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EfFects of T- and P-odd weak nucleon interaction in nuclei:
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compound states and their correlations with P-violating matrix elements
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Manifestations of T- and P-odd weak interaction between nucleons in a nucleus are considered.
Renormalization of this interaction due to residual strong interaction is studied both analytically
and numerically. Expression for the effective two-body T- and P- violating interaction between
nucleons in a nucleus, which incorporates the effects of the renormalization due to the residual
strong interaction, is derived. Mean square matrix elements of the T- and P-odd weak interaction
between nuclear compound states are calculated. Correlators between the T- and P-odd and the
T-even and P-odd weak interaction matrix elements in the compound states are considered and
estimates for these quantities are obtained.
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I. INTR.&DU CTION

Spatial parity nonconserving weak interaction of nu-
cleons is now a subject for extensive experimental and
theoretical investigations. In these studies, quantitative
comparison of experimental results and theoretical pre-
dictions is possible. Developments in experimental tech-
niques and interpretations of the results obtained allow
one to raise questions far beyond the scope of the theory
of weak interactions [1—11].

Much less is known, both in experimental and theo-
retical aspects, about the component of nucleon weak in-
teraction that violates both spatial parity (P) and time
reversal invariance (T) (T and P odd -weak in-teraction)
[12—14]. The problem of possible T violation has been of
interest for a long time [15—23].

In the context of nuclear physics, the T- and P-odd
interaction, if it exists, induces T- and P-odd nuclear
moments [24—30] (electric dipole, magnetic quadrupole
moments, "Schiff" moment, etc.). Experimental data ex-
ist only for the upper limits of these quantities. At the
same time, theoretical values of the constants of this in-
teraction are not unambiguously known, varying by sev-
eral orders of magnitude from one model to another (see,
e.g. , [26,30]). In most cases, the scale of T and P odd--
interaction is predicted to be very small.

In this situation, possible sources for enhancement of
the effects caused by this interaction, which allow exper-
imental investigation, are crucial for further studies of
T- and P-odd interactions. Apparently, the compound
nuclear resonances which provide a large statistical en-
hancement of small perturbations are very convenient in
this case.

Here, we consider the weak T- and P-odd nucleon in-
teraction in nuclei beginning at the single-particle level.
The effects of the residual strong interaction on the T-
and P odd potential was -considered in Ref. [9], where
simple analytical expressions for the renormalized con-
stants of the weak potential were obtained. In the present

work, we focus attention on renormalization of the two-
body T- and P-odd interaction due to the residual strong
interaction, which is important for the description of the
T- and P-odd efFects in nuclear states at excitation en-
ergies near or lower than that of the neutron separation
threshold B . We obtain the expression for the effective
two-body T- and P-violating interaction between nucle-
ons in a nucleus that results from the T- and P-odd weak
interaction, the residual strong interaction, and nuclear
structure effects. We have calculated the mean square
T- and P-violating matrix elements between compound
states and have considered possible correlations of these
matrix elements with the matrix elements of P-odd and
T-even weak interaction [8].

The structure of the paper is the following. In Sec. II
we consider a T- and P-odd potential, acting on a nucleon
that arises in the mean field approximation for the ini-
tial two-body weak interaction. We calculate the single-
particle matrix elements of this potential and discuss
their properties in comparison with the single-particle
matrix elements of P-odd and T-even weak interaction.
In Sec. III we consider renormali. zation of the T- and P-
odd weak interaction by the residual strong nucleon inter-
action. In Sec. IV the equations of this renormalization
are solved for the Landau-Migdal parametrization of the
residual strong interaction and explicit analytical results
for the effective two-body T- and P-odd weak interac-
tion between the nucleons in heavy nuclei are derived.
Numerical results are obtained for the matrix elements
expressed through the constants of the initial weak in-
teraction. It is shown that, contrary to the case of the
P-odd and T-even weak interaction, renormalization due
to strong interaction does not result in enhancement of
the matrix elements, though this renormalization is im-
portant for quantitative results.

In Sec. V we calculate the mean square matrix ele-
ments of the T- and P-odd interaction between nuclear
compound states of opposite parity within the statistical
model. Section VI is devoted to discussion of correlations
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of T- and P-odd and P-odd and T-even matrix elements
between compound states. Calculation of the correlator
in the statistical model yields the value about 10%%uo.

The results are summarized in Sec. VII.

II. T- AND P-ODD WEAK NUCLEON
INTERACTION. T- AND P-ODD POTENTIAL

The nuclear Hamiltonian H with accounts for the T-
and P-odd weak interaction can be written in the form

II=IIo + &s + ~ ' +

commutator. The dimensionless constants gq 2 and gz &

which determine the scale of the T- and P-odd e8'ects are
predicted to be very small, e.g. , within the Kobayashi-
Maskawa inodel (see e.g. , [25,26,29]).

