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The nuclear magnetization distribution and the magnetic moment of the ground state of Bi
are calculated within a dynamic-correlation model. The obtained ground-state magnetization re-
produces successfully the hyperfine structure splitting (HFS) of mesonic and electronic Bi. The
evaluated nuclear radius and the electric charge distribution are also in very good agreement with
experimental data. The dynamic model is based on the introduction of configuration mixing wave
functions (CMWF), generated by breaking the particle-hole symmetry of the Pb closed-shell core
via the two-body interaction. The 2-particle —1-hole states in this calculation are restricted to a 2~
configuration space in the protons and in the neutrons. The particle-hole excitations, introduced by
this nonperturbative approximation are of collective character and therefore can also be associated
with the creation of virtual bosons in the dynamic nuclear structure calculation. In the framework
of this dynamic nuclear model it is possible to set a realistic limit for the nuclear contributions for
calculations of the Bi + hyperfine structure splitting, and therefore to allow, for the first time,
a test of +ED corrections in the strong magnetic field of high-Z atoms.

PACS number(s): 21.10.Ky, 21.60.—n, 27.80.+w, 31.30.Gs

I. INTRODUCTION

The shell model prediction for the magnetic moment of
the ground state of the Bi nucleus deviates by nearly
a factor 2 &om the experimental value.

Perturbation calculations which introduce core-
polarization e8'ects via selected particle-hole excitations
[1] have improved the value of the calculated magnetic
moments. The core-polarization model was extended in
Ref. [2] to include in the calculation the effects of the nu-
clear medium. Within this approximation, comparison of
the theoretical and measured values reveals a small dis-
crepancy. This leads to the concept of a "quenching" of
the gyromagnetic factors, associated with the appearance
of the meson degrees of &eedom in the nuclear structure
calculation [3].

The nonperturbative theory of Ref. [4], provides a con-
sistent treatment the core-polarizations and the "quench-
ing factors" in a dynamic approximation. In various nu-
merical applications [5,6] good agreement between the
calculated and the measured magnetic properties of nu-
clei has been achieved. The theoretical calculations have
been performed within the framework of exact factor-
ization methods which simplify the computation of the
matrix elements of the model operators in the dynamic-
correlated basis.

In this paper we apply the dynamic-correlation model
of Ref. [4] to the calculation of the nuclear ground-state
properties of Bi.

The correlated dynamics generated in this case by the
residual interaction between the valence proton and the
particles of the model vacuum, lead to configuration mix-
ing wave functions (CMWF). The CMWF are obtained

by allowing the valence proton in the 1hgy2 state to excite
the core via proton and neutron particle-hole excitation
(2k'). The structure of the closed-shell vacuum states
(particle-hole coupled to J g 0) modifies the valence-
particle configuration space, generating the coupling of
the valence-particle states with (a) closed shell polariza-
tions of normal parity, (b) closed shell polarizations of
non-normal parity. These states have the same quan-
tum numbers as the low-energy mesons (u, p, . . .) and are
characterized, in this nonperturbative approximation, by
many particle-hole pairs mixed via the two-body interac-
tion to the valence states.

As we will discuss in Sec. IV, the amplitudes of these
modes, calculated with a specific choice of the parameters
of the theory (single-particle energies and two-body po-
tential) as in Refs. [19—21], contribute coherently to the
formation of the magnetic distribution of 2 Bi. If we will
associate this coherent efFect to the degree of collectivity
of the model, we may state that these non-normal par-
ity polarizations are in the present calculation very well
represented as collective states.

This model is therefore able to include in the calcu-
lation of the magnetic moments of nuclei the core po-
larization and the quenching (meson) effects within the
same formalism, because the nonlinear terms introduced
within this model generate a two-body current which de-
scribes the exchange of virtual mesons between two nu-
cleons in a nuclear system. The nonlinear terms modify
the structure of the single-particle operators postulated
at the beginning of the particle-hole iteration process.

