

Here, the partial level densities of actors are the same as
those in Eq. (3.11). In Eq. (3.16) the expression

R(y) = ) h(y —e~ ~, —8) (3.17)
p=max(a', 0}(P—S',P}

A

~(y) = ). ) ~(y —ep D' S') . (3»—)
p=max(h', 0}(P—6',P)

Expressions (3.18) and (3.17) difFer in two respects: (1)
The subspaces with p = A' + 1.. . A do not appear in
Eq. (3.17); (2) the argument is shifted by 8' —8. In
the energy range of typical CN reactions the first point
is irrelevant so that the only remaining difFerence is the
shift of' the argument:

appears with A' = A — +z and 4' = L+ k —q = 4+ z.
We want to compare B with the total density of states
p of the A-body system, the definition (2.37) of which is
quite similar to the expression (3.17). The comparison
with p(y) is possible if we exploit the invariance of the
nuclear level density under shifts of the exciton vacuum.
We recall Eq. (2.39):

"s"'(E',E) = ~'l
z l

dy ~~, ,„,(E' —y)ch. ,„
dh, ')

x(@ y)&(y @ ) (3.21)

with

z(z+ 1)z-
2g

(3.22)

which is the energy needed to create z particles (negative
z corresponds to the creation of holes).

IV. RESULTS

A. Transition rates in the exeiton model

lation depends on 6, which a priori we may choose ar-
bitrarily. On the other hand, however, the choice of 6
determines the quality of the DGA: it is best if those
subspaces that contribute most to the strength are made
up of as few excitons as possible. The more states are
excluded by the Pauli principle, the larger is the error in
Eq. (3.16). Evaluating the integral, we choose 4 = 0,
which optimizes the DGA. Hence,

(3.19)

z (z+1
&(y) =~ y ——

I

+&
I)

(3.20)

At first sight one may be surprised to find that this re-

In the approximation of equidistant single body levels we
find the relation

Formula (3.11) can be applied to the exciton model of
preequilibrium nuclear reactions. In this model, which
was formulated by Griffin [20] and has later been refined
by several authors [21—24], an important concept is that
of transition rates between subspaces of difFerent exciton
number. These appear in the master equation for the
time dependence of the system. Transitions are assumed
to be caused by the residual interaction of a strong two-
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body force V. The rate for going from the subspace Q„
to Q„+ is given by

(4.1)

and is related to the strength calculated in Sec. IIIA
according to

~p p+-(E) pg (E) = —) '~(„+.'„)(E E) .

Note that the residual interaction consists by definition
of the operators with exciton rank k = 2 that appear if
V is expressed in the exciton picture using the Hartree-
Fock single exciton configurations. Invoking the Ericson
densities (2.40) and 4 = 0, the convolution (3.11) can
easily be evaluated and leads to the transition rate

(4.3)

with the density of final states

t'dpi &p5 (hl f'N+k+a —2l

«~) V-) Eh-) &

f 2k —2
(4.4)

where K = p + h, see above Eq. (3.1). Because of the
last binomial only operators with k ) ~a~ contribute.
The final state densities that appear here in the con-
text of propagation of the defining GOE matrix elements
have been obtained earlier for k = 2 by combinatorial
arguments on the states accessible in two-body colli-
sions [25,26,18]. Originally, v was a fit parameter. It
is identified here as the average square of the antisym-
metric K-body matrix element.

B. Spreading width in A-body space

Formula (3.21) can be evaluated by inserting Ericson's
expressions for the partial and the CTA for the total
density of states, see Eqs. (2.40) and (2.34). The operator
I, V~ ~~ then yields the strength:

"~&- &(E) = i'""'ii' '" ' 'i ""'"'
"

(h~) (k+a —1) p, !h,!p !h !

z(z+ 1)5

2gT
(4 5)

We have chosen yo
—E in Eq. (2.34). As mentioned in

Sec. IID, below E 10 MeV one should use the tern-
perature T tabulated in Ref. [16]. For E ) 10 MeV, the
temperature should be determined from Eq. (2.35), again
with yo

——E [27]. In experiment, of course, the efFect of
the interaction V as a whole is measured. The spreading
width (2.1) is obtained by summing Eq. (4.5) over k, a,
and q after dividing through p(E). This gives

r~(E) =2.v ).
~

""
~~(hc) (k+ a —1) p+!h+!p !h !

z(z+ 1) l
x exp

2gT
(4 6)