The analysis of the T- and P-odd eKects in nuclei is
similar to that in the case of the P-odd weak interaction
(see, e.g. , [8,10]). It is convenient to introduce the T
and P odd -"weak potential" u) ' (1) acting on a valence
nucleon 1, which arises from the summation W +(1,2)
over the states of the nucleon 2 (see, e.g. , Ref. [26]):

(1) = q(o. V') p(r),
2 2m

Here, the first term Ho ——p /2m+ U~(r, o) is the single-
particle Hamiltonian of the nucleons moving in the strong
mean field Us(r, o) including the spin-orbit interaction,
Vg stands for the residual two-body strong interaction (it
will be considered in Sec. IV), W ' describes T and-
P-odd weak interaction between nucleons, and F denotes
other possible interactions, e.g. , coupling to electromag-
netic field. The two-body weak T- and P-odd interaction
W+ + can be written as follows (see, e.g. , [25,26]):

(1) 2) (rI12irl g21o2) +lb(rl r2)
~2 2m

+g»]F, x 8,] (ii, —ii, , i(r, —i,))), (2)

where G = 10 m is the Fermi constant, m is the
nucleon mass, and p and o are the nucleon momentum
and doubled spin, respectively. Hereafter, a x 6 means
the exterior vector product, and (a, b) denotes an anti-

where p is the nucleon density and the dimensionless con-
stants g„and g characterize the strength of the T- and
P odd po-tential for protons (neutrons); they are con-
nected to the parameters of the initial two-body interac-
tion W+'+(1, 2) by the relations

Z N N Z
QP A HAPP +

A IPSE ) IfL A gfhfL +
A IflP ) (4)

Ll =+1, Lj =0. (5)

The values of the matrix elements of the T- and P-odd

where Z, N, and A are the nuclear charge, a neutron
number, and its mass number, respectively. The lim-
its on these constants (gz, g ) were obtained from the
atomic [27] and molecular [28] electric dipole moment
measurements. The T- and P-odd weak potential m

is a single-particle operator; it obeys the same selection
rules as the P-odd and T-even weak potential m

TABLE I. The single-particle matrix elements of T and P odd w-eak inte-raction (3) for the protons given in units of eV (the
fifth column). The latin indices a, b denote the quantum number sets, a:—(n l j ) where n, l, and j are the radial quantum
number, the orbital angular momentum, and the total angular momentum, respectively. The states with energies closest to
the Fermi energy are marked by asterisks. The energy separations are given by the third column, in units of MeV. The fourth
column gives the single-particle elements of the P-odd and T-even weak potential.

2p3/2

lgg/2

2p1 /2

2p1/2
1gv
2d5/2

3/2

2d3/2
3$1/2

1hg/2
1h,g/2

2')2
2f5/2
2fsy2
3p3/2
3p3/2

2d3/2

1hg/2

3S1/2
3S1/2
2fig~
2f5)2
2p3/2

3p3/2
3p1/2

1gg/2

2gg/2
1g7/2
1d5/2
2d5/2
1d3/2

3/2

(MeV)
—8.554

—11.054
—8.443
—8.443
—9.745
—10.084

8.554

-8.732
—9.186

11.054
—9.417
9.745
26.505
10.084
25.840
8.732

P~ab
(eV)

0.513gpp+ 0.748g„

0.599g„p+ 0.842g„
0 500gpp 0 722'

—0.500g„„—0.722g„
—0.517gpp —0.720'
0.553g„p+ 0.812'„

—0.513gpp+ —0.748g„

—0.558g„„—0.803'
0.549g„~+ 0.806g~

—0.599g„p —0.842'
—0.575g„„—0.789g„
0.517g„„+0.720g„
0.096g„„+0.134g„

—0.553g„„—0.812g„
—0.054g„„—0.063g„
0.558g~„+ 0.803g~

TP~ab
(eV)

0.080gpp + 0.098gp

0.112gpp + 0.129'„
—0.066'„p —0.078gp
—0.066gp~ —0.078'„
—0.068gp„—0.071'„
0.078'„„+0.107'„
0.080gpp+ 0.098gp

—0.050gpp —0.073'„
0.055'„„+0.091'~

0.112'„p+ 0.129'„
—0.055'„p —0.064'„
—0.068'„„—0.071'„
—0.067'„~ —0.066'„
0.078gp„+ 0.107'„
0.036gpp+ 0.036'~

—0.050g~p —0.073'~

-TP
%8~b

(eV)
0.053'„„+0.065'„

+0.003' „+0.003'
0.074gp„+ 0.086gp

—0.044gpp —0.052gp
—0.044gpp —0.052gp
—0.045'„p —0.047@„
0.052gp„+ 0.071'„
0.053'„„+0.065'„„

+0.003'„„+0.003'„„
—0.033gp„—0.048gp
0.037'„„+0.060'„„

+0.002' „+0.003'
0.074'„„+0.086gp

—0.037gpp —0.042gp
—0.045gpp —0.047'„
—0.044gp„—0.044'„
0.052gpp + 0.071'„
0.024'„„+0.024'„„

—0.033g~p —0.048'~
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TABLE II. The same as in TableI, but for neutrons.