The Green functions of the model are defined by the
amplitudes of the valence-core wave functions (CMWF)
which are calculated by the equation-of-motion method
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as described in Ref. [4]. A direct comparison of this non-
linear approximation with mean-field. models is therefore
feasible.

The calculated wave functions are used to describe the
magnetic and the electric properties of the ground state
of Bi. The rms radius and the nuclear charge distri-
bution have been additionally calculated, and the agree-
ment with the already calculated nuclear charge distri-
butions in the Pb region as well as the charge radii [7]
is satisfactory.

The realistic nuclear magnetic distribution, as calcu-
lated in this model, allows us to evaluate the Bohr-
Weisskopf contribution to the hyperfine structure split-
ting of a hydrogenlike ion and to compare, therefore, the
theoretical result with the experimentally measured value
[8]. As we will discuss in Sec. IV, an overall, almost
perfect agreement with the experimental values for the
nuclear ground-state properties has been obtained.

The calculation can be extended to other nuclei with
one particle or one hole in the closed-shell nucleus. The
results of Ref. [5] for the thallium 203 and 205 isotopes
have been successfully reanalyzed in Ref. [9] where the
dependence of the hyperfine structure on the magnetic
moment distributions has been discussed.

In the next sections we will discuss the model and then
use it to calculate the HFS splitting.

II. MIXING OF THE
DY'NAMIC-CORRELATION CMW F

In this paper the electromagnetic properties of ground
and excited states of nuclei with one particle outside the
closed shells are described within an extended dynamic
correlation model. The residual interaction between the
valence and the core particles causes the deformation of
the nuclear core.

The eKect of the extended nuclear core is included in
the present calculation defining model wave functions,
the CMWF [4]. In this paper the hierarchy of the
configuration-mixing wave functions is linearized so to
include in the calculation only the CMWF of the first
type which are characterized by the 2p-1h states resulting
&om the vector coupling of the valence particle with the
lp-16 core excitations. The higher order CMWF (3p-2h)
have been linearized to generate the dynamic eigenvalue
equations of the model. According to this linearization
approximation, the ground-state wave function (P~ ) of

the IA + 1) nucleus is defined as

~&02 2~ / & ~2x2223~12 2&2223 J&2

ja j2 j3J1

x Ati (jl (j2j3)Ji jinni) Io)

o, . + ) y q, N ~,A", (ni Ji., jm) IO),

(2.1)

where the operator a. creates a single valence proton
with quantum numbers (j,m) and where the operator

Ai (nl Jl j~) = Ai (ji (j2j3)Jl j~)

fA 8

creates the 2p-1h states, obtained, as indicated by the
notation [at I3 (a. I3 a~, ) ']~, by coupling the valence

proton with quantum number (ji) to the particle-hole
pair with quantum numbers (j2) and (js ), respectively.
The symbol IO) defines the model vacuum. The (N)
specifies the norm, and the (y)'s denote the mode am-
plitudes. The superscript (1) in the N's and y's as well
as the subscript (1) of the A' s, characterize the excita-
tion of one particle-hole pair.

If the quantum numbers of the valence particle (ji} are
not equal to the quantum numbers of the core particle
(j2), the set of states [Eq. (2.1)] is orthonormal, other-
wise not. In the latter case the states are normalized via
the orthogonalization procedure of Schmidt [10], which
consists in evaluating the overlap integrals between the
two nonorthogonal Ai[ji(jijs) Ji, j] and Ai [ji (jijs)Ji; j]
states. With these integrals we define the orthogonal
states as linear combination of the form

(ni Ji)IO) = —[P (ni Ji) —(Ai(ni Ji)IAi(ni Ji)).&,
'

( .J,')]Io)

The amplitudes of the different modes (y . and y & )
in the linearized Eqs. (2.2) and (2.3) are calculated in the
dynamic approximation of Ref. [4]. This approximation
consists in evaluating the chain of commutators

[II, o, ] = [~,Ao(no, j)] = ).e, Ao(no, j)+ ).(Ao(no j)II&IIAi(niJi j))Ai(niJi j)
Iao

(2.2)