Usually a two-body ansatz is made for the interactions
between nucleons. We therefore explicitly carry out
the summation in Eq. (4.6) for this case. The factor
exp[ —z(z+ 1)j2gT] by which the total spectator density
deviates &om the nuclear level density —close to unity
for typical values of T, g and E —is ignored here in order
to analyze the general properties of the spreading width.
One finds:

r~(E) = 2 "g'T [2d, + 5(gT)'], (4.7)

lIQ E & 10MeV,
10 MeV/E: E ) 10 MeV. (4 8)

Thus the rank one and rank two exciton interactions con-
tribute about equally strongly to I'~ in the energy range
of typical CN reactions.

C. Discussion

Within the framework of the statistical model the
spreading width due to an arbitrary K-body force has
been calculated for a compound nuclear reaction of an A-
body nucleus. The spreading width is the adequate mea-
sure for symmetry nonconservation in complex many-
body systems [2,28]. It measures the extent to which the

which is a remarkably simple result. We emphasize two
aspects of it:

(i) According to Ref. [16] this is a constant as a function
of E below E 10 MeV because the nuclear temperature
should then be independent of E. At higher energy the
leading term behaves as E ) . Altogether this amounts
to quite a weak energy dependence of I ~ for moderate
E especially if compared to the exponential energy
dependence of p. This result is in qualitative agreement
with the systematics of the spreading widths pertaining
to isospin violation [2]. Equation (4.6) shows that the
leading energy dependence of I ~ will be E~ ~ «~~ if the
body rank of V is K instead of two. This demonstrates
that the reason for the weak energy dependence of the ex-
perimental I'~ is the two-body character of the symmetry
breaking interaction: With increasing excitation energy
the complexity (in terms of excitons) of the states in-
creases. This decreases the fraction of states that can
be connected by an interaction of low rank, hence the
local average square ((V )) decreases. Consequently, the
product of ((V )) and p varies slowly.

(ii) The contributions "I'"of the exciton potential (k =
1) and the exciton scattering (k = 2) to the spreading
width are given by the first and second term on the rhs
of Eq. (4.7), i.e. , by the terms proportional to T and T,
respectively. Inserting the typical value of T = 0.5 MeV
for E & 10 MeV [16] and g = A (13 MeV) i as well as
dh = A (which optimizes the DGA), one finds
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states are smeared out due to the presence of the symme-
try breaking force. It also appears as the damping width
of a simple configuration —such as an isobaric analog
state or a giant resonance —into the complex compound
nuclear configurations. Definite numbers for a particular
interaction can be given if Eq. (4.6) is complemented by
the calculation of the spectral average of the interaction
in K-body space. Obvious applications are the electro-
magnetic and weak forces, responsible for the breaking
of isospin and parity, respectively. Numerical studies in
that direction are currently und. er progress. For the case
of isospin breaking a weak dependence of the spreading
width on energy and mass number is known [2]. In the
present study the energy or temperature dependence has
been related to the body rank of the underlying inter-
action. The variation of I'~ with temperature can be
compared with the results of other authors. Assuming
that the spread of a one-exciton configuration (a lp Oh

state) is proportional to the square of the excitation en-
ergy [29,30], Lauritzen et al. [31] have concluded a Ts
dependence for the spreading width in general. Since
the decay of the one-exciton configuration is caused by
2V~i si, we indeed find from Eq. (4.4) its damping to be
proportional to E, and Eq. (4.7) indeed indicates a Ts
dependence of the spreading width in A-body space (for
transitions caused by the strong interaction only). Study-
ing the coupling of surface modes to single particle mo-
tion, Esbensen and Bertsch [32] found the "elementary
damping" to be proportional to E, which in the frame-
work of Lauritzen et al. corresponds to a T dependence
of the spreading width. There is nothing analogous in
the present results since we did not consider collective
motion in the present paper. De Blasio et at. [33] report
the damping of giant resonances to be independent of the
nuclear temperature. Again the reason is that the statis-
tical damping of the present study is difI'erent &om the
damping mechanism considered there. This is also true
for the study of spreading properties of isobaric analogue
and Gamov- Teller resonances by Colo et al. [34]. This pa-
per indicates, however, that the statistical damping must
be taken into account in order to explain the widths of
the resonances.

Frequently the treatment of parity violation in CN re-
actions is restricted to the k = 1 part of the weak inter-
action [35—39]. Equation (4.8) indicates, however, that
the contribution of the operators with exciton rank two
should be included in the calculation of a local mean
square matrix element.