3p3/2
3p3/2

2'/i
2'/2
2'/2
2 f*/2
3p1/2

2d3/2
3d3/2
2d5/2

3d5/2
2d5/2

3d5/2
1$1/2

(MeV)
7.784

—8.733
10.055
—6.633
10.055
—6.633
34.531

3p1/2 3$1/2 8.811

3p1/2
2gg/2
3d5/2
3d5/2
4s1/2
4s1/2
4$1/2
2gT/2

2g7/2
3d3/2

4s1/2
1hg/2
1f5/2
2f5/2
lpl/2
2p1/2

3p1/2
1fv/2
2 f7/2
2p3/2

—6.645
7.590

24.931
6.633
37.016
23.364
6.645
28.563
11.326
25.118

3d3/2 3p3/2 8.733

2s1/2 23.964

P
~ah
(eV)

0.541g„+ 0.778g „
0.446g + 0.661g p

—0.536g —0.790g„„
—0.539g —0.773g„p
—0.536g —0.790g p
—0.539g„—0.773g „
0.004g —0.003g p

0.037g + 0.050g „
—0.528g —0 ~ 775g „
—0.452g —0.660g „
0.561g„„+0.770g„p
0.023g + 0.039g p
0.539g + 0.773g p

—0.038g —0.040g „
0.039g + 0.053g „
0.452g + 0.660g p
0.034g + 0.068g „

—0.518g —0.770g p
—0.02lg —0.020g „
—0.446g —0.66lg „

TP~ab
(eV)

—0.071@ -0.048@ p
0.060' + 0.026' p
0.108'„„+0.078'„„

—0.044@ —0.017@ p
0.108r]„+0.078' p

—0.044' —0.017' „
0.023' + 0.022' p

—0.044' „—0.042' p

0.090' + 0.054' p

—0.035' —0.012' „
—0.058' —0.048' „
0.012' + 0.004' p

—0.044' —0.017' „
0.001' + 0.006' „
0.009' —0.004' „

—0.035' —0.012' „
—0.066' —0.061' „
0.101' + 0.061' „

—0.028' —0.015' p

0.060' + 0.026' „

-TP
~ab
(eV)

—0.040' —0.027' p
0.033@ + 0.015' p
0.060' + 0.044' „

—0.024' —0.009' p
0.060'„„+0.044'„„

—0.024' —0.009' „
0.013' + 0.012' „
0.001'„+0.001'„„

—0.025' —0.023' „
—0.001'„—0.001'„„
0.050@ + 0.030' „
0.002gp + 0.001gpp

—0.020@ —0.007' p
—0.033r] -0.027' „
0.006' + 0.002' „

—0.024' —0.003' p
0.000' + 0.003' p
0.005' -0.002' „

—0.020@„„—0.007' „
—0.037@ —0.034' p
0.057'„„+0.034'„„

—0.016' —0.008' p
—0.001gp —0.001gpp
0.033'„„+0.015'„„

weak potential (3) between single-particle nuclear states
calculated for Pb are presented in Tables I and II,
expressed through the dimensionless weak constants g~2.
The numerical calculations have been performed with the
use of the single-particle basis of states obtained by nu-
merical solution of the eigenvalue problem in the Woods-
Saxon potential with spin-orbital interaction in the form

21d
Us(r, cr) = Uo f (r) + U),—(o. . l) [5/(m c)] ——+ U, (6)r dr

with f (r) = (1 + exp[(r —R)/a]) ~. Here, I is the or-
bital angular momentum and U is the Coulomb correc-
tion for protons; U, = 3Ze /(2R)[l —r /(3R )],r ( R,
and U, = Ze /r, r ) R, for R, a, and r the nuclear
radius, diKusity parameter, and radial variable, respec-
tively. The parameter values were used in accordance

I

with Bohr-Mottelson formulas (see Ref. [31]) for the case
of Th: they are close to those established for heavy nu-
clei like lead (Ref. [32]) to reproduce the single-particle
properties.

The coeKcients before the weak constants gq2 in the
expressions for the matrix elements characterize the
strength of the matrix elements and incorporate the ef-
fects of nuclear structure. As it is seen from Tables I and
II, these quantities for the single-particle T- and P-odd
matrix elements (the fifth column) are numerically sup-
pressed (by about an order of magnitude) as compared to
the corresponding quantities for the matrix elements of
the P odd and T eve-n potential -6 (1) = (W (1, 2)) =

((~ p)p+ p(~ p) j (the fourth column) that arises
from the corresponding two-body P-violating interaction
[24]

W (1,2) =
v22m

[g110'1 g21 112) ([Pl —P2) )[1 1 12)) + g11[11 + +2[ ' Vi~[11 +1))

in the same way as the T- and P-odd potential. The
difference between these two cases is due to the surface
character of the potential (3) which is proportional to
the nuclear density derivative and peaked at the nuclear
surface.