[II Ai(ni Ji j)] = ).&Ai(ni Ji j)ll&IIAo(no j)&Ao(no j) + ):(Ai(ni Ji j)IIIIIIA'(n' Jl; j))A'(n' Jl; j)
I I Iao CX1 J1

+ ). (Ai(nJi; j)II&IIA'. (n"Ji'J2'; j))A2(n2Ji'J2', j) (2.3)
II JII Jll
2 1 2
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and linearizing the A~(nz Ji'J2', j) terms in order to ob-
tain, in the erst-order linearization approximation, the
eigenvalue equation for the (y) amplitudes

&,' = (@o(&)la~-IC'~(&+ 1))

Xj (
' '

)J = (@'o(&)l&i (A(i223) Jl) lc'2„i)L(& + 1))

In (2.2) and (2.3) the nuclear Hamiltonian is

~ a a + — Vp, ga apaga, =a0+V,
Ck cxPpb

where V p&g are the matrix elements of the two-body
potential V

v.) „=(~Plvl~s)

and e are the single-particle energies. These can be ei-
ther calculated in the HF approximation or, as assumed
in this work, taken &om the low-lying spectrum of neigh-
boring closed-shell nuclei. The single-particle wave func-
tions used to calculate the matrix elements of the two-
body potentials have been approximated with harmonic
oscillator wave functions and the two-body potential have
been assumed to have the form

V=e-~-"l') V, Z,
S,T

where PsT are the projection operators of the two-body
states with quantum numbers S and T and where the
parameters VsT are discussed in the Sec. IV.

To calculate the matrix elements of the two-body in-
teraction in Eqs. (2.2) and (2.3) we use the recoupling
algebra of Ref. [11].We obtain

(&.(~.;i)II&II&l(~ ~;i)) = ):(—~)'"""""(»;+&) .
' '," 1' )(ii~lvli~i~b,

J,
(2.4)

(&i(~iJi; i) I I&I I&i(~iJi i))

~ ~ /

= ).(
—&)"+"+"(2~,+ ~) ', ' g' I)i','l&li~ii)z, 4, z,

J;

+) (—j)'+ '+ '+ '+ (2J;+1) (2J, + l)(2J,'+1) '. .', J' '. .' J' (jij2l&ljlj2)g,

+ ).(—1)"+"+'(2J*+ 1)
J; j3 j2 Ji

+ ) ( 1)~'+f'+f3+~'—+ ~+f(2J„+1)(2J, + 1) (2Ji+ 1)(2Ji + 1)
J„J,.

j3 jg (isiil liiis)~,ji j3 & ji 1

+ ) (
1)»+»+»+~'+ J~+~ (2J + ].) (2J; + 1) (2Ji + 1) (2Ji + 1)

J„J;

j3 j2 (isii I
&liiis) J. .j]. j3 r j2 i r

(2.5)

In Fqs. (2 4) and (2.5) (&~ ) denotes the 6-J symbols as defined in Ref. [11] and the (g~gt, ]V[g,jd) ); are the antisym-
metrized two-body matrix elements:

&~-~~1&1~-~~)z; = (U-~~l'l&ll~. ~~]" —(~~~.l") .

Taking the expectation value of Eqs. (2.2) and (2.3) between the vacuum and the state [lP~ (1p+ 2plh))]t we obtain
the eigenvalue equation that defines the amplitudes y and y J of the nuclear modes. We obtain

$1J2$3
-f -f ~ f

212223

2122223 21 32 23 + 212233312233

0
X 01

~F1J1~
(2.6)



2992 TOMASELLI, SCHNEIDER, KANKELEIT, AND KUHL

Equation (2.6) is suitable to describe, with V~~, ~,z,
——Vz~~~~z~

——0, also the excited septuplet states of 2o9Bi as well
as ground and excited states of the odd A+ 1 nuclei, the generalization of Eq. (2.6) to the isospin quantum numbers
that one needs to describe the spectrum of light-medium mass nuclei as been defined in Ref. [6].