The average v in K-body space is by definition taken
over the bound K-body states only. This is not a com-
plete system of states. The result may therefore depend
on the mean field that generates the one-body states from
which the K-body states are built up. Consider for in-
stance K = 2 and an interaction which is proportional
to a delta function and independent of A. Nevertheless
the two-body matrix elements of this interaction decrease
with increasing volume of the system, i.e., with increasing
A. We may therefore not rule out a variation of v with
mass number. Consequently, Eqs. (4.6) and (4.7) might
not exhibit the complete A-dependence of the spreading
width, which is expected to be weak.

Finally we point out the limitations of our method. .
The Hartree-Fock method and the particle hole formal-
ism rely on a basis of product states. Such an indepen-
dent particle model cannot describe collective phenomena
in nuclei. The present results therefore must be modified
if applied to reactions that involve collective excitations.
A second problem are the efFects of the symmetries re-
spected by the interaction under study. These effects will
of course manifest themselves automatically when the
spectral average in the K-body space is calculated. The
use of partial level densities for the actors that contain all
states at a given energy irrespective of further quantum
numbers, however, neglects possible local effects of the
respected symmetries. We give an example to illustrate
this complication. Consider the weak potential (k = 1) in
a nucleus. This operator connects many-body states that
differ by only one single-body configuration. Parity vio-
lation and conservation of total angular. momentum de-
mand that the single-body states difFer in / but not in j.
Since single-body states with Ll = +1 and Lj = 0 only
exist in diferent shells, they are separated by a relatively
large energy interval. Consequently, the present local
average suppresses these contributions to the spread. ing
width. The two-exciton part of the weak interaction on
the other hand is not subject to this "local selection rule"
because it simultaneously changes two single-exciton con-
6gurations. This fact was first pointed out by Lewenkopf
and Weidenmiiller [40]. They estimated that the k = 2
part of the weak interaction dominates the local mean
square matrix element. In Sec. IV B it was found that
potential and scattering contribute about equally to the
spreading width without taking the local eKects of the
symmetries into account. SufIiciently elaborate expres-
sions for the single-exciton level densities of the actors
before and after the interaction would. only overlap in a
small energy range, and consequently the convolution of

ph (E —y)ph (E —y) with p(y —E,) would result
in a smaller contribution of the potential to the strength.
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APPENDIX A: GOE CORRELATIONS IN THE
EXCITON PICTURE

In this appendix, the differences between the ex-
act (3.6) and approximate (3.7) ensemble average are
discussed. We find that Eq. (3.6) leads to two types
of additional correlation that do not appear in its ap-
proximation. Considering two examples, it will also be
found, however, that these additional terms are of the
same order of magnitude as those neglected by invoking
the dilute gas approximation. Since the central formu-
las of Secs. IIIA and IIIB rely on the DGA, it is not
necessary and indeed would be inconsistent to take these
quantities into account in the evaluation of the strength
function.

The correlation coefficient for two operators is
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Ckk' —= (I I kV(, q) I H')(I I k'V( ', q') I H) (Al)

HC ., H P;H+ P+ }
LCiL —T—iL+ T+}

(H~~ ~+I"IH~~+& )-(1~& 7-+I~llcl+T )(-Kl (~~') (~H ) I~)(KI (~i") (~i ) lg).

Estimating this expression by its ensemble average, we obtain:

CII =V2

{HC H —P—'H+ P+
{LCiL T;L+T+}

~% ~:~;~~.~ ~:(il (&~;) (&~:)15)(KI("i:) (&K:) IK) (A2)

2
CA: Ic+g —V

HC, H P;H+ P+ }
LC)L;L+}

gL I gL L (Tl (gP
t

HcH HcH+ L H+

x AH PH LT AL+ AL PH A3

Since hole and particle configurations by definition do
not intersect, the Kronecker symbol implies p+ ——t+ and
p = t . Addition and subtraction of these equations
yields q = q' and a = a'. In other words: two opera-
tors that dier only by their rank are correlated. This is
the first difference to the ensemble average (3.7) used in
Sec. III A, where it was found that diferent operators are
uncorrelated. The second type of additional correlation
we find in Eq. (A2) results from the intricate restriction
pattern in the sum over hole configurations: The restric-
tion only applies to the indices within the groups I~ and
I . The condition for nonzero correlations, however, is
that the set L ~L of Ic, + l indices coincide with the
set H~H of h~ + 6 indices. We adress these two cases
one after the other. First, let k' be equal to A: + ( with
( ) 0. The sum over T+, T may now readily be carried
out:

l(KI (&=a ) (+=.H ) If')l

= l(KI (&H'„) I=- (~~:) 15) I

.