On average, the mixing of the single-particle states of
opposite parity due to potential (3) that gives rise to
nuclear T and P odd nuclear -momen-ts (see [25,26]) is

f-b =
I ~.b /(s- sb) I

- »—'~, (6)
with c and cg being the energies of the single-particle

shell model states a and 6 coupled by the T- and P-
violating potential (3).

As the selection rules are the same for the T- and P-
odd potential and the T-even and P odd potential [see-
Eq. (5)], the following considerations are valid for the T
and P-odd potential. It is well known [33,34] that dou-
blets of single-particle states with the same total angular
momentum but of opposite parity usually do not appear
in the same spherical nuclear shell. Hence the energy sep-
aration ~a' —sb

~

between levels in such doublets is about
5, ..., 8 MeV, which is the average energy distance be-
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tween difFerent shells. Thus the coherent single-particle
T a-nd P-odd contribution (3) does not work effectively
in mixing any excited nuclear states (including the com-
pound states) with energies below B 4, ..., 6 MeV,
the neutron separation energy, because the many-particle
wave functions in this energy region are dominated by
nucleon excitations within the valence shells [31]. There-
fore, the main P-odd efFects in this energy region are
to be determined by the purely two-particle "residue, "
: W(1, 2):, of the weak interaction W(l, 2), given by the
difFerence

: W (1,2): = W (1,2) —(W (1,2))
WT, P(1 2) T,P(1) (9)

@ = exp( —a)Q (1+00. V')g,

g=rI = —2x10 qfm, (10)
p(o)

2 2mU0

which does not contain coherent summation in contrast
to (3) (where such summation results in the nuclear den-
sity factor p).

First, we consider the case where the strong interaction
Vg is "switched ofF." Prom the technical viewpoint, it is
convenient to include the corrections due to the T and
P-odd potential (5) into the single-particle wave func-
tions using a unitary transformation. As is known from
Refs. [25], [26], in the simple model with the strong po-
tential U(r) which is proportional to the nuclear density
p [p(r) = p(0)U(r)/U(0)], it is easy to find the result of
the action of the perturbation i'(l):

tion constant by the residual strong interaction Vg. The
transformed Hamiltonian looks like

(»)
Now we choose the operator A to match the "compensa-
tion equation"

w~~+ [A, H, ]+ ([A, Vs]) = 0. (13)

After that, the transformed Hamiltonian (11) takes the
form

0 = e+He

Ho+ Vs+ F
+[A, F]+ iii~~+: WT": +[A, Ho]+ [A, Vs],

(11)
where the P-violating terms are given by the second line,
and we have used the decomposition of the T- and P-odd
weak interaction W ' [Eq.(9)]. We neglected all terms
above first order in the weak interaction. To obtain the
efFective two-particle T- and P-odd interaction acting in
the valence shells we should find the operator A in such a
way that the single-particle T- and P-odd contribution in
e+He + will be compensated. The last term in (ll) is a
two-body operator. We employ the same decomposition
as in (9): [A, Vs]—:([A, Vs])+: [A, Vs]:, where the
first single-particle term is the average over the paired
nucleons, and the second one, : [A, Vs]:, which yields
zero under such averaging, is the efFective induced two-
particle T and P--odd interaction (ITPNCI) which we
are seeking:

where @0 is the unperturbed wave function, and r,
—1 (+1) is the isospin projection for the proton (neu-
tron). To get this solution, one should also neglect spin-
orbit interactions. Accordingly, the matrix elements of
any operator 0, including the Hamiltonian, can be cal-
culated by using the unperturbed wave functions go and
the transformed operator 0:

(y. loly, ) = (@.'Iol@~) = (&.'Ie « l&a)

(y.'lo+ [~, o

where e = e ' ~
'

~ is the operator of the correspond-
ing unitary transformation with the single-particle anti-
Hermitian operator a. This transformation compensates
the single-particle T- and P-odd potential in the Hamil-
tonian e He . Thereby, the efFects caused by this po-
tential are accounted for in the renormalized operators
O, rather than the wave functions g.

III. RENORMALIZATION OF THE T- AND
P-ODD EFFECTS DUE TO RESIDUAL STRONG

INTERACTION

To take the strong interaction Vg into account, let us

seek now for an operator e+ which should play the same
role as e above, but will incorporate the renormalization
effects due to the residual strong interaction Vs. Even-
tually, as we will see below, the operator A difFers from
6 mainly due to the renormalization of the weak interac-

H=HQ+Vs+F+:w ':+w ' +[A, F], (14)

where T- and P-odd single-particle terms are canceled.
The sources of symmetry violations present in Eq. (14)
can be classified as follows.