For the ground state of 20sBi Eq. (2.6), with j = 9/2, is highly nonlinear including explicitly in the calculation (in
a nonperturbative approximation) the 2p-1h model spaces. In the present calculation the sum over the 2p-1h states
is truncated according to an energy cut oH'. Only states with Hartree-Pock energies cp + 6p E'h + 10 MeV have
been included in the numerical analysis. The cut-oK parameter has been introduced to limit the dimension of the
eigenvalue matrix (2.6) which, in the present calculation, has the dimension 450 x 450.

Diagonalizing Eq. (2.6) we calculate the dynamic amplitudes of the ground-state modes. These amplitudes are
taken to evaluate the reduced matrix elements of the operators 0" that characterize the electromagnetic moment of
order A.

With some recoupling operations we obtain for the reduced transition-matrix elements:

(a, (~,j)llo" llx, (a'oj')) = x'.,x."., (jllo" llj') (2.7)

(xo(~oj) llo" llxi(~i Ji, j')) = ~'...x.'', &„' (—1)"+" 2jl + 1/2m+ 1(j&llo'llj2) (2.8)

I Jl+(-1)"" (2j,'+ 1)(»,'+ 1) '' ",' (j.'lio'lij')~„,j1 j

(&i(~iJi j)llo" ll&i(~'Ji' j')) = &.',~„~.' J, '

x (2j+ 1)(2j'+ 1)(2Ji + 1)(2J,'+ 1) (—1)" ' ' ' ji ~i a (jsllO IIj3)
J1 j2 j

Jl 'I 'I+(-1)'+"+"+' ' "" ' ' " (j'llo" ilj.)j3 J1 A j J1

'I I JI .I I+(-1)"+"+""+"+"" ' " ' ' "
( llo"II')J j A j J A j2 j2

1)&i+j,'+j +&

g(2J, +1)(2J,'+1)

1)
",+'+J, +A 2 2 2 2

( lloAII
.

)

1)j,'+~+2,'+A j2 js Jl 22 ~ 2i
( iloAII (2.9)

Eqs. (2.7), (2.8), and (2.9) the operator 0" is
representing successively the magnetic moment, the
quadrupole moment, the hyper6ne structure splitting,
and the magnetic- and electric-distribution operators. In
Eq. (2.9)

(' ;)
is the 9J symbol and the reduced matrix elements are
defined according to Ref. [11].

If the operator 0 is associated with the magnetic-
moment operator g &(o.]gal, + g, s, + P)at ap, the re-
duced matrix element on the right-hand side of Eq.

(2.7) is equivalent to the Schmidt value when the single-
particle amplitudes y . and yo, ., are neglected.

Unlike calculations done in the first-order approxima-
tion, the right side of Eq. (2.8) takes properly into ac-
count the antisymmetric terms resulting by interchang-
ing valence and core particles. The terms of Eq. (2.9)
have been included exactly in the present calculations.
They contribute coherently to the formation of the mag-
netic distribution in nuclei. These terms are, in a per-
turbative approximation, approximated by the second-
order contributions of the theory, if we neglect the Pauli-
antisymmetrization principle. This comparison between
our calculation and the perturbative calculation is only
to be considered formal, because due to our diagonal-
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ization method and to the large number of components
introduced, the CMWF of the model may be associated
with the collective modes of the nucleus.

III. INTERACTION WITH THE ATOMIC
MAGNETIC FIELD

Exotic atoms, i.e., atoms with configurations deviat-
ing strongly from conditions typically realized in nature,
ofFer fascinating possibilities for testing nuclear models.
Such exotic atoms exhibit the interplay of nuclear and
atomic quantities. They permit one to test specific parts
of the electromagnetic interaction by selectively changing
or observing the efFect of just a single parameter much as
precise studies have been made in the past using muonic
atoms.