One therefore obtains

(A7)

2 (Ii —6
ICk, k+~ I

= ~'
I

(H P; H+P+)
(Kl ("%) ("H:) IK)'

(AS)

(Kl (&~'„) (&~-) 11%)*,
(H P; H+P+)

(A9)

The quantity h —h is the number of hole spectators, cf.
Sec. IIIA. For the correlation coeKcient of an operator
with itself, we find

This expression may be simplified rather easily if we con-
sider the special case of l~ ——0. Then H~ ——= and we
obtain

so that

ICk, k+&I (~-~ )t(dh-r)t
Ckk (Ii —h —()!dh!

(A10)

2
Cg A:+g

——v

(:-;H P;H+ P+ }
('l(~ ;) (& )I )(*I

Under the assumption that K « A = dh, which implies
( (( dh, this yields

x A+H AH (A4)

For further simplification of this expression let us intro-
duce the product of hole number operators

ICk k+(I ( (h —6
Ckk ( dh J

(A&i)

(L-) —= ap ap, . . . ap ap, (A5)

for = = (Pi. . . Pg). This operator has the property

).(L=-)I ) =
I II )

(=-)
(A6)

where a term containing the factorial of a negative num-
ber is understood to be zero. Note that

This type of correlation may therefore be neglected if the
number of spectators (in hole space) is small compared
to the dimension dh of the single hole space. This is
certainly true if 6 « dh, which is the condition for the
DGA introduced in Sec. III A.

The second type of additional correlation appearing in
Eq. (A2) shall be illustrated using the operator iV(p p)
of a two body interaction (cf. Table I). We find for its
correlation coefEicient:



3038 M. GRANZOW, H. L. HARNEY, AND H. KALKA

(A12)

). ~p ~p g (s, lusn~l a&(L, lug u~ I a&

pl +I g I

) (I.lugu~l II&((L, lohu~l a&d~+ (L, I Ii&&
pb

—2(ilngu~
I a&) .

~ —= ) (Hl (&D ) l~)'&(~~ .
(P)

Let P, P be

P = (ri. . . r„) and P = (si. . . s„)

(B1)

(B2)

In the brackets, the first term is of the type discussed
in Secs. IIIA and IIIB. The second term is suppressed
relative to the first one by a factor 6/dh, and by the fact
that it contributes only to diagonal elements. The third
term is suppressed by a factor 2/dh. Obviously, it is
justified to neglect the second and third terms as long as
the DGA makes sense. Since out of the nine operators
of a two-body interaction which actually contribute to
the strength function iV(p p) is the only one that shows
correlations of this type, Eq. (3.7) seems to be a very
good approximation.

APPENDIX B: PROOF OF EQ. (3.9)

In Eq. (3.8), consider the special case of p+ ——h+—
I =o.

and f a function that is completely syinmetric in the
arguments ri. . . r~. The restricted sum of Eq. (Bl) can
be written as the unrestricted sum

~ = —,) .(~lu. , n.. u.'„. u.', l~&' f(P) (B3)
P

The matrix elements vanish unless the si. . .s„all ap-
pear in ri. . . rz. Consider a term that satis6. es this
condition. There are (

"
) ways in which the indices r

that agree with one of si. . . sz can be distributed over
the postions 1.. .p. Therefore, imposing the require-
ment that the first p indices ri. . . r„should agree with
si. . . s„(up to a permutation) one obtains

" u.', l~&'f(ti". t~ ~ P )-
+81.. . Bp

PI V —)I(» —p-)'p-'. ). (III ", , ',
I
~&'f(P p P ).—-- (B4)

Here, the restriction ti. . . tz z g si. . . sz means that none of the indices t;,i = 1.. .p —p, is allowed to coincide
with any one of the indices sg, A,'= 1.. .p . The short hand notation (P —p ) g P means the same. Equation (B4)
is obviously the same as

). (ala " )'f(P —p-, P-) =
gP

). (~~ , )'f(P P -P )—--
)

gP

which is easily generalized to Eq. (3.9).
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