(i) The term [A, F] which gives a direct contribution
of the symmetry violating potential mz' to the ma-

trix elements of an external field F ((glF + [A, F]l@') =
(&IFI&')).

(ii) The two-body residual weak interaction: W
(iii) WiT'pNc&, which play the same role as: W

We note that the induced T- and P-odd interaction
~&&&~&1 is not enhanced in comparison with the two-
particle residual T- and P-odd interaction: 34 ':,con-
trary to the case of the P-odd and T-even interaction that
turns out to be enhanced by A ~ times (see [10]). In
fact, the ~&&&N&& incorporates the efFects of the admix-
ture of the distant components of the many-body wave
function (e.g. , the "small" components of the compound
states [8,10]).

The efFects of renormalization of the P-odd and T-even
interaction were considered in detail in Ref. [10]; below
we focus our attention on the T- and P-odd interaction.

IV. EXPLICIT FORM OF THE RESULTING
TWO-PARTICLE T- AND P-ODD INTERACTION

To solve Eq. (13) and find an explicit form of the ITP-
NCI we use the Landau-Migdal interaction [35,36,32]. It
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+(T» (Tl» T2» (72) C~(TI T2) [f + f'TiT2

+g(71 ' (T2 + g T1T2(TI ' (72]» (i5)

where C = — — = 300 MeV fm is the universalPFm
Migdal constant [36,32,37] and the strengths f, f', g, and
g' are in fact functions of r via the density dependence:
f = f;„—(f,„—f;„)[p(r) —p(0)]/p(0) (the same for f',

is the most widely used particle-hole interaction of con-
tact type with spin- and isospin-exchange terms which
goes backwards to the Landau Fermi liquid theory (Ref.
[35]); for the case of a nucleus it was established in the
theory of finite Fermi systems [36,32,37] by summation of
all graphs irreducible in the particle-hole direction. This
interaction can be written explicitly as follows:

g, and g'). (Quantities subscripted by "in" and "ex" de-
scribe interaction strengths in the depth of the nucleus
and on its surface, respectively. ) With the parameter
values listed below, this interaction has been successfully
used by many authors (see Refs. [32]) to quantitatively
describe many properties of heavy nuclei.

The conventional choice of the constants widely used
for heavy nuclei is (see [36,32,37]) f,„=—1.95, f;„
—0.075, f,'„= 0.05, f„=0.675, g;„= g,„=0.575, and
g,'„=g,'. = 0.725.

It can be seen that, in the approximation of constant
density as used above, the operator A is proportional to
n: A = —0(0 V'). Evaluating the commutator in (12) and
(13), we obtain

[» +9] — 01C(71 ' [+I» ~(&1 &2) (f + f TlT2)] 01C(g + g TIT2)(T2 ' [+I» ~(TI T2)]

02C(72 ' [V2» 8(rl —T2) (f + f T1T2)] t}2C(g + »(»( TIT2)%1 [V2» 8(rl T2)]

+~C(g + g T1T2)(TI && (T2 (01+I 02+2» ~(rl &2)) ~ (16)

Contrary to the case of P-odd and T-even weak interac-
tion [9,10], averaging over the core nucleons here yields
a nonzero result

([»&~]) 8 o

and, consequently, gives a nonzero contribution to the
"compensation equation" (13). Taking together the
terms with the same operator structures, we obtain from
(13) and (16), the equation [9]

0(o . V')U = 8(a V')U+p (0 V')U,
U(0)

(i7)

Nl fz
I
1+C~~u A I I A&~~+ A&~- ~D (, Ap qA A

N(N Z
AI1"~+ A

which is equivalent to a system of two linear alge-
braic equations relating new (renormalized) interaction
strengths ql 2 with their initial values @12 (without strong
interaction). Here, p = C[0„&(g + g') + 0 & (g p g')] for
the protons (upper signs) and for the neutrons (lower
signs). The solutions for this system of equations for the
constants are the following:

1 6 — Z) /N Z
I
i+Ca

A I I An +A&D g Ay qA A )
z fz
A&A

with D = 1 + Cg„„+4C g„„ZN/A . Here, g» ——g

g —g', g„„=g —g', aild C = Cp/~U~ =
2 ~'/~

= 2(1 +—") 1 1. We have used the well known relations

7t 2p+ pFp=, sp =, iUi =ay +B„,
pQ~ 3Ã 2m

(i9)

where p~ is the Fermi momentum and B is the nucleon
separation energy. The renormalized matrix elements of
the T- and P-odd weak potential for Pb are presented
in the last column of Tables I and II. It is seen that the
strong residual interaction reduces the values of the T-
and P-odd potential constants 1.5 to 2 times, on average.