It is now possible to produce a wide variety of ex-
otic atoms kom energetic heavy-ion collisions. For ex-
ample, at GSI [8] in Darmstadt hydrogenlike high-Z
atoms such as Bi + have recently become available
for experiments. They are produced &om heavy ions
accelerated to several hundred MeV/u at the SIS ac-
celerator. Because they are then stored and cooled
in the ESR storage ring, they can be studied without
the usual constraints of unsatisfactory accelerator-beam
quality and short observation time. Where previously
only the ground-state hyperfine-structure (HFS) splitting
in muonic Bi [15,16] could be studied, it is now possi-
ble to investigate the corresponding electronic efFects in
the hydrogenlike Bi ion.

Because the HFS splitting is proportional to Z, the
wavelength of the M1 transition between the ground-
state components of hydrogenlike ions with high Z is in
the optical regime. (This is dramatically different from
the case of hydrogen where the HFS splitting is in the
microwave regime —the 21-cm radiation. ) As a result
it was possible to measure the ground-state HFS split-
ting of hydrogenlike Bi + by laser-induced fluorescence
spectroscopy [8]. The experiment yielded a ground-state
energy splitting of AE'" = 5.0841(8) eV and achieved
a relative accuracy of 10 . This high accuracy has
made possible the first test of QED in the strong mag-
netic field of the highly charged heavy ion.

For the case of a heavy ion like Bi +, the large nucleus
will have three significant eKects on the HFS splitting:
(a) There will be an efFect due to the extended nuclear
charge distribution —Breit-Rosenthal efFect; (b) an effect
due to the finite nuclear magnetization distribution—
Bohr-Weisskopf effect; and (c) radiative corrections of
order n—QED efFects. The energy splitting also depends
strongly on the rms radius of the nuclear charge distri-
bution, but diferent charge parametrizations give similar
results.

The energy shift due to the vacuum-polarization part
of the radiative corrections has been calculated recently
to be AE P = —0.035 eV [17]. This means that for high-
Z atoms, QED and nuclear-magnetization corrections are
of the same order of magnitude. Therefore, the feasibil-
ity of testing the QED corrections depends strongly on
the accuracy of the model used to evaluate the efFects of

nuclear magnetization. Since the QED corrections are
continuous functions of A and Z, while the magnetic dis-
tributions in neighboring isotopes can difFer significantly,
it may be possible to distinguish the nuclear contribu-
tions from the QED corrections by measurements on dif-
ferent isotopes.

In this paper the essential nuclear parameters are cal-
culated using the dynamic-correlation model. The elec-
tron (p, meson) is described as a Dirac particle moving
in the Coulomb potential generated by a charge distri-
bution of a Fermi type. The magnetic interaction of the
electron (p xneson) with charge of the nucleus is given by

V(e) ~ ——e d r"(e) (g) r(e)

'A(e ) r(e ) (e ) r(e )

where

A r(. )
——— d r„m r x V'(. ) r(e ) r~

with

m(r„) = yo ) (gxl, + g,'a;)8(r —r;) .

Froxn these expressions, expanding A(x) in multipole and
using some recoupling, we obtain, according to Ref. [18]

b,E = C(AL, + As)

with

P2

C= F(F + 1) —I(I + 1) —j (j + 1)
2Ij

AE = (Ci —C2) (AL, + As) = (20/9) (Ax, + As) .

The Al, and Ag are the orbital-angular-momentum
part and the spin-angular-momentum part, respectively.
For the ground state (2.1) they are given by

4
AL ego(4i-I ).(xxl'OL I&)~x.'xxn14»-&

cxP

(3.2)

and

where F designates the total angular momentum quan-
tum number of the electron (muon)-nucleus system. I is
the angular momentum quantum number of the nucleus,
and j the angular momentum quantum number of the
electron (muon), so that lExl ( I' ( I'2. In the case of

Bi + the total angular momentum quantum number
for the ground state is Px ——lI —jl = 9/2 —1/2 = 4, and
for the first excited HFS state E2 ——I+j = 9/2+1/2 = 5.
This leads to the value
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where

OO R („)
OL, = g/l, f(r)g(r)dr+ — f(r)g(r)dr

R o (R)
(3.4)

TABLE I. The square of the amplitude of the single par-
ticle and of the terms corresponding to the first-order con-
tributions calculated for the ground state of Bi from the
diagonalization of the eigenvalue Eq. (2.6).

209
I

Protons Neutr ons

Og = g, s, f(r)g(r)dr
R

(3.5)

In Eqs. (3.3), (3.4), and (3.5) /zo is the nuclear rnag-
neton, g~ and g, are the orbital and spin g factors, the
notation [Y2 o]1 means the coupling of Y2 with the nu-
cleon spin operator o to a spherical tensor of rank one,
f and g are the Dirac spinors, and f/~ ) is the ground
state wave function [see Eq. (2.1)]. The results of the
calculation of the hyper6ne structure splitting are pre-
sented in Table I and will be discussed in the following
section.

To solve the Dirac equation we have approximated the
nuclear density distribution with a two-parameter Fermi
distribution as in de Vries et al. [24].

Up to now, only the vacuum-polarization part of the
radiative corrections to order cz have been calculated [18].
Since this effect yields

LE = +0.035 eV or LA = —1.6 nm,

the importance of the determination of the self-energy

75.5 /o

—Q Q-, f h9/2
82—Q O-- s 1/2

Q-- d 3/2
1.8 '/o

—Q ~
4- h11/2

i 'll /2
W 126

P1/2
0.008 /o

1 i 13/2

—Q Q—p3/2

part of the radiative corrections in order to explain the-
oretically the experimental value is evident.

IV. RESULTS AND DISCUSSION

To calculate the electromagnetic properties of the
ground state of Bi, we have to make some assumption
about the input parameters of the model: i.e., single-
particle wave functions, single-particle energy, and. two-
body potential. The single-particle wave functions have
been approximated by harmonic oscillation wave func-
tions with the following range:

Proton hole:

2p3/2, 1f5/2) 2p1/2) lgg/2) 2d5/2) lg7/2, 331/2) 2d3/2, 1h11/2 .

Proton particle:

lhg/2) 2f7/2) 3p3/2) f7/2) 3pl/2) 1 13/2) 3d5/2) 2g7/2) 1/2) 3d3/2) 2hll/2

Neutron hole:

3d5/2) lg7/2) 381/2) 2d3/2) lh11/2) lhg/2) 2 f7/2) 3p3/2) 2f5/2, 3p1/2, lz13/2

Neutron particle:

3d5/2 2g7/2) 48]./2 3d3/2 2h & &/2 ~g].5/2 ~$$/2 ) 2g9/2

The single-particle energies are those of Kuo [19].
In Eqs. (2.5) two types of two-body matrix elements

occur: (1) particle-hole matrix elements (jsjz~v~ j2j3)&,,
,~v~j2j3');, and (jsjz~v~

matrix elements (j1j2~V~j1j2)J,
The two-body model potential, used to calculate the

particle-hole matrix elements (1), is taken from Ref. [20]
(VgT of COP type) while the two-body model potential,

used to calculate the particle-particle matrix elements
(2), is taken from Ref. [21].

The matrix elements of Eq. (2.4) are of mixed type
and are calculated &om particle-particle potential. This
particle-hole potential has been already successfully ap-
plied in the theoretical description of the septuplet states
in 2ogBi (See Ref. [22]), while the VsT parameters of the
particle-particle potential have been derived by fitting
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TABLE II. List of the square of the more significant ampli-
tudes calculated diagonalizing Eq. (2.6). The valence proton
is coupled to proton particle-hole states. The amplitudes are
small, but give a coherent contribution to the magnetic dis-
tribution of the ground state of Bi.