To this end, using the explicit expression for: W
(9) given by Eq. (7), we obtain &om (16) the resulting
purely two-body T- and P-odd weak interaction in a nu-
cleus:

TP TP TP: +~&T'PNCr.

G 1

1/22m . (1»12 »2gl +) 2(l»22112»2»2g12» }22) (» 2, g(22 22)]

+C(gl(TI g2(72) ' [+I» ~(rl T2)f12(rl)]

&(Tl X (T2 (('glg12C + Ih2)+I (92g12C + 912)+2» ~(TI T2)) (20)

where the renormalized weak constants g~ and g~ are
given by Eq. (18). We used here the fact that the spin
constant of the strong interaction (16) does not depend
on r, while the constants f„„=f = f(r) + f'(r) and

I

f~- = f-~ = f(T) —f'(T) do.
It should be noted that the induced T- and P-odd in-

teraction j+&&PNcI has the same operator structure as the
initial two-body T- and P-odd interaction W . Thus
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TABLE III. Reduced matrix elements of T- and P-odd weak interaction ~
& d for states of

valence shells in the nuclei in the U—Th region in terms of the dimensionless weak constants 7I1z.
The Latin indices a,b, ..d. enote the full set of quantum numbers, a = (p(n)n l j ), where p (n)
means proton (neutron) states.

J
2

3
4
5
6
7

9
2

4
5
6
7
8
9

3
4
5
6
7
8
9

plhg/z
plhg/z
plhg/z
plhg/z
plhg/z
plhg/z
plhg/z
plhg/z
Al411/z
nli11/z
Al 411/z
Al 411/z
A 1'K11/z
nli11/z
nlz11/z
A1411/z
Al j15/z
Al j15/z
Al j15/z
Al j15/z
nl j15/z
nl j15/z
nlj15/z
Al j15/z

6

plhg/z
plhg/z
plhg/z
plhg/z
plhg/z
plhg/z
plhg/z
plhg/z
nl j15/z
Al j15/z
nl j15/z
Al j15/z
Al j15/2
Al j15/z
Al j15/z
Alj15/z
AlE11/z
A1L11/z
AlC11/z
A1$11/z
Alt]1/z
A1X11/z

C

Al j15/z
Al j15/z
nl j15/z
Al j15/z
nl j15/z
Al j15/z
Al j15/z
nl j15/2
A2gg/z

A2gg/z

A2gg/z

A2gg/z

A2gg/z

A2gg/z

A2gg/z

A2gg/z
Alb11/z
Al 411/z
Al&11/z
A 1111/z
A 1111/z
A 1'X11/z
A1 411/z
A 1'f11/z

d

Alt11/z
Al 411/z
Alz11/z
A1$11/z
Al c11/z
Ally 1/z
A 1411/z
nli11/z
n2gg/z
A2gg/z

A2gg/z

A2gg/z

A2gg/z
A2gg/z

A2gg/z

A2gg/z

n2gg/z
n2gg/z
A2gg/z
A2gg/z

A2gg/z

A2gg/z

A2gg/z

A2gg/z

W...' ( V)
0.0217I„'

-0.0037I„„+0.014'„'„
G.oloq„'„

—0.0067I„+0.0097Ip
0.0067I

—0.0117I„+0.0067I„'

0.004 7I„'

—0.0247I„+0.0057I„'
—0.0037I —0.009''
0.0017I —0.0067I'
—0.0027I —0.004''
0.0027I —0.0047)

—0.0017I —0.0037I'
0.004' —0.0037I'

—0.0017I —0.0027I'
0.0097I —0.002''

—0.0037I —0.010''
0.0027I + 0.0027I'

—0.0037I —0.0037I'
0.0037I + 0.0017I'

.
—0.0047I —0.0017I'

0.0037I'
—0.0057I —0.0017I'

0.0037I'

WITpNcx differs from W only due to the renormaliza-
tion of the strength constants which turns out to be weak,
because the response of the nucleus to the T- and P-odd
potential (3) as a function of the interaction constants
haspoles (D=O) atg= C I —1andg' C I —1
(for N Z), while the actual nuclear strong interaction
"drives" the solution of the renormalization equations
(18) in the direction opposite the poles. As a result, the
induced T- and P-odd interaction does not play a special
role in the present case and causes renormalization of or-
der 1 to 2. Thus there is an essential difFerence with the
case of the P-odd and T-even weak interaction [10] where
the analogous induced P-odd interaction is enhanced by
about A / times and practically dominates the results.

In practical calculations, it is convenient to treat
in the second quantized version using a multi-

pole expansion in the particle-hole channel: ~ ff

2 g&[(a b)~W, & '& d(c d) J]o where ( .)g means the cou-

pling of nucleon creation at and destruction a operators
to a given angular momentum J [31]. The numerical
results for some reduced matrix elements of W, ' as
compared to those of the initial interaction: W
between valence shell states for the Th—U region are pre-
sented in Table III.