Proton configurations

1hg/2 (lz13/21gg/2)2+
1hg/2(2 f7/2 lh11(2)2+
1hg/2 (2hg/22ps/2) 3+

1hg/2(1113/2lgg/2)3+
1hg/2(1h9/22p1/2) 4+
1hg /2 (111 3/2 1gg /2 )4+
1h9/2 ( 13/2 2ds/2 )4+
2fs/2(li13/22ds/2 +
lh9/2(lz13/22d / )3+
2f7/, (lz13/22ds/', )3+
2ps/2 (lz13/22ds/'2) 3+
1z13/2 (1hg/21g7/2) 2

1z13/2(2 f7/23ds/'2) 2

lz13/2(lz13/21111/2)2—
lz13/2(lhg/22ps/2)3
lzis/2(2 f7/22 f, /', )3

Amplitudes (%)
0.132
0.041
0.176
0.271
0.016
0.045
0.092
0.037
0.014
0.019
0.013
0.059
0.156
0.191
0.037
0.029

TABLE III. List of the square of the more significant am-
plitudes calculated diagonalizing Eq. (2.6). The valence pro-
ton is coupled to neutron particle-hole states. The amplitudes
are small, but give a coherent contribution to the magnetic
distribution of the ground state of Bi.

Neutron configurations

2f7/2(lz11/21113/2)1+
3ps/2(1 j13/2lh / )3+
2fs/2 (2g7/2 1zzs'/2) 3+
1h, /, (1j»/21h, /', )4+
2f, /, (lj,s/22 f7/2)4+
2f3/2 (3d3/2 1i 13/2 )4+

2pz/2 (2gg/2 lizs/2)4+
lz13/2 (3d3/23p, /', )2—
lzas/2 (2gg/23pz/z) 3—

li13/2 (lz11/2 1hg/2) 3

1i13/2 (lgzs/23pz(~ )3

lizs/2 (2gg/23pz/2)3
li„/2 (299/23ps/2) 5

Amplitudes (%)
0.011
0.001
0.014
0.005
0.003
0.006
0.015
0.044
0.048
0.017
0.038
0.361
0.028

the two-body matrix elements calculated with the Bethe-
Goldstone formalism as described in Ref. [21]. The depth
of the particle-hole potential is chosen to reproduce the
energy of the first 3 state in Pb. The particle-particle
potential has been adjusted to reproduce the level scheme
of 2ioBi [21] and to calculate the microscopic composition
of the excited septuplet states in Bi as preliminarily
shown in Ref. [23]. The single particle wave functions are
assumed to be harmonic oscillator wave functions with
size parameters chosen to reproduce Woods-Saxon wave

TABLE IV. Calculated rms radius, nuclear magnetic mo-
ment, nuclear quadrupole moment, and HFS structure for the
muonic and electronic Bi ground states compared with the
experimental results. Note that in the case of the HFS struc-
ture for the Bi+ ground state, the experimental value has
been extracted from the experiment without taking in con-
sideration +ED corrections.

rms radius
Magnetic moment
Pl Ps
(Schmidt value)
Quadrupol moment
AE for siy2 muon
AE for szy2 muon
dipole approximation
AE for sqgq electron
AE for szg2 electron
dipole approximation

[2s]

Experimental
5.519(2) fm

4.1106(2) n.m.

[2s]
[»]

—0.40
4.44(15) keV

[8] 5.0841(8) eV

Theoretical
5.6 fm

4.11 n.m.
4.43—0.32
(2.62 n.m. )

—0.35
4.45 keV

6.65 keV
5.091 eV

5.198 eV

functions, as proposed in Ref. [20], Table I, Table II.
With these parameters, diagonalizing the Eq. (2.6) we

obtain the wave functions tabulated in Tables I, II, and
III. In Table I we give the larger 1+ amplitudes calculated
within this model. In Table II and Table III we give
the other more significant (2p-1h) amplitudes. Although
they are small compared with the 1+ amplitudes of Table
I, they contribute coherently to the magnetic structure
of bismuth, as in the case of a magnetic-giant resonance,
due to the formation of the collective degrees of freedom.

In Table IV we compare the calculated nuclear mag-
netic moment, the nuclear quadrupole moment, the nu-
clear rms radius, and the hyperfine structure splitting for
muonic and electric Bi with the experimental quanti-
ties. The agreement between experiment and theoretical
values is remarkably good.

For the magnetic moment we give also the single-
particle value and the calculated orbital and spin con-
tributions. The small discrepancy between the computed
nuclear radius and the experimentally quoted one is prob-
ably due to the 4p-36 components not included in the
calculations (CMWF of the second kind which allow for
the formation of low lying (0+) states [4]). On the other
hand, the calculated nuclear radius agrees remarkably
well with the calculation done within the &amework of a
relativistic mean-field theory [7]. In order to discuss the
inHuence of the extended nuclear charge magnetization
distribution on the hyperfine structure splitting, we have
also tabulated the results for the dipole approximation.

The muonic atom and the electronic atom are difFerent
in one important respect: in the latter scenario the elec-
tronic wave function is almost constant over the full ex-
tension of the magnetization distribution but the muonic
wave function changes significantly in this region.

In contrast to the situation in the electronic-
hydrogenlike ion, in the muonic atom the /ED contri-
butions to the HFS are less than 10%%ug of the BW effect.
Therefore, in principle the muon is a better particle to
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FIG. 1. The normalized magnetization distribution
(dot-dashed line) given in terms of the single particle (dashed
line) and dynamic-correlation (full line) contributions as a
function of the nuclear radius.

0
- 0.2

0 5
r (fm)

test the form of the magnetization distribution. Our cal-
culated value of 4.45 keV of the ground-state HFS split-
ting in muonic bismuth is in excellent agreement with
the experimental result of 4.44 (15) keV [14,15]. Since
the calculated size of the BW contribution entering in
the splitting is 2.19 keV, this allows a test of our model
to a level of 7', limited unfortunately by the experimen-
tal accuracy.

In Fig. 1 we have plotted the normalized total, the
single-particle, and the dynamic correlation ground. -state
magnetization distributions. Figure 2 gives the normal-
ized magnetization distribution due to the angular orbital

0 ~ 2—

0

FIG. 3. The spin part of the magnetization distribu-
tion given in terms of the single particle and the dy-
namic-correlation contributions.

momentum in terms of the single particle and dynamic-
correlation contributions. Figure 3 shows the normal-
ized spin magnetization distribution also in terms of sin-
gle particle and dynamic-correlation contributions. The
spin distribution peaks at a larger radius than the orbital
magnetic distribution. This could be associated with the
formation of the neutron halo. In Figs. 2 and 3, the nor-
malization factors are different. Figure 4 shows the total
ground-state charge distribution in terms of the single
particle and. the dynamic-correlation contributions.

The calculation of the ground-state charge distribution
reproduces the trend already found in Ref. [7].

In conclusion we find that the nonlinear approxima-
tion, introduced in this paper reproduces accurately
the ground-state properties of the Bi nucleus. The

-0-2

0.2

0
C

-0 ~ 2

0.2

—- —total
--- single particle—dyn. corr.

-- —total0.4—--- single particle

O 3 d y n, ca r r

0.2—

0.1

Q

- 0.2
0 5

r (frn)
10

- 0.1

r (frn)

FIG. 2. The angular orbital momentum part of the magne-
tization distribution given in terms of the single particle and
dynamic-correlation contributions.

FIG. 4. The normalized charge distribution for the hgg2
dynamic-correlated proton given in terms of the single particle
and dynamic-correlation contributions.
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dynamic-correlation model should therefore be used to
calculate the charge-current distributions of nuclei over
the whole mass scale in order to test its general applica-
bility.

Our value of 5.091 eV calculated for the HFS splitting
of 2 Bisz+ without @ED effects is very close to the ex-
perimental obtained value of 5.0841 (8) eV. If one com-
bines the results of the calculations of [12,13] with the
BW effect of this work a value of 5.085 (10) eV is ob-
tained. The indicated uncertainty is obtained comparing
calculation and experiment in the muonic case, where
the experimental accuracy is the limiting factor. From

the calculated vacuum-polarization contribution —0.035
eV [17] we predict a self-energy /ED correction of 0.040
(10) eV. A calculation of this contribution is presently
under way.
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