V. T- AND P-ODD MATRIX ELEMENTS
BETWEEN COMPOUND STATES

In the work (Ref. [8]) we introduced a method to cal-
culate the mean square matrix elements (MSME's) of
operators between compound states and obtained the re-
sults for the P-odd and T-even weak interaction. Here,
we apply the method to calculation of MSME's of the T-
and P-odd interaction. Consider the mean squared value
of the matrix element:

WTP = (p[WTP(s)(s[WTP(p)

= (pI: W: +WITPNcxls) (sl: W: +WIT'PNcxl&) .
(21)

Now, we can expand the compound states ~C ) = [s), ~p) in terms of their simple coxnponents (multiparticle excita-
tions) ~n ) of the same quantuxn numbers of angular momentuxn J and parity ~,

having for the MSME's the expression
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) .c-cp(pl: W: +WITpNcII~) {~l::+W»~pNc&lp) .
~p

(23)

The number of different terms in Eq. (22), JV, is very
large 10s—10 . The main contribution in Eq. (22) is
dominated by the set of N "principal components" ln)
with shell model energies E- close to the energy of a
compound state E. We can make use of the statistical
independence of the coeKcients C to take their second
moments in the form (Refs. [31,38])

C Cp = C2b p = b p=K(l, p„E —E ). (24)
1

N

The overbar means averaging over a rather broad set of
the compound states. Here, the spreading width I',~, is——1/2related to the number of principal components N

and d is the average energy distance between~~spr
the resonances. The Breit-signer-type factor A that

I

describes quenching of the weights of states distanced in
energy,

r,'„/4
-) =

(E E.')"+r:„/. (25)

is a widely "spread" b function. It is normalized so as
to be of order unity for IE —E

I
( r,~, /2 and with the

conventional limit A(r, ~„E—E ) ~ 2"b(E —E ) for
r,~, m 0. For the principal components, IE El -&—r,~„
the expression (25) re8ects the "chaotic" nature of a
broad mixture of the simple components in the com-
pound state due to the strong interaction. For the small
(energy distanced) components it reduces to the pertur-
bation theory result. From (23)—(25), we obtain for the
MSME's

w~~ = Q=~(r.„,E —E.)(pl: w&&:+w, , „I ){ I:w~~:+w„, „lp).N (26)

Here the argument of the function 4 is the change of
the energy, E —E = e —eg + e —ep, and: ~
and W&&pNc& are given by Eq. (20). Summation over o.
in (26) is equivalent to summation over different compo-
nents of the operator W,& in Eq. (5), i.e. , the prob-
lem is reduced to the calculation of (plW W Ip).
The coeKcients before the "principal" components C
in (22) are governed by the microcanonical ensemble
rule [31,38]. Then, to calculate the averaging over p-
resonance "principal" components (pl. Ip) in (W++)2,
we use, instead of the present microcanonical ensemble,
an equivalent canonical one. The latter can always be
introduced for a system with a large number degrees
of freedom by introducing the efI'ective nuclear temper-
ature T and chemical potentials A and Az. In the sec-
ond quantization representation, the average expectation
value in (26) is reduced to a canonical ensemble average
with the standard contractor rules (pla+blp) = b gv, for
v the 6nite temperature Fermi occupation probabilities,
v = (exp[(e —A)/T] + 1) . The canonical ensemble
parameters T and A (w means isospin projection) are
to be determined from conventional "consistency" equa-
ti sonE=Q vs, Z=P vza dnN=Q v forthe
excitation energy E (being equal to the neutron separa-
tion energy H~), nuclear charge Z, and neutron number
N, correspondingly.

Using the same considerations, we obtain the following

result for 2

I

Here, A(r, p„s' —zb + s, —sg) can be viewed as an ap-
proximate energy conservation law with accuracy up to
the width of the states.

The numerical calculations for Th have been per-
formed with the use of a single-particle basis of states
obtained numerically [see Sec. II, Eq. (6) and the dis-
cussion below it].

The value of temperature T = 0.6 MeV was used in
accordance with the consistency condition for the exci-
tation energy. The result for the mean square matrix el-
ements of T- and P-odd interaction between compound
states is

= 0.2gp meV.2

The ratio of the T and P-odd matrix elements to the

P-odd ones is W+ +
/ W+ = 0 lg/g H. ere, .we useTP2 P2

equal values of the constants qq2 in (2), qq2
——go. The

corresponding mixing coefficient for compound states
IE,„I is

= 1 x 10-'q„
8 P

which is about 10 times larger than single-particle mix-
ing fq2 10 qo [Eq. (8)]. We assumed in this estimate
that IE, —E„l = D, where D, 20 eV is the aver-
age energy interval between compound resonances in an
s-wave.

T Tv (1 —vb )v (1 —vg )R'I sP1 2
abed

T,Px
I was .s,.g I

+(r.p» e. —~b

2
+&c &d)

VI. CORRELATIONS BETWEEN T- AND P-ODD
AND 5'-ODD AND T-EVEN MATRIX. IN

COMPOU'ND STATES
The question of possible correlations between matrix

elements of T- and P-odd weak interaction and those of
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P-odd and T-even weak interaction is very interesting.
If the correlator

C W~ WT, s (plW ls)(»IW ~ls)
7

T,P~ grP2
(28)

c(W, W '
) = (plW Is)(slWT'&Ip)

= (plÃpNcIIs)( I:W: +WITpNcIIp).
(29)

I

(0 ( IC(W, W ' )I ( 1) can be calculated, one can
make predictive estimates for the values and the signs
of the T- and P-odd effects in compound states based
on the information about the corresponding quantities
for P-odd effects (the latter are much easier to mea-
sure) in the case when the quantity C(W+, WT +) dif-
fers considerably from zero. C(W+, W+'+) can be calcu-
lated, in principle, by the same technique [8] as the mean
square matrix element [39]. To calculate the numera-
tor in the right-hand side of Eq. (29), c(W, W ) =
(plW+ls)(plw+ +ls), one can employ the same method of
reducing to the average over the ensemble as used above
to calculate the MSME's:

T,P T,P T,P T,P=W„' ~. (3o)

As a result, we have some cancellations of the different
terms in the sum of the products W ' W . Thus an ap-
propriate symmetrization should be done when the quan-
tity C(W+, WT +) is calculated by the present method
of reduction to the ensemble averaging:

However, in this a case more careful treatment is needed.
In fact, the present thermodynamical approach does not
distinguish the cases when "external" averaging (canoni-
cal) goes over p-states or s-states .This approximation
is reasonable for the case of the mean square matrix
element because the latter is not considerably affected

by the change (plW~ls)(sIW+Ip) -+ (slW+lp)(plW+ls).
The latter is not the case for the quantity c(W+, W+ +).
The reason is that the matrix elements of the P-odd weak
operator R' are imaginary and change sign when sub-

stituting anal states instead of initial states. In contrast,
the matrix elements of the T- and P-odd weak operator

are real and symmetric under such a substitution.
Two-body matrix elements of lV and W obey the
following symmetry rules, respectively:

c(W, W ) =
2 (» IW.ff ls)(slWpw„lp) + (alway„„lp)(plW. „ ls)

= — (plw I )( lw. '
Ip) —( lw Ip)(plw. '

I ) .

lc(W W '
)I = ).~.'(l —~s)~. (I-~d)G

'P' abed

P T,P
ab, cdWeff dc, ba

xA(l', „e —as+ e, —e ). (32)

Using this result and Eqs. (23)—(26) we obtain, for the
same value of temperature and the same single-particle
basis as in the calculations of mean square matrix ele-
ments, the following absolute value of the correlator (28)
for the 2 3Th:

As a result of the symmetrization and due to the negative
sign before the second term in the last line, some cancel-
lations of similar terms in the large sum of the same type
as in Eq. (23) are possible. It is seen &om the last equa-
tion that we cannot pretend to obtain the correct sign
of the correlator within the present statistical method,
because the compound states of positive and negative
parity are treated on the same footing. Without having
additional information about occupancies of particular
single-particle levels with a given total angular momen-
tum and parity, only absolute values of the correlator can
be estimated.

After the same calculations as in the previous section
and thermal averaging, we obtain the following expres-
sion for the numerator in (28):

I c(w, w ) I
= o.I.

This result means that correlations in the matrix ele-
ments are weak. Of course, the present statistical calcu-
lation of the correlator is rather approximate, and a more
re6ned technique is needed to obtain a precise result for
the correlator.

VII. SUMMARY

We have considered the T- and P-odd nucleon inter-
action in heavy nuclei. Effects of the renormalization of
this interaction are considered. An effective two-body T
and P-odd interaction acting near the Fermi surface is
obtained and the corresponding matrix elements are cal-
culated. This interaction accumulates the eBects of the
distant state admixtures. We obtained the results for
mean squared values of the T- and P-violating interac-
tion between compound states of opposite parity. As well
as in the case of P-odd and T-even weak interaction, sta-
tistical enhancement of T- and P-odd effects in neutron
resonances take place. As a result, the mixing between
the compound states of opposite parity is enhanced by
10 times, in comparison to the single-particle T- and
P-odd mixing. The ratio of the T- and P-odd matrix el-

ements to the P-odd ones is W / W = O. lq/g.
So the simplest estimate ( g/g) of the sensitivity of
the T- and P experiments planned in Los Alamos, St.
Petersbourg, and KEK should be reduced by 10 times.
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Correlations between matrix elements of T- and P-odd
and P-odd and T-even interactions in compound states
are found to be weak within the statistical model.